首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We present a method of determining lower limits on the masses of pre-main-sequence (PMS) stars and so constraining the PMS evolutionary tracks. This method uses the redshifted absorption feature observed in some emission-line profiles of T Tauri stars, indicative of infall. The maximum velocity of the accreting material measures the potential energy at the stellar surface, which, combined with an observational determination of the stellar radius, yields the stellar mass. This estimate is a lower limit owing to uncertainties in the geometry and projection effects. Using available data, we show that the computed lower limits can be larger than the masses derived from PMS evolutionary tracks for M   0.5 M. Our analysis also supports the notion that accretion streams do not impact near the stellar poles but probably hit the stellar surface at moderate latitudes.  相似文献   

2.
We present X‐shooter observations of two brown dwarf candidates. We focus on the determination of stellar parameters and their errors. The targets, an accreting class II and a non‐accreting class III objects, are members of the σ Orionis star‐forming region. We derive the spectroscopic spectral types from the VIS spectrum and the stellar parameters. We find that the uncertainties on the stellar parameters have a minor effect on the determination of the mass accretion rate for the accreting star, thus confirming that the discrepancies between the mass accretion rate estimates found with different (simultaneous) tracers are probably due to different physical conditions where the accretion/wind indicators are produced (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Three-dimensional numerical magnetohydrodynamic (MHD) simulations are performed to investigate how a magnetically confined mountain on an accreting neutron star relaxes resistively. No evidence is found for non-ideal MHD instabilities on a short time-scale, such as the resistive ballooning mode or the tearing mode. Instead, the mountain relaxes gradually as matter is transported across magnetic surfaces on the diffusion time-scale, which evaluates to  τI∼ 105–108 yr  (depending on the conductivity of the neutron star crust) for an accreted mass of   M a= 1.2 × 10−4 M  . The magnetic dipole moment simultaneously re-emerges as the screening currents dissipate over  τI  . For non-axisymmetric mountains, ohmic dissipation tends to restore axisymmetry by magnetic reconnection at a filamentary neutral sheet in the equatorial plane. Ideal-MHD oscillations on the Alfvén time-scale, which can be excited by external influences, such as variations in the accretion torque, compress the magnetic field and hence decrease  τI  by one order of magnitude relative to its standard value (as computed for the static configuration). The implications of long-lived mountains for gravitational wave emission from low-mass X-ray binaries are briefly explored.  相似文献   

4.
We have investigated the influence of the r-mode instability on hypercritically accreting neutron stars in close binary systems during their common envelope phases, based on the scenario proposed by Brown et al. On the one hand, neutron stars are heated by the accreted matter at the stellar surface, but on the other hand they are also cooled down by the neutrino radiation. At the same time, the accreted matter transports its angular momentum and mass to the star. We have studied the evolution of the stellar mass, temperature and rotational frequency.
The gravitational-wave-driven instability of the r-mode oscillation strongly suppresses spinning up of the star, the final rotational frequency of which is well below the mass-shedding limit, in fact typically as low as 10 per cent of that of the mass-shedding state. On a very short time-scale the rotational frequency tends to approach a certain constant value and saturates there, as long as the amount of accreted mass does not exceed a certain limit to collapse to a black hole. This implies that a similar mechanism of gravitational radiation to that in the so-called 'Wagoner star' may work in this process. The star is spun up by accretion until the angular momentum loss by gravitational radiation balances the accretion torque. The time-integrated dimensionless strain of the radiated gravitational wave may be large enough to be detectable by gravitational wave detectors such as LIGO II.  相似文献   

5.
We study the pycnonuclear burning of 34Ne in the inner crust of an accreting neutron star. We show that the associated energy production rate can be calculated analytically for any arbitrary temporal variability of the mass accretion rate. We argue that the theoretical time-scale for 34Ne burning is currently very uncertain and ranges from a fraction of a millisecond to a few years. The fastest allowable burning may change the composition of the accreted crust while the slowest burning leads to a time-independent nuclear energy generation rate for a variable accretion. The results are important for constructing self-consistent models of the accreted crust and deep crustal heating in neutron stars which enter soft X-ray transients.  相似文献   

