首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Typhoon is one of the frequent natural disasters in coastal regions of China.As shown in many studies,the impact of typhoons on the South China Sea(SCS) should not be overlooked.Super typhoon Rammasun(2014) was studied that formed in the northwestern Pacific,passed through the SCS,then landed in the Leizhou Peninsula.Remote sensing data and model products were used to analyze the spatiotemporal variations of the cold eddies,upwelling,sea surface temperature,mixed layer depth,rainfall,sea surface salinity,suspended sediment concentration,and surface-level anomaly.Results confirm the constant presence of upwelling and cold eddies in the southeast of Hainan(north of the Zhongsha Islands) and the southeast of Vietnam in July.In addition,we found the strengthening effect of super typhoon Rammasun on the upwelling and cold eddies in the SCS.The major reasons for the continuous decrease in sea surface temperature and the slow regaining of seawater temperature were the enhanced upwelling and vertical mixing caused by the typhoon.The increasing of the surface runoff in the Indochina Peninsula was mainly affected by the typhoon,with some contribution for the southeast of Vietnam's cold eddy and upwelling.  相似文献   

2.
1 Introduction Thesub inertialcirculationincoastalembaymentanditsexchangewiththeopenshelfwaterscanhaveimportantenvironmentconsequences .AnexampleofsuchasystemisJervisBay ,asmallsemi closedembay mentlocatedontheEastCoastofAustralia .Thebayisapproximately 15kmlongand 8kmwidewithanareaof 12 4km2 .Theaverageddepthofthebayis 15mandisconnectedtothecontinentalshelfthroughanopeningwhichis 3.75kmwideand 4 0mdeep (Fig.1) .Theadjacentcontinentalshelfgraduallyincreasesitsdepthto 12 0mwithinadistanceo…  相似文献   

3.
【目的】研究雷州半岛东部近岸海域大型底栖经济甲壳动物的群落结构及其影响因素,为甲壳类资源评估与合理利用提供参考依据。【方法】于2016年4月至2017年2月按季度在该海域开展4个航次的渔业资源底拖网调查,采集经济甲壳动物样品,并进行分类鉴定,同时采集环境数据。采用聚类分析和冗余分析(RDA),评价该海域不同季节甲壳动物群落结构特征及其与环境因子的关系。【结果】共有甲壳动物98种,隶属2目24科43属;全年优势种有变态蟳(Charybdis variegata)、哈氏仿对虾(Parapenaeopsis hardwickii)和须赤虾(Metapenaeopsis barbata)等10种;各季节丰富度指数(D)、多样性指数(H′)、均匀度指数(J′)均以夏季最高,冬、春季次之,秋季最低;各季节均可划分为两个群落(Anosim test:0.579相似文献   

4.
The concentrations of rare earth elements(REEs) in the bulk sediment of Core X2, which was collected from southeastern Hainan Island, were analyzed to investigate the relative contributions of various provenance regions since mid-Holocene. The results show that sediments in Core X2 were primarily derived from Hainan Island with lesser amounts from Taiwan and limited input from the Pearl River. Based on the application of quantitative inversion to model the REE data, the average contributions of river materials from southeastern Hainan Island and southwestern Taiwan to the study area were 68% and 32%, respectively. Furthermore, starting at 4.0 kyr BP, the transport of fluvial sediments from Taiwan to the study region increased due to enhanced hydrodynamics in South China Sea(SCS). These results indicate that the contributions of mountain river materials from Hainan Island and Taiwan to the continental shelf of northern SCS are non-negligible. Furthermore, these results demonstrate that mountain rivers can play an important role in the material cycle of continental margins and may feature a greater impact than large river systems in specific continental shelf areas.  相似文献   

5.
A three-dimensional baroclinic shelf sea model was employed to simulate the seasonal characteristics of the South China Sea (SCS) upper circulation. The results showed that: in summer, an anticyclonic eddy, after its formation between the Bashi Channel and Dongsha Islands in the northeastern SCS, moves southwestward until it disperses slowly. There exists a northward western boundary current along the east shore of the Indo-China Peninsula in the western SCS and an anticyclonic gyre in the southern SCS. But at the end of summer and beginning of autumn, a weak local cyclonic eddy forms in the Nansha Trough, then grows slowly and moves westward till it becomes a cyclonic gyre in the southern SCS in autumn. At the beginning of winter, there exists a cyclonic gyre in the northern and southern SCS, and there is a southward western boundary current along the east shore of the Indo-China Peninsula. But at the end of winter, an anticyclonic eddy grows and moves toward the western boundary after forming in the Nansha Trough. The eddy‘s movement induces a new opposite sign eddy on its eastern side, while the strength of the southward western boundary current gets weakened. This phenomenon continues till spring and causes eddies in the southern SCS.  相似文献   

