首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a new method for data assimilation of the surface radial current observed by High Frequency ground wave radar and optimization of the bottom friction coefficient. In this method, the shallow water wave equation is introduced into the cost function of the multigrid three-dimensional variation data assimilation method as the weak constraint term, the surface current and the bottom friction coefficient are defined as the analytical variables, and the high spatiotemporal resolution surface radial flow observed by the high-frequency ground wave radar is used to optimize the surface current and bottom friction coefficient. This method can effectively consider the spatiotemporal correlation of radar data and extract multiscale information from surface radial flow data from long waves to short waves. Introducing the shallow water wave equation into the cost function as a weak constraint condition can adjust both the momentum and mass fields simultaneously to obtain more reasonable analysis information. The optimized bottom friction coefficient is introduced into the regional ocean numerical model to carry out numerical experiments. The test results show that the bottom friction coefficient obtained by this method can effectively improve the accuracy of the numerical simulation of sea surface height in the offshore area and reduce the simulation error.  相似文献   

2.
High frequency ground wave radar (HFGWR) has unique advantage in the survey of dynamical factors, such as sea surface current, sea wave, and sea surface wind in marine conditions in coastal sea area. Compared to marine satellite remote sensing, it involves lower cost, has higher measuring accuracy and spatial resolution and sampling frequency. High frequency ground wave radar is a new land based remote sensing instrument with superior vision and greater application potentials. This paper reviews the development history and application status of high frequency wave radar, introduces its remote-sensing principle and method to inverse offshore fluid, and wave and wind field. Based on the author's "863 Project", this paper recounts comparison and verification of radar remote-sensing value, the physical calibration of radar-measured data and methods to control the quality of radar-sensing data. The authors discuss the precision of radar-sensing data's inversing on offshore fluid field and application of the assimilated data on assimilation.  相似文献   

3.
A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed. Two experiments into the use of the radar system were carried out at two sites, respectively, for calibration process in Zhangzi Island of the Yellow Sea, and for validation in the Yellow Sea and South China Sea. Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method. The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy. The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy. In particular, it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters, especially in detecting the significant wave height below 1.0 m.  相似文献   

4.
High Frequency (HF) radar current data is assimilated into a shelf sea circulation model based on optimal interpolation (OI) method. The purpose of this work is to develop a real-time computationally highly efficient assimilation method to improve the forecast of shelf current. Since the true state of the ocean is not known, the specification of background error covariance is arduous. Usually, it is assumed or calculated from an ensemble of model states and is kept in constant. In our method, the spatial covariances of model forecast errors are derived from differences between the adjacent model forecast fields, which serve as the forecast tendencies. The assumption behind this is that forecast errors can resemble forecast tendencies, since variances are large when fields change quickly and small when fields change slowly. The implementation of HF radar data assimilation is found to yield good information for analyses. After assimilation, the root-mean-square error of model decreases significantly. Besides, three assimilation runs with variational observation density are implemented. The comparison of them indicates that the pattern described by observations is much more important than the amount of observations. It is more useful to expand the scope of observations than to increase the spatial interval. From our tests, the spatial interval of observation can be 5 times bigger than that of model grid.  相似文献   

5.
Effect of wave-induced Stokes drift on the dynamics of ocean mixed layer   总被引:1,自引:0,他引:1  
The wave-forcing ’Coriolis-Stokes forcing’ and ’Stokes-vortex force’ induced by Stokes drift affect the upper ocean jointly.To study the effect of the wave-induced Stokes drift on the dynamics of the ocean mixed layer,a new three-dimensional(3D) numerical model is derived using the primitive basic equations and Eulerian wave averaging.The Princeton Ocean Model(POM),a 3D primitive equation ocean model is used with the upper wave-averaged basic equations.The global ocean circulation is simulated using the POM model,and the Stokes drift is evaluated based on the wave data generated by WAVEWATCH III.We compared simulations with and without the Stokes drift.The results show that the magnitude of the Stokes drift is comparable with the Eulerian mean current.Including the Stokes drift in the ocean model affects both the Eulerian current and the Lagranian drift and causes the vertical mixing coefficients to increase.  相似文献   