6.
We present the results of a photometric study of X-ray-active weak-lined T Tauri (WTT) stars in the η Chamaeleontis star cluster. Multi-epoch V -band photometric monitoring during 1999 and 2000 of the 10 X-ray-active WTT stars found that all were variable in one or both years, with periods ascribed to rotational modulation of starspots. Comparison between the rotational and X-ray properties of these objects indicates the saturation level,     observed in other studies of X-ray-active pre-main-sequence stars, persists in the η Cha stars from the slow- to the fast-rotator regimes. Cousins VRI photometry of the WTT stars has enabled us to investigate further the photometric properties of these stars. The stars appear sufficiently coeval to distinguish near-equal-mass binaries within the sample. A new Hertzsprung–Russell diagram for these objects suggests ages of 4–9 Myr for M-type RECX primaries using the tracks of D'Antona & Mazzitelli.  相似文献   

7.
In wind-fed X-ray binaries the accreting matter is Compton-cooled and falls freely on to the compact object. The matter has a modest angular momentum l and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with l >( GMR ∗)1/2 (where M and R ∗ are the mass and radius of the compact object) intersect outside R ∗ and form a two-dimensional caustic which emits X-rays. The streamlines with low angular momentum, l <( GMR ∗)1/2, run into the accretor. If the accretor is a neutron star, a large X-ray luminosity results. We show that the distribution of accretion rate/luminosity over the star surface is sensitive to the angular momentum distribution of the accreting matter. The apparent luminosity depends on the side from which the star is observed and can change periodically with the orbital phase of the binary. The accretor then appears as a 'Moon-like' X-ray source.  相似文献   

8.
中子星X射线双星中kHz QPO现象的理论解释   总被引:1,自引:0,他引:1  
罗西X射线时变探测器(RXTE)在中子星小质量X射线双星中发现了千赫兹准周期振荡现象(kHzQPO)。kHzQPO的频率一般在几百到上千赫兹,其动力学时标与吸积盘最内部区域物质的运动时标一致,因此普遍认为kHz QPO产生于中子星表面附近区域,携带了来自中心中子星及周围强引力场信息,如质量、自转周期、角动量、半径、磁场等。kHz QpO现象的理解为研究强引力场和致密物质状态开启了一扇新的窗口。着重介绍基于kHz QPO的基本现象和相应的理论模型。  相似文献   

9.
Asteroseismology of pre-main-sequence δ Scuti stars has the potential not only to provide unprecedented constraints on models of these stars, but also to allow for the possibility of detecting evolutionary period changes, thus providing a direct measure of the pre-main-sequence evolutionary time-scale. In the last two years, the published number of such stars known has doubled from four to eight. Searches are now being conducted amongst the Herbig Ae stars, which are considered to be excellent candidates. We announce the discovery of δ Scuti pulsation in one Herbig Ae star, HD 142666, which lies within Marconi & Palla's theoretically predicted instability strip for pre-main-sequence stars, making this the ninth known pre-main-sequence δ Scuti star. We also demonstrate a lack of δ Scuti pulsation in another such star, HD 142527.  相似文献   

10.
The Herbig Ae/Be stars are intermediate mass pre‐main sequence stars that bridge the gap between the low mass T Tauri stars and the Massive Young Stellar Objects. In this mass range, the acting star forming mechanism switches from magnetically controlled accretion to an as yet unknown mechanism, but which is likely to be direct disk accretion onto the star. We observed a large sample of Herbig Ae/Be stars with X‐shooter to address this issue from a multi‐wavelength perspective. It is the largest such study to date, not only because of the number of objects involved, but also because of the large wavelength coverage from the blue to the near‐infrared. This allows many accretion diagnostics to be studied simultaneously. By correlating the various properties with mass, temperature and age, we aim to determine where and whether the magnetically controlled mass accretion mechanism halts and the proposed direct disk accretion takes over. Here, we will give an overview of the background, present some observations and discuss our initial results. We will introduce a new accretion diagnostic for the research of Herbig Ae/Be stars, the HeI 1.083 μm line (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
A possible mechanism for screening of the surface magnetic field of an accreting neutron star, by the accreted material, is investigated. We model the material flow in the surface layers of the star by an assumed two-dimensional velocity field satisfying all the physical requirements. Using this model velocity we find that, in the absence of magnetic buoyancy, the surface field is screened (i.e. there is submergence of the field by advection) within the time-scale of material flow of the top layers. On the other hand, if magnetic buoyancy is present, the screening happens over a time-scale that is characteristic of the slower flow of the deeper (and hence, denser) layers. For accreting neutron stars, this longer time-scale turns out to be about 105 yr, which is of a similar order of magnitude to the accretion time-scale of most massive X-ray binaries.  相似文献   

