首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil nutrient concentrations in the top soils from two paddy terraces were determined in order to investigate spatial distributions of soil nutrients along the elevations on the Yunnan plateau of China during the fallow period.Results showed that soil nutrients in both terraces were higher than the reference concentrations except for SOC,TN,TP and Fe.Soil macronutrients didn’t show significant differences in both terraces except for Mg and Ca,so did soil micronutrients except for Mn.Spatial distribution patterns of soil nutrients along the increasing elevations were different in both terraces.However,soil nutrients in both terraces were generally not significantly influenced by the elevations and soil pH values.The findings of this study can contribute to soil fertility management and ecological protection of Hani terraces.  相似文献   

2.
This study aimed to compare the distribution patterns and trends of plant parts used among different groups of medicinal plants, geographical regions,and between medicinal plants and all vascular plants.We used the published sources for elevation records of 2,331 medicinal plant species to interpolate presence between minimum and maximum elevations and estimated medicinal plant richness for each 100-m elevational band. Monte Carlo simulations were used to test whether differences in elevational distribution between different groups of medicinal plants were significant. Total number of medicinal plants as well as different groups showed unimodal relationship with elevation. The elevational distributions of medicinal plants significantly differ between regions and between medicinal plant groups.When comparing the richness of all medicinal plants to all vascular plants,Monte Carlo simulations indicated that the numbers of medicinal plants are higher than expected at low elevations.The highest richness of medicinal plants at low elevation could be possibly due to favorable environmental factors such as high temperature, rainfall,sunlight or due to higher density of human population and thus higher pressure on use of any plants in lower elevations.  相似文献   

3.
4.
Evapotranspiration(ET) is a crucial part of the global hydrological cycle, and quantifying ET components is significant for understanding the global water cycle and energy balance. However, there is no consensus on the value of ET components, especially in topographic abrupt change zone, such as eastern margin of the Qinghai-Tibet Platea, where values of ET changes along the altitudinal gradients. Our aim is to explore the influencing factors in partitioning evapotranspiration and how ET components change with increasing elevations. A novel approach was proposed to estimate ET components by adding net solar radiation(Rn) instead of the vapor pressure deficit(VPD) into the underlying water use efficiency(u WUE) model based on one-year continuous measurements of flux data along the elevation gradient on Mount Gongga. Correlation analysis shows that the u WUE model's performance can be improved significantly by considering Rn instead of VPD, with correlation coefficients increasing by 35%-64%. The ratios of transpiration(T) to ET(T/ET) were 0.47, 0.48, 0.50 and 0.35 for the deciduous broadleaf forest(BF), mixed coniferous and deciduous broadleaf forest(MF), evergreen needle forest(ENF) and shrub land(SL), respectively. Leaf area index(LAI) and air temperature(Ta) were the two main controlling factors in determining T/ET during the growing season and at an annual scale, while Rn and Ta played more important roles during the dormant season. This study highlights the importance of incorporating Rn in partitioning evapotranspiration by using the water use efficiency(WUE) method in a humid mountainous region, which can improve the estimation of T/ET on a global scale.  相似文献   

5.
Climate affects Picea crassifolia growth and climate change will lead to changes in the climate–growth relationship(i.e., the "divergence" phenomenon). However, standardization methods can also change the understanding of such a relationship. We tested the stability of this relationship by considering several variables: 1) two periods(1952–1980 and 1981–2009), 2) three elevations(2700, 3000, and 3300 m), and 3) chronologies detrended using cubic splines with two different flexibilities. With increasing elevation, the climatic factor limiting the radial growth of Picea crassifolia shifted from precipitation to temperature. At the elevation of 2700 m, the relationship between radial growth and mean temperature of the previous December changed so that the more flexible spline had a greater precipitation signal. At the elevation of 3000 m, positive correlation of radial growth with mean temperature and precipitation in September of the previous year became more significant. At the elevation of 3300 m, positive correlation between radial growth and precipitation of the currentsummer and the previous spring and autumn was no longer significant, whereas the positive correlation between radial growth and temperature of the current spring and summer strengthened. The detrending with the most flexible spline enhanced the precipitation signal at 2700 m, while that with the least flexible spline enhanced the temperature signal at 3300 m. All results indicated that the divergence phenomenon was affected by the climatic signals in the chronologies and that it was most dependent on the detrending method. This suggests it is necessary to select a suitable spline bootstrap for studies of growth divergence phenomena.  相似文献   