6.
In this study, power spectral density and inverse analyses were performed to obtain the frequency characteristics and spatial distribution of temperature in the Qiongzhou Strait using reciprocal sound transmission data obtained in a coastal acoustic tomography experiment conducted in 2013. The results reveal three dominant types of internal tides(diurnal, semidiurnal, and terdiurnal).Spectral analysis of the range-average temperature deviation along the northern and southern transmission paths shows that along the northern path, the energy of the diurnal internal tides was significantly larger than that of the semidiurnal tides. The semidiurnal internal tides, in contrast, were more pronounced along the southern path. A terdiurnal spectrum with an energy level equivalent to that of the semidiurnal internal tide was discernable for both the northern and southern paths. These three types of internal tides can also be recognized in the time variation of the zonal-average temperature deviation. The diurnal internal tides were strengthened along the northern coast, implying their westward propagation and the existence of coastally trapped effects. The other two types of internal tides, which have smaller wavelengths than the diurnal internal tides, were less resolved over the entire tomographic domain due to the insufficient resolution of the inversion. The data quality was verified to be satisfactory by error estimation.  相似文献   

7.
Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) were analyzed by using the data obtained in July and December of 1997. Based on the results from the data collected in the winter of 1998, waters in the open sea areas of the SCS were divided into six water masses: the Surface Water Mass of the SCS (S), the Subsurface Water Mass of the SCS (U), the Subsurface-Intermediate Water Mass of the SCS (UI), the Intermediate Water Mass of the SCS (I), the Deep Water Mass of the SCS (D) and the Bottom Water Mass of the SCS(B). For the summer of 1998, the Kuroshio Surface Water Mass (KS) and the Kuroshio Subsurface Water Mass (KU) were also identified in the SCS. But no Kuroshio water was found to pass the 119.5°E meridian and enter the SCS in the time of winter observations. The Sulu Sea Water (SSW) intruded into the SCS through the Mindoro Channel between 50–75 m in the summer of 1998. However, the data obtained in the summer and winter of 1997 indicated that water from the Pacific had entered the SCS through the northern part of the Luzon Strait in these seasons, but water from the SCS had entered the Pacific through the southern part of the Strait. These phenomena might correlate with the 1998 El-Niño event.  相似文献   

8.
Wave simulation was conducted for the period 1976 to 2005 in the South China Sea (SCS) using the wave model, WAVEWATCH-III. Wave characteristics and engineering environment were studied in the region. The wind input data are from the objective reanalysis wind datasets, which assimilate meteorological data from several sources. Comparisons of significant wave heights between simulation and TOPEX/Poseidon altimeter and buoy data show a good agreement in general. By statistical analysis, the wave characteristics, such as significant wave heights, dominant wave directions, and their seasonal variations, were discussed. The largest significant wave heights are found in winter and the smallest in spring. The annual mean dominant wave direction is northeast (NE) along the southwest (SW)-NE axis, east northeast in the northwest (NW) part of SCS, and north northeast in the southeast (SE) part of SCS. The joint distributions of wave heights and wave periods (directions) were studied. The results show a single peak pattern for joint significant wave heights and periods, and a double peak pattern for joint significant wave heights and mean directions. Furthermore, the main wave extreme parameters and directional extreme values, particularly for the 100-year return period, were also investigated. The main extreme values of significant wave heights are larger in the northern part of SCS than in the southern part, with the maximum value occurring to the southeast of Hainan Island. The direction of large directional extreme H s values is focus in E in the northern and middle sea areas of SCS, while the direction of those is focus in N in the southeast sea areas of SCS.  相似文献   