6.
1 INTRODUCTION Ocean wave and sea wind, are important oce-anic dynamic phenomena having great influence on the development of marine economy, exploitation of marine resources, and location selection, planning and designing, construction and operation of marine projects; so study on measuring methods of ocean wave and sea wind is important. High frequency ground wave radar (HF radar) was a technique developed in the last decades for the detection of oceanic environment. Long radio wave (mu…  相似文献   

7.
Directional wave spectra and integrated wave parameters can be derived from X-band radar sea surface images.A vessel on the sea surface has a significant influence on wave parameter inversions that can be seen as intensive backscatter speckles in X-band wave monitoring radar sea surface images.A novel algorithm to eliminate the interference of vessels in ocean wave height inversions from X-band wave monitoring radar is proposed.This algorithm is based on the characteristics of the interference.The principal components(PCs) of a sea surface image sequence are extracted using empirical orthogonal function(EOF)analysis.The standard deviation of the PCs is then used to identify vessel interference within the image sequence.To mitigate the interference,a suppression method based on a frequency domain geometric model is applied.The algorithm framework has been applied to OSMAR-X,a wave monitoring system developed by Wuhan University,based on nautical X-band radar.Several sea surface images captured on vessels by OSMAR-X are processed using the method proposed in this paper.Inversion schemes are validated by comparisons with data from in situ wave buoys.The root-mean-square error between the significant wave heights(SWH) retrieved from original interference radar images and those measured by the buoy is reduced by 0.25 m.The determinations of surface gravity wave parameters,in particular SWH,confirm the applicability of the proposed method.  相似文献   

8.
An ensemble adjustment Kalman filter study for Argo data   总被引:2,自引:0,他引:2  
  相似文献   

9.
Wave assimilation and numerical prediction   总被引:10,自引:0,他引:10  
INTRODUCTIONDataassimilationwasusedinearlynumericalweatherpredictiontoimproveforecastaccuracy.Forecasterrorsresultfromseveralmainresources:thefirstisphysicalapproximationinthedynami calequationsofthemodel;thesecondisthelowqualityoftheinitialconditionsa…  相似文献   

10.
Under suitable conditions of tidal current and wind, underwater topography can be detected by synthetic aperture radar (SAR) indirectly. Underwater topography SAR imaging includes three physical processes: radar ocean surface backscattering, the modulation of sea surface short wave spectrum by the variations in sea surface currents, and the modulation of sea surface currents by the underwater topography. The first process is described usually by Bragg scattering theory because the incident angle of SAR is always between 20°–70°. The second process is described by the action balance equation. The third process is described by an ocean hydrodynamic model. Based on the SAR imaging mechanism for underwater topography, an underwater topography SAR detection model and a simplified method for its calculation are introduced. In the detection model, a two-dimensional hydrodynamic model — the shallow water model is used to describe the motion of tidal current. Due to the difficulty of determining the expression of SAR backscattering cross section in which some terms can not be determined, the backscattering cross section of SAR image used in the underwater topography SAR detection is pro-processed by the simulated SAR image of the coarse-grid water depth to simplify the calculation. Taiwan Shoal, located at the southwest outlet of Taiwan Strait, is selected as an evaluation area for this technique due to the occurrence of hundreds of sand waves. The underwater topography of Taiwan Shoal was detected by two scenes of ERS-2 SAR images which were acquired on 9 January 2000 and 6 June 2004. The detection results are compared with in situ measured water depths for three profiles. The average absolute and relative errors of the best detection result are 2.23 m and 7.5 %, respectively. These show that the detection model and the simplified method introduced in the paper is feasible.  相似文献   