6.
In this paper a geomorphic-centered system was proposed for classifying the wetlands on the Qinghai-Tibet Plateau in western China, where the flora comprises primarily grasses. Although the geomorphic properties (e.g., elevation and morphology) of wetlands form the primary criteria of classification, this system also takes hydrological processes into implicit consideration. It represents an improvement over the hydrogeomorphic perspective as the relative importance of the two components (wetness and landform) of wetlands is clearly differentiated. This geomorphic-centered perspective yields insights into the hydrogeomorphic dynamics of plateau wetlands while indicates their vulnerability to change and degradation indirectly. According to this geomorphic-centered perspective, all plateau wetlands fall into one of the seven types of alpine, piedmont, valley, terrace, floodplain, lacustrine, and riverine in three elevational categories of upland, midland, and lowland. Upland (alpine and piedmont) wetlands with the steepest topography are the most sensitive to change whereas midland (floodplain, terrace and valley) wetlands are less vulnerable to degradation owing to a high water reserve except terrace wetlands. They have a dry surface caused by infrequent hydrological replenishment owing to their higher elevation than the channel. Low lying (lacustrine and riverine) wetlands are the most resilient. The geomorphic-centered perspective developed in this paper provides a framework for improving recognition and management of wetlands on the Plateau. Resilient wetlands can be grazed more intensively without the risk of degradation. Fragile and vulnerable wetlands require careful managementto avoid degradation.  相似文献   

7.
Change in environmental conditions with altitudinal gradients induces morpho-anatomical variations in plants that have been poorly documented in intertropical regions. Five species with three life forms, cryptophyte (Alchemilla procumbens, Geranium seemannii), hemicryptophyte (Acaena elongata, Lupinus montanus), and phanerophyte (Symphoricarpos microphyllus), distributed along an altitudinal gradient in the Sierra Nevada of central Mexico, were studied. The aims were to identify and evaluate their morpho-anatomical modifications under the hypothesis that the sizes of individuals and of their wood and leaf cell types decrease as elevation increases. Three individuals per species per site were collected at seven locations along the altitudinal gradient (2949-3952 m). Their morpho-anatomical characters were analyzed through multiple regression analyses. Elevation was the variable that best explained anatomical changes in the leaf and wood of the five species. Canopy density and potassium content in the soil also contributed to explain the variation in anatomical variables along the gradient. As elevation increased a bimodal pattern was observed in various anatomical characters as in the leaf width of A. elongata, A. procumbens and G. seemannii and in the vessel diameter of A. procumbens, G. seemannii, and L. montanus. Other features as the vessel diameter of A. elongata, the fiber length of S. microphyllus, and the ray width of A. elongata increased as the elevation increased. Anatomical traits have a tendency to decrease in size but just toward the end of the gradient, which is probably related to changes in canopy density. The plant response to the altitudinal gradient is more focused on anatomical adaptations than morphological variation; it is also species dependent.  相似文献   

8.
The phenomenon of tree waves(hedges and ribbons) formation within the alpine ecotone in Altai Mountains and its response to observed air temperature increase was considered. At the upper limit of tree growth Siberian pine(Pinus sibirica) forms hedges on windward slopes and ribbons on the leeward ones. Hedges were formed by prevailing winds and oriented along winds direction. Ribbons were formed by snow blowing and accumulating on the leeward slope and perpendicular to the prevailing winds, as well as to the elevation gradient. Hedges were always linked with microtopography features, whereas ribbons were not. Trees are migrating upward by waves and new ribbons and hedges are forming at or near tree line, whereas at lower elevations ribbons and hedges are being transformed into closed forests. Time series of high-resolution satellite scenes(from 1968 to 2010) indicated an upslope shift in the position ribbons averaged 155±26 m(or 3.7 m yr~(-1)) and crown closure increased(about 35%–90%). The hedges advance was limited by poor regeneration establishment and was negligible. Regeneration within the ribbon zone was approximately 2.5 times(5060 vs 2120 ha~(-1)) higherthen within the hedges zone. During the last four decades, Siberian pine in both hedges and ribbons strongly increased its growth increment, and recent tree growth rate for 50 year-old trees was about twice higher than those recorded for similarly-aged trees at the beginning of the 20~(th) century. Hedges and ribbons are phenomena that are widespread within the southern and northern Siberian Mountains.  相似文献   