9.
Storm surge is one of the predominant natural threats to coastal communities. Qingdao is located on the southern coast of the Shandong Peninsula in China. The storm surge disaster in Qingdao depends on various influencing factors such as the intensity, duration, and route of the passing typhoon, and thus a comprehensive understanding of natural coastal hazards is essential. In order to make up the defects of merely using the warning water level, this paper presents two statistical distribution models(Poisson Bi- variable Gumbel Logistic Distribution and Poisson Bi-variable Log-normal Distribution) to classify the intensity of storm surge. We emphasize the joint return period of typhoon-induced water levels and wave heights measured in the coastal area of Qingdao since 1949. The present study establishes a new criterion to classify the intensity grade of catastrophic storms using the typhoon surge estimated by the two models. A case study demonstrates that the new criterion is well defined in terms of probability concept, is easy to implement, and fits well the calculation of storm surge intensity. The procedures with the proposed statistical models would be useful for the disaster mitigation in other coastal areas influenced by typhoons.  相似文献   

10.
Clay minerals of surface sediments in the South China Sea (SCS) are analyzed with X-ray diffraction, and their transport is explored with a grain size trend analysis (GSTA) model. Results show that clay mineral types in various sedimentary environments have different sediment sources and transport routes. Sediments in the northern SCS (north of 20°N) between the southwest of Taiwan Island and the outer mouth of the Pearl River have high contents of illite and chlorite, which are derived mainly from sediments on Taiwan Island and/or the Yangtze River. Sediments from the Pearl River are characterized by high kaolinite and low smectite content, and most are distributed in the area between the mouth of the Pearl River and northeast of Hainan Island and transported vertically from the continental shelf to the slope. Characterized by high illite content, sediments from Kalimantan Island are transported toward the Nansha Trough. Sediments from Luzon Island are related with volcanic materials, and are transported westwards according to smectite distribution. On the Sunda Shelf, sediments from the Mekong River are transported southeast in the north while sediments from the Indonesian islands are transported northward in the south. Ascertaining surface sediment sources and their transport routes will not only improve understanding of modern transportation and depositional processes, but also aid paleoenvironmental and paleoclimatic analysis of the SCS.  相似文献   

11.
A three-dimensional isopycnic-coordinate ocean model for the study of internal tides is presented. In this model, the ocean interior is viewed as a stack of isopycnic layers, each characterized by a constant density. The isopycnic coordinate performs well at tracking the depth variance of the thermocline, and is suitable for simulation of internal tides. This model consists of external and internal modes, and barotropic and baroclinic motions are calculated in the two modes, respectively. The capability of simulating internal tides was verified by comparing model results with an analytical solution. The model was then applied to the simulation of internal tides in the South China Sea (SCS) with the forcing of M2 and K1 tidal constituents. The results show that internal tides in the SCS are mainly generated in the Luzon Strait. The generated M2 internal tides propagate away in three different directions (branches). The branch with the widest tidal beam propagates eastward into the Pacific Ocean, the most energetic branch propagates westward toward Dongsha Island, and the least energetic branch propagates southwestward into the basin of the SCS. The generated K1 internal tides propagate in two different directions (branches). One branch propagates eastward into the Pacific Ocean, and the other branch propagates southwestward into the SCS basin. The steepening process of internal tides due to shoaling effects is described briefly. Meridionally integrated westward energy fluxes into the SCS are comparable to the meridionally integrated eastward energy fluxes into the Pacific Ocean.  相似文献   

12.
Pathways of mesoscale variability in the South China Sea   总被引:5,自引:0,他引:5  
The propagation of oceanic mesoscale signals in the South China Sea (SCS) is mapped from satellite altimetric observations and an eddy-resolving global ocean model by using the maximum cross-correlation (MCC) method. Significant mesoscale signals propagate along two major bands of high variability. The northern band is located west of the Luzon Strait, characterized by southwestward eddy propagation. Although eddies are the most active in winter, their southwestward migrations, steered by bathymetry, occur throughout the year. Advection by the mean flow plays a secondary role in modulating the propagating speed. The southern eddy band lies in the southwest part of the SCS deep basin and is oriented in an approximately meridional direction. Mesoscale variability propagates southward along the band in autumn. This southward eddy pathway could not be explained by mean flow advection and is likely related to eddy detachments from the western boundary current due to nonlinear effects. Our mapping of eddy propagation velocities provides important information for further understanding eddy dynamics in the SCS.  相似文献   