11.
12.
Whitecapping plays an important role in many air-sea exchange and upper ocean processes. Traditionally, whitecap coverage is parameterized as a function of wind speed only. At present, the relative speed of ocean current to wind is considered to be important in the air-sea exchange parameterization which is the function of wind speed only. In this paper, the effects of ocean surface velocity (current velocity and wave induced velocity) and the wave parameters on whitecap coverage through relative speeds are investigated, by applying a 2-parameter whitecap coverage model to the Atlantic Ocean. It is found that the impacts of both current and wave on whitecap coverage are considerable in the most part of the Atlantic Ocean. It is interesting that the effect of wave is more significant than that of current.  相似文献   

13.
1 IntroductionSeaice ,asanimportantcomponentoftheArcticclimatesystem ,hasdrawnsignifi cantscientificinterest.Seaicethicknessanditsmorphologyhavedramaticimpactsono cean atmosphere iceinteractions(Wadhams 1 994;Barryetal.1 993 ;Dickson 1 999;PadhamsandNorman 2 0 0 0 ) ,whichdirectlyaffecttheexchangeprocessandspeedofheatandmassbetweentheoceanandtheatmosphere ,dominatethephysicalmechanicsfea turesofseaice ,andaffecttheseaicemovement&deformationaswellasicefreezing&meltingprocess(Hollandetal.1 99…  相似文献   

14.
The Florida Current (FC) largely fills the Straits of Florida and is variable on a broad spectrum of time and space scales. Some portions of the variability are due to variable forcing by tides, winds, heating/cooling, and throughflow; other portions are due to intrinsic instabilities of the FC. To predict, as well as to better understand this complex regime, a nowcast/forecast system (East Florida Shelf Information System (EFSIS)) has been implemented and assessed (http://efsis. rsmas. miami. edu). EFSIS is based on an implementation of the Princeton Ocean Model (POM) with mesoscale-admitting resolution on a curvilinear grid. It is forced by a mesoscale numerical weather prediction system (called Eta) run operationally by the National Centers for Environmental Prediction (NCEP), eight tidal constituents from a global tidal model, and lateral boundary conditions from an operational global ocean prediction model, i.e., the Navy Coastal Ocean Model (NCOM). Real-time observations of coastal sea level, coastal sea surface temperature, coastal HF radar-derived surface current maps, and FC volume transport are used to verify and validate EFSIS. EFSIS is part of an evolving strategy for real-time predictive coastal ocean modeling methodology, and for fostering the understanding of the variability of the regime on several time and space scales. Here, some of the verification and validation results are provided, as well as diagnostic analyses of dynamical processes. The central point is that an example is provided of a 'scientific revolution' in progress that combines real-time observations and numerical circulation models to yield a credible sequence of synoptic views of coastal ocean circulation for the first time.  相似文献   

15.
By taking into consideration the effects of ocean surface wave-induced Stokes drift velocity U,w and current velocityU,c on the drag coefficient,the spatial distributions of drag coefficient and wind stress in 2004 are computed over the tropical andnorthern Pacific using an empirical drag coefficient parameterization formula based on wave steepness and wind speed.The globalocean current field is generated from the Hybrid Coordinate Ocean Model (HYCOM) and the wave data are generated from Wave-watch Ⅲ (WW3).The spatial variability of the drag coefficient and wind stress is analyzed.Preliminary results indicate that theocean surface Stokes drift velocity and current velocity exert an important influence on the wind stress.The results also show thatconsideration of the effects of the ocean surface Stokes drift velocity and current velocity on the wind stress can significantly im-prove the modeling of ocean circulation and air-sea interaction processes.  相似文献   

16.
When imaging ocean surface waves by X-band marine radar,the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function(MTF) comprises tilt,hydrodynamic,and shadowing modulations. A conventional linear MTF was derived using HH-polarized radar observations under conditions of deep water. In this study,we propose a new quadratic polynomial MTF based on VV-polarized radar measurements taken from heterogeneous nearshore wave fields. This new MTF is obtained using a radar-observed image spectrum and in situ buoy-measured wave frequency spectrum. We validate the MTF by comparing peak and mean wave periods retrieved from X-band marine radar image sequences with those measured by the buoy. It is shown that the retrieval accuracies of peak and mean wave periods of the new MTF are better than the conventional MTF. The results also show that the bias and root mean square errors of the peak and mean wave periods of the new MTF are 0.05 and 0.88 s,and 0.32 and 0.53 s,respectively,while those of the conventional MTF are 0.61 and 0.98 s,and 1.39 and 1.48 s,respectively. Moreover,it is also shown that the retrieval results are insensitive to the coefficients in the proposed MTF.  相似文献   