9.
The relationship between species richness and elevation is a hot issue in ecology and has been documented extensively. It is widely accepted that area size can significantly affect this relationship and thus mask the effects of other predictors. Despite the importance of the relationship between species richness and elevation while accounting for the area effect, it is insufficiently studied. Here, we evaluated area-corrected species richness patterns of all vascular plants as well as six vascular plant subgroups (seed plants, ferns, trees, shrubs, herbs and vines) along a tropical elevational gradient (Hainan Island, China). If assessed in equal-elevation bands, uncorrected species richness showed bell-shaped curves, while area-corrected species richness assessed in equal-area bands appeared to increase monotonically due to the small proportion of highlands on Hainan Island. The mid-domain effect (MDE) was significantly correlated with both uncorrected and area-corrected species richness. On Hainan Island, the use of equal-area elevational bands increased the explanatory power of MDE. These findings provide useful insights to adjust for the area effect and highligh t the need to use equalarea bands along the elevational gradient.  相似文献   

10.
Anthropogenic activities have become more and more important in characterizing the landscape, but their impacts are still restricted by natural environments. This paper discusses the interactions of anthropogenic activity, vegetation activity and topography through describing the spatial distribution of land cover and vegetation activity (represented by Normalized Difference Vegetation Index, NDVI) along topographic gradient in a mountainous area of southwestern China. Our results indicate that the existing landscape pattern is controlled by anthropogenic activities as well as topographic factors. Intensive anthropogenic activities mainly occur in areas with relatively low elevation, gentle and concave slopes, as these areas are easy and convenient to attain for human. Because of the destruction by human, some land cover types (mainly grassland and shrub) are only found in relatively harsher environments. This study also finds that topographic wetness index (W) used in other places only reflects runoff generation capacity, but not indicate the real spatial pattern of soil water content in this area. The relationships between NDVI and W, and NDVI and length slope factor (LSF) show that runoff and erosion have complex effects on vegetation activity. Greater values of W and LSF will lead to stronger capacity to produce runoff and transport sediment, and thereby increase soil water content and soil deposition, whereas beyond a certain threshold runoff and erosion are so strong that they would destruct vegetation growth. This study provides information needed to successfully restore native vegetation, improve land management, and promote sustainable development in mountainous areas, especially for developing regions.  相似文献   

11.
Plants overcome environmental stress by generating metabolic pathways. Thus, it is crucial to understand the physiological mechanisms of plant responses to changing environments. Ardisia crenata var. bicolor has an important ornamental and medicinal value. To reveal the impact of elevational gradient on the habitat soil and plant physiological attributes of this species, we collected root topsoil(0–20 cm) and subsoil(20–40 cm) samples and upper leaves at the initial blooming phase, in a survey o...  相似文献   

12.
Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availability and accuracy of soil erosion as well as hydrological modeling. This study investigates the formation and distribution of existing errors and uncertainties in slope length derivation based on 5-m resolution DEMs of the Loess Plateau in the middle of China. The slope length accuracy in three different landform areas is examined to analyse algorithm effects. The experiments indicate that the accuracy of the flat test area is lower than that of the rougher areas. The value from the specific contributing area(SCA) method is greater than the cumulative slope length(CSL), and the differences between these two methods arise from the shape of the upslope area. The variation of mean slope length derived from various DEM resolutions and landforms. The slope length accuracy decreases with increasing grid size and terrain complexity at the six test sites. A regression model is built to express the relationship of mean slope length with DEM resolution less than 85 m and terrain complexity represented by gully density. The results support the understanding of the slope length accuracy, thereby aiding in the effective evaluation of the modeling effect of surface process.  相似文献   