13.
We studied diatom distribution from 62 samples from the uppermost 1 cm of sediment in the South China Sea (SCS), using grabs or box corers in three cruises between 2001–2007. Fifty six genera, 256 species and their varieties were identified. Dominating species included Coscinodiscus africanus, Coscinodiscus nodulifer, Cyclotella stylorum, Hemidiscus cuneiformis, Melosira sulcata, Nitzschia marina, Roperia tesselata, Thalassionema nitzschioides, Thalassiosira excentrica, and Thalassiothrix longissima. Most surface sediments in the SCS were rich in diatoms, except for a few coarse samples. Average diatom abundance in the study area was 104 607 valve/g. In terms of the abundance, ecology, and spatial distribution, seven diatom zones (Zones 1–7) were recognized. Zone 1 (northern continental shelf) is affected by warm currents, SCS northern branch of the Kuroshio, and northern coastal currents; Zone 2 (northwestern continental shelf) is affected by intense coastal currents; Zone 3 (Xisha Islands sea area) is a bathyal environment with transitional water masses; Zone 4 (sea basin) is a bathyal-to-deep sea with stable and uniform central water masses in a semi-enclosed marginal sea; Zone 5 (Nansha Islands marine area) is a pelagic environment with relatively high surface temperature; Zone 6 (northern Sunda Shelf) is a tropical shelf environment; and Zone 7 (northern Kalimantan Island shelf area) is affected by warm waters from the Indian Ocean and coastal waters. The data indicate that these diatom zones are closely related to topography, hydrodynamics, temperature, nutrients and especially the salinity. Better understanding of the relationship between diatom distribution and the oceanographic factors would help in the reconstruction of the SCS in the past.  相似文献   

14.
The implications of climate change during the second half of the 20 th century have been reported throughout the world. Although marginal seas are sensitive to climate change and anthropogenic impacts, relatively little attention has been given to the South East Asian marginal seas. Thus, to bridge this gap in knowledge, a sediment core was collected from the coastal areas of the Leizhou Peninsula in the South China Sea(SCS) to study the inter-decadal climate change and its consequences using diatom species composition as a proxy record. Diatom absolute abundance varied from 2 300 to 68 000 and averaged 16 000 valves per gram of dry weight(v/gdw). The fractional dissolution index(Fi) was usually below 0.5, which indicates low to moderate preservation of diatom valves at coastal area of the SCS. At the inter-decadal time scale, total diatom abundance was high for the period after 1972, which coincided with 1) increased percentage of planktonic diatom abundance and Fi; 2) emergence and dominance of high productivity indicative cosmopolitan species such as T halassionema nitzschioides and Paralia sulcata(their relative abundance increased from 1.5% to 7% for the period before and after 1972, respectively); 3) decreased relative abundance of the small-sized eutrophication indicative species, C yclotella striata, from 70% to 40%. This study reveals that variations in the abundance of diatoms preserved in the sediment was a function of both production and dissolution/preservation of diatom valves, which in turn was intimately connected to the prevailing environmental/climatic conditions. In conclusion, these data reveal the existence of substantial changes in the coastal SCS in response to the 1970 s climate shift that was recorded in dif ferent parts of the world.  相似文献   

15.
Wave fi elds of the South China Sea(SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind fi eld datasets assimilated from several meteorological data sources. Comparisons of wave heights between WAVEWATCH III and TOPEX/Poseidon altimeter and buoy data show a good agreement. Our results show seasonal variation of wave direction as follows: 1. During the summer monsoon(April–September), waves from south occur from April through September in the southern SCS region, which prevail taking about 40% of the time; 2. During the winter monsoon(December–March), waves from northeast prevail throughout the SCS for 56% of the period; 3. The dominant wave direction in SCS is NE. The seasonal variation of wave height H s in SCS shows that in spring, H s ≥1 m in the central SCS region and is less than 1 m in other areas. In summer, H s is higher than in spring. During September–November, infl uenced by tropical cyclones, H s is mostly higher than 1 m. East of Hainan Island, H s 2 m. In winter, H s reaches its maximum value infl uenced by the north-east monsoon, and heights over 2 m are found over a large part of SCS. Finally, we calculated the extreme wave parameters in SCS and found that the extreme wind speed and wave height for the 100-year return period for SCS peaked at 45 m/s and 19 m, respectively, SE of Hainan Island and decreased from north to south.  相似文献   