12.
We present results of 3D simulations of magnetohydrodynamics (MHD) instabilities at the accretion disc–magnetosphere boundary. The instability is Rayleigh–Taylor, and develops for a fairly broad range of accretion rates and stellar rotation rates and magnetic fields. It manifests itself in the form of tall, thin tongues of plasma that penetrate the magnetosphere in the equatorial plane. The shape and number of the tongues changes with time on the inner disc dynamical time-scale. In contrast with funnel flows, which deposit matter mainly in the polar region, the tongues deposit matter much closer to the stellar equator. The instability appears for relatively small misalignment angles, Θ≲ 30°, between the star's rotation and magnetic axes, and is associated with higher accretion rates. The hotspots and light curves during accretion through instability are generally much more chaotic than during stable accretion. The unstable state of accretion has possible implications for quasi-periodic oscillations and intermittent pulsations from accreting systems, as well as planet migration.  相似文献   

13.
The recent BATSE observations of the spin-up and spin-down of accreting pulsars have shown that the standard formulation for the accretion torque as proposed by Ghosh &38; Lamb may need to be revised. The observations indicate alternate spin-up and spin-down phases driven by torques of similar magnitude and typically larger than the mean torque. The variations of the torque in systems such as Cen X-3 are difficult to explain in terms of changes of the mass accretion rate. The implication is that the torque does not depend on the accretion rate as in the GL model. In this paper we argue that the observed changes in the spin rate can result from stochastic transitions between two magnetospheric states. In particular, we show that intermediate magnetospheric systems are not admissible, because of a disc-induced magnetospheric instability which exists in a star–disc magnetic interaction system. This explains why torque reversal occurs in disc accreting pulsars with similar magnitudes.  相似文献   

14.
The 2001 outburst of WZ Sagittae has shown the most compelling evidence yet for an enhancement of the mass-transfer rate from the donor star during a dwarf nova outburst in the form of hotspot brightening. I show that, even in this extreme case, the brightening can be attributed to tidal heating near the interaction point of an accretion stream with the expanding edge of an eccentric accretion disc, with no need at all for an increase in the mass-transfer rate. Furthermore, I confirm previous suggestions that an increase in mass-transfer rate through the stream damps any eccentricity in an accretion disc and suppresses the appearance of superhumps, in contradiction to observations. Tidal heating is expected to be most significant in systems with small mass ratios. It follows that systems like WZ Sagittae – which has a tiny mass ratio – are those most likely to show a brightening in the hotspot region.  相似文献   

15.
We develop a simple, time-dependent Comptonization model to probe the origins of spectral variability in accreting neutron star systems. In the model, soft 'seed photons' are injected into a corona of hot electrons, where they are Compton upscattered before escaping as hard X-rays. The model describes how the hard X-ray spectrum varies when the properties of either the soft photon source or the Comptonizing medium undergo small oscillations. Observations of the resulting spectral modulations can determine whether the variability is due to (i) oscillations in the injection of seed photons, (ii) oscillations in the coronal electron density, or (iii) oscillations in the coronal energy dissipation rate. Identifying the origin of spectral variability should help clarify how the corona operates and its relation to the accretion disc. It will also help in finding the mechanisms underlying the various quasi-periodic oscillations (QPOs) observed in the X-ray outputs of many accreting neutron star and black hole systems. As a sample application of our model, we analyse a kilohertz QPO observed in the atoll source 4U 1608–52. We find that the QPO is driven predominantly by an oscillation in the electron density of the Comptonizing gas.  相似文献   