13.
《山地科学学报》2021,18(9):2315-2327
The Andean forests of northern Ecuador are known for their high levels of plant diversity relative to the area they occupy. Typically, these forests grow on steep slopes that lead to dramatic habitat gradients across short distances. These extreme habitat gradients make the Andean forest ecosystem an excellent natural laboratory for understanding the effect of elevation on forest community diversity, structure and composition. We established 31 plots(50 m × 5 m) which are divided between two elevational transects in the cloud forest of the Siempre Verde Reserve in the western foothills of the Andes Mountains of northern Ecuador. All trees and tree ferns with a diameter at breast height(dbh) ≥ 5 cm were measured and identified. We examined changes in community composition, structure, and diversity along and between the elevational transects and three elevational zones: low(2437–2700 m), middle(2756–3052 m), and high(3163–3334 m). We found four main trends associated with the elevational gradients at this site:(1) community composition differed between the two transects and among the three elevational zones according to N-MDS, ANOSIM, and percentage of shared species, with some species having limited distributions,(2) metrics of community structure showed opposite relationships with elevation, depending on the transect, with the only significant relationship(negative) found between basal area and elevation in the open trail transect,(3) alpha diversity, in general, peaked at mid-elevations, and(4) beta diversity consistently increased with distance between plots along elevation. The complexity of changes in community composition, structure, and alpha diversity along elevation may be related to the heterogeneity of the environment on a local scale, such as topography, soil composition, and even human impact, or to dispersal limitation and should be investigated further. These changes in community composition and the relatively high beta diversity found at this site exemplify the biological complexity of montane forest, reinforcing arguments from other studies on the importance of their conservation.  相似文献   

14.
Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and phosphorus(P) pools between above- and belowground biomass at the community level along a precipitation gradient. We conducted a transect(approx. 1300 km long) study of Stipa purpurea community in alpine steppe on the Tibet Plateau of China to test the variation of N pool of aboveground biomass/N pool of belowground biomass(AB/BB N) and P pool of aboveground biomass/P pool of belowground biomass(AB/BB P) along a precipitation gradient. The proportion of aboveground biomass decreased significantly from mesic to drier sites. Along the belt transect, the plant N concentration was relatively stable; thus, AB/BB N increased with moisture due to the major influences by above- and belowground biomass allocation. However, P concentration of aboveground biomass decreased significantly with increasing precipitation and AB/BB P did not vary with aridity because of the offset effect of the P concentration and biomass allocation. Precipitation gradients do decouple the N and P pool of a S. purpurea community along a precipitation gradient in alpine steppe. The decreasing of N:P in aboveground biomass in drier regions may indicate much stronger N limitation in more arid area.  相似文献   

15.
We investigated the abundance of different picophytoplankton groups and the phytoplankton pigment ratio in relation to environmental factors such as nutrients and suspended solids along a salinity gradient in the Changjiang River Estuary. The average numbers of Synechococcus spp.(Syn) and picoeukaryotes(Euk) were(2.7 ±5.1) ×103 and(1.1±1.4) ×103 cells m L-1, respectively. Prochlorococcus spp.(Pro) was only found in the high-salinity brackish water with the concentration of 3.0×103 cells m L-1. Syn and Euk numbers both tended to increase offshore and Syn showed a larger variation in cell abundance than Euk. The contribution of picophytoplankton to total phytoplankton biomass increased with increasing salinity and decreasing nutrient concentrations from the estuary to the open ocean. The response of different picophytoplankton groups to environmental variables was different. Water temperature was more important in its control over Euk than over Syn, while nutrients were more important in their influence over Syn than over Euk. Phytoplankton pigment ratios were different in the three different ecological zones along the salinity gradient(i.e., freshwater zone with 0-5 range, fresh and saline water mixing zone with 5-20 range, and high-salinity brackish water zone with 20-32 range), where three different phytoplankton communities were discovered, suggesting that phytoplankton pigment ratios can be considered as a complementary indicator of phytoplankton community structure in the Changjiang River Estuary.  相似文献   