16.
In this numerical model for simulating the Kuroshio intrusion into the East and South China Seas,vertically averaged marine hydrodynamic equations governing ocean currents and long-period waves areapproximated by a set of two-time-level semi-implicit finite difference equations. The major terms in-cluding the local acceleration, sea-surface slope, Coriolis force and the bottom friction are approxi-mated with the Crank-Nicholson scheme, which is of second order accuracy. The advection terms are app-roximated with the Leith scheme. The difference equations are split into two sets of alternating directionimplicit quations, each of which has a tridiagonal matrix and can be easily solved. The model reproduces a major Kuroshio intrusion north of Luzon Island, one north of Taiwan Island, andone west of the Tokara Strait. The model shows a current system running from the Luzon Strait to the coastof Vietnam and Hainan Island, through the Taiwan Strait and then into the Tsushima Strait. The summerand winter monso  相似文献   

17.
In this numerical model for simulating the Kuroshio intrusion into the East and South China Seas, vertically averaged marine hydrodynamic equations governing ocean currents and long-period waves are approximated by a set of two-time-level semi-implicit fimite difference equations. The major terms including the local acoeleration, sea-surface slope, Coriolis force and the bottom friction are approximated with the Crank-Nicholson scheme, which is of second order accuracy. The advection terms are approximated with the Leith scheme. The difference equations are split into two sets of alternating direction implicit equations, each of which has a tridiagonal matrix and can be easily solved. The model reproduces a major Kuroshio intrusion north of Luzon Island, one north of Taiwan Island, and one west of the Tokara Strait. The model shows a current system running from the Luzon Strait to the coast of Vietnam and Hainan Island, through the Taiwan Strait and then into the Tsushima Strait. The summer and winter monsoons generate several eddies in the South China Sea. Project supported by the National Natural Science Foundation of China.  相似文献   

18.
The northern South China Sea(SCS) is frequently affected by typhoons. During severe storm events, wave-current interactions produce storm surges causing enormous damage in the path of the typhoon. To evaluate the influence of wave-current interactions on storm surge, we used a coupled ocean-atmospherewave-sediment transport(COAWST) modeling system with radiation-stress and vortex-force formulations to simulate two typically intense tropical storms that invaded the SCS, namely Typhoons Nuri(2008) and Hagupit(2008), and compared results with observations from the Hong Kong Observatory. Both radiationstress and vortex-force formulations significantly improved the accuracy of the simulation. Depending on which typhoon and the topography encountered, the influence of surface waves on the oceanic circulation showed different characteristics, including the differences of range and intensity of storm surge between vortex-force and radiation-stress experiments. During typhoon landing, strong sea-surface elevation in concert with wave set-up/set-down caused the adjustment of the momentum balance. In the direction perpendicular to the current, but especially in the cross-shore direction, the pressure gradient and wave effects on the current dominated the momentum balance.  相似文献   

19.
古代,雷州半岛信仰的海神主要有伏波将军和妈祖,尤其是元代以后,妈祖影响超过伏波,这主要有三方面原因:1)妈祖得到上层统治阶级的青睐,2)雷州半岛的汉人多为福建移民,3)雷州半岛少数民族的外迁。  相似文献   

20.
A three-dimensional baroclinic shelf sea model‘ s numerical simulation of the South China Sea (SCS) middle and deep layer circulation structure showed that: 1. In the SCS middle and deep layer, a seulhward boundary current exists along the east shore of the Indo-China Peninsula all year long.A cyclonic eddy (gyre) is formed by the current in the above sea areas except in the middle layer in spring, when an anticyclonic eddy exists on the eastern side of the current. In the deep layer, a larges-cale anticyclonic eddy often exists in the sea areas between the Zhongsha Islands and west shore of southern Luzon Island. 2. In the middle layer in snmmer and autumn, and in the deep layer in autumn and winter, there is an anticyclonic eddy (gyre) in the northeastern SCS, while in the middle layer in winter and spring, and in the deep layer in spring and snmmer, there is a cyclonic one. 3. In the middle layer,there is a weak northeastward current in the Nansha Trough in spring and snmmer, while in autumn and winter it evolves inl~ an anticyclonic eddy ( gyre), which then spreads westward l~ the whole western Nansha Islands sea areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号