16.
Self-gravitating protostellar discs are unstable to fragmentation if the gas can cool on a time-scale that is short compared with the orbital period. We use a combination of hydrodynamic simulations and N -body orbit integrations to study the long-term evolution of a fragmenting disc with an initial mass ratio to the star of   M disc/ M *= 0.1  . For a disc that is initially unstable across a range of radii, a combination of collapse and subsequent accretion yields substellar objects with a spectrum of masses extending (for a Solar-mass star) up to  ≈0.01 M  . Subsequent gravitational evolution ejects most of the lower mass objects within a few million years, leaving a small number of very massive planets or brown dwarfs in eccentric orbits at moderately small radii. Based on these results, systems such as HD 168443 – in which the companions are close to or beyond the deuterium burning limit – appear to be the best candidates to have formed via gravitational instability. If massive substellar companions originate from disc fragmentation, while lower-mass planetary companions originate from core accretion, the metallicity distribution of stars which host massive substellar companions at radii of ∼1 au should differ from that of stars with lower mass planetary companions.  相似文献   

17.
The origin and stability of a thin sheet of plasma in the magnetosphere of an accreting neutron star are investigated. First, the radial extension of such a magnetospheric disc is explored. Then a mechanism for magnetospheric accretion is proposed, reconsidering the bending wave explored by Agapitou, Papaloizou & Terquem, that was found to be stable in ideal magnetohydrodynamics. We show that this warping becomes unstable and can reach high amplitudes, in a variant of Pringle's radiation-driven model for the warping of active galactic nucleus accretion discs. Finally, we discuss how this mechanism might give a clue to explain the observed X-ray kilohertz quasi-periodic oscillation of neutron star binaries.  相似文献   

18.
We calculate the disc and boundary layer luminosities for accreting rapidly rotating neutron stars with low magnetic fields in a fully general relativistic manner. Rotation increases the disc luminosity and decreases the boundary layer luminosity. A rapid rotation of the neutron star substantially modifies these quantities as compared with the static limit. For a neutron star rotating close to the centrifugal mass shed limit, the total luminosity has contribution only from the extended disc. For such maximal rotation rates, we find that well before the maximum stable gravitational mass configuration is reached, there exists a limiting central density, for which particles in the innermost stable orbit will be more tightly bound than those at the surface of the neutron star. We also calculate the angular velocity profiles of particles in Keplerian orbits around the rapidly rotating neutron star. The results are illustrated for a representative set of equation of state models of neutron star matter.  相似文献   

19.
The rates at which mass accumulates into protostellar cores can now be predicted in numerical simulations. Our purpose here is to develop methods to compare the statistical properties of the predicted protostars with the observable parameters. This requires (1) an evolutionary scheme to convert numerically derived mass accretion rates into evolutionary tracks and (2) a technique to compare the tracks to the observed statistics of protostars. Here, we use a 3D Kolmogorov–Smirnov test to quantitatively compare model evolutionary tracks and observations of Class 0 protostars.
We find that the wide range of accretion functions and time-scales associated with gravoturbulent simulations naturally overcome difficulties associated with schemes that use a fixed accretion pattern. This implies that the location of a protostar on an evolutionary track does not precisely determine the present age or final accrued mass. Rather, we find that predictions of the final mass for protostars from observed   T bol– L bol  values are uncertain by a factor of 2 and that the bolometric temperature is not always a reliable measure of the evolutionary stage. Furthermore, we constrain several parameters of the evolutionary scheme and estimate a lifetime of Class 0 sources of  2–6 × 104 yr  , which is related to the local free-fall time and thus to the local density at the onset of the collapse. Models with Mach numbers smaller than six are found to best explain the observational data. Generally, only a probability of 70 per cent was found that our models explain the current observations. This is caused by not well-understood selection effects in the observational sample and the simplified assumptions in the models.  相似文献   

20.
I argue that the large-scale departure from axisymmetry of the η Carinae nebula can be explained by the binary star model of η Carinae. The companion diverts the wind blown by the primary star, by accreting from the wind and possibly by blowing its own collimated fast wind (CFW). The effect of these processes depends on the orbital separation, and hence on the orbital phase of the eccentric orbit. The variation of the mass outflow from the binary system with the orbital phase leads to a large-scale departure from axisymmetry along the equatorial plane, as is observed in η Carinae. I further speculate that such a companion may have accreted a large fraction of the mass that was expelled in the Great Eruption of 1850 and the Lesser Eruption of 1890. The accretion process was likely to form an accretion disc, with the formation of a CFW, or jets, on the two sides of the accretion disc. The CFW may have played a crucial role in the formation of the two lobes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号