16.
Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.  相似文献   

17.
The present study highlights the rich species diversity of higher plants in the Bhabha Valley of western Himalaya in India. The analysis of species diversity revealed that a total of 313 species of higher plants inhabit the valley with a characteristic of moist alpine shrub vegetation. The herbaceous life forms dominate and increase with increasing altitude. The major representations are from the families Asteraceae, Rosaceae, Lamiaceae and Poaceae, suggesting thereby the alpine meadow nature of the study area. The effect of altitude on species diversity displays a hump-shaped curve which may be attributed to increase in habitat diversity at the median ranges and relatively less habitat diversity at higher altitudes. The anthropogenic pressure at lower altitudes results in low plant diversity towards the bottom of the valley with most of the species being exotic in nature. Though the plant diversity is less at higher altitudinal ranges, the uniqueness is relatively high with high species replacement rates. More than 90 % of variability in the species diversity could be explained using appropriate quantitative and statistical analysis along the altitudinal gradient. The valley harbours 18 threatened and 41 endemic species, most of which occur at higher altitudinal gradients due to habitat specificity.  相似文献   

18.
Dominant species of zooplankton community vary with latitude. Though China possesses a vast coastal area in northwestern Pacific, studies on the latitudinal dominant species gradient are rare. We collected zooplankton samples from Haizhou Bay(34.56?–35.19?N, 119.51?–120.30?E), Yueqing Bay(28.14?–28.38?N, 121.10?–121.21?E) and Dongshan Bay(23.65?–23.90?N, 117.45?–117.60?E) in May 2012 and May 2013 to preliminarily characterize the latitudinal dominant species distribution. All the samples were collected vertically using a 0.505 mm mesh plankton net with 0.8 m in mouth diameter from bottom to surface. Calanus sinicus, Aidanosagitta crassa, Labidocera euchaeta, Zonosagitta nagae, Acartia pacifica and Paracalanus parvus were found to be dominant. C. sinicus was the most dominant species and the unique one occurred in all three bays. With latitude decreasing, both the abundance and proportion of C. sinicus declined sharply. Cluster analysis showed that the 6 dominant species could be divided into 3 groups, based on their occurrences in the three bays. Our results suggested that the distribution of dominant species along the coast of China has a significant latitudinal gradient. C. sinicus which widely distributes in the coastal water of the northwestern Pacific can well adapt to the temperature at different latitudes. The high abundance in Haizhou Bay indicated that C. sinicus was an exemplary warm-temperate species, and more commonly occurs in the north of China seas. The ecological characteristics of dominant species change from warm-temperate type in high-latitudinal bays to warm water type in low-latitudinal bays.  相似文献   

19.
Alpine treeline ecotones are harsh environment for tree establishment due to low temperature.Tree establishment at treelines requires favorable climate,suitable microsites,and viable seeds.But most researches have been addressed treeline microclimate and its effects on tree regeneration,the knowledge of seed quantity and quality and its controls on seedling recruitment were limited.We measured seed rain,soil seed bank,seed germination rate and seedling recruitment in natural forests in combination with seed transplanting manipulation to evaluate the controls of seed quantity and quality on seedling recruitment of Abies georgei var.smithii(smith fir) along altitudinal gradient,withfocus on treeline ecotone in the Sygera Mountains,southeastern Tibetan Plateau.Both seed quantity and seed quality of smith fir decreased with increasing altitude and was thereby associated with decline in seed germination rate.Seed quantity and seedling recruitment were better in north-facing slope than in south slope.The treeline ecotone above 4200 m appeared as the threshold altitude to sharply decrease seed quality and seedling recruitment.The emergence and overwintering rates of transplanting seeds from 3600-3800 m also went down remarkably above 4200 m at north-facing slope.It also underpins the fact that treeline ecotone is the bottleneck of seedling recruitment.Our results suggest that seed quantity and quality are the principal limitation of treeline upward advance.This study also provides evidence tosupport stable treeline position in southeastern Tibetan Plateau.  相似文献   

20.
Introduction The Loess Plateau is located in the upper and middle reaches of the Yellow River, among the western Taihang Mt, eastern Riyue-Helan Mt, northern Qinling Mt, and southern Yinsan Mt (from 100°54′to 114°33′E and 33°43′to 41°31′N; Figure 1). It covers a total area of 624,000 km2. The Loess Plateau of China has drawnworldwide attention in geographical research for its unique morphological features, abundant nature resources, most serious soil erosion, as well as its pot…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号