17.
Adjoint Assimilation in Marine and an Example of Application   总被引:1,自引:1,他引:0  
This paper aims at a review of the work carried out to date on the adjoint assimilation of data in marine ecosystem models since 1995. The structure and feature of the adjoint assimilation in marine ecosystem models are also introduced. To illustrate the application of the adjoint technique and its merits, a 4-variable ecosystem model coupled with a 3-D physical model is established for the Bohai Sea and the Yellow Sea. The chlorophyll concentration data derived from the SeaWiFS ocean colour data are assimilated in the model with the technique. Some results are briefly presented.  相似文献   

18.
On the basis of an understanding of the ocean current produced under the combined forces of wind stress over the sea surface and horizontal pressure gradient force caused by the uneven distribution of seawater density and the elevation of sea surface, we obtained the unsteady analytic solution of the variation with time of ocean surface current velocity corresponding to the time variation of the above two forces, and the unsteady analytic solution for variation of seawater density with time by considering only the vertical turbulence. To meet different needs, the above solutions may be written in two forms for short and long time predictions. After some simplification the analytic solution was used to predict surface ocean current velocity for meteorological navigation in the North Pacific. The monthly average current field was first obtained to get the necessary parameters for selecting the initial shipping route in the North Pacific and Bohai and Yellow Seas. The wind current field was then calculated by means of the simplified analytic solution to provide realistic bases for prediction of the ocean surface current field so that the optimum navigational route can be known several days in advance. This paper was presented on the Program on “Meteorological navigation in the North Pacific” as a contribution on prediction of ocean surface current in the North Pacific. This program won the Second Prize for Scientific-technical Progress awarded by the National Education Committee.  相似文献   

19.
针对传统海浪建模方法中存在海洋表面真实感差、计算复杂的问题,本文进行了基于光滑粒子流体动力学算法(SPH)与移动立方体算法(MC)相结合的海浪建模仿真研究。通过基于空间网格的粒子分配,建立了粒子群单向列表存储结构,在海浪粒子物理量计算时,实现了其光滑核半径内粒子群的快速检索,并基于拉格朗日流体控制方程,进行了海浪粒子受力分析及状态计算;在模拟海浪与环境障碍物碰撞时,将碰撞问题简化为粒子在一定时间段内所经过的路径与障碍物表面三角面片是否相交来进行判定,并假设粒子为理想刚体,采用改进的欧拉方法实现了粒子新位置的动态计算;为增强海浪流体模拟的真实感,在移动立方体节点密度动态计算基础上,依据确定的海浪表面密度阈值,耦合MC算法进行了海浪表面的动态提取,从而实现了海浪三维表面建模与动态演变仿真。通过模拟验证了该算法的时效性与可行性,可为海洋环境信息三维可视化提供一定的参考。  相似文献   

20.
应用短期资料的潮流准调和分析方法,对深圳湾4测站两周日海流观测获得的表、中、底层海流资料进行分析,计算了4测站O_1、K_1、M_2、S_2、M_4、MS_4 6个主要分潮的潮流调和常数,并给出各测站在各层的潮流椭圆要素。计算结果表明:深圳湾主要为不规则半日潮流海区,浅水分潮流在总海流中的影响较大;站位1、2和4主要分潮流的北分量大于东分量,而站位3主要分潮流的北分量小于东分量。观测期间余流的流向主要呈北和东北向;最小余流速度出现在站位3;余流流速表层最大,中层次之,底层最小。整个海区潮流的可能最大流速表层在76~102cm/s之间;中层在80~106cm/s之间;底层在56~88cm/s之间。整个海区潮流表现出往复流的性质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号