首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An ultra-high-pressure (UHP) metamorphic slab at Yangkou Beach near Qingdao in the Sulu region of China consists of blocks of eclogite facies metagabbro, metagranitoid, ultramafic rock and mylonitic orthogneisses enclosed in granitic gneiss. A gradational sequence from incipiently metamorphosed gabbro to completely recrystallized coesite eclogite formed at ultra-high-pressures was identified in a single 30 m block; metagabbro is preserved in the core whereas coesite eclogite occurs along the block margins. The metagabbro contains an igneous assemblage of Pl+Aug+Opx+Qtz+Bt+Ilm/Ti-Mag; it shows relict magmatic textures and reaction coronas. Fine-grained garnet developed along boundaries between plagioclase and other phases; primary plagioclase broke down to Ab+Ky+Ms+Zo±Grt±Amp. Augite is rimmed by sodic augite or omphacite, whereas orthopyroxene is rimmed by a corona of Cum±Act and Omp+Qtz layers or only Omp+Qtz. In transitional rocks, augite and orthopyroxene are totally replaced by omphacite, and the lower-pressure assemblage Ab+Ky+Phn+Zo+Grt coexists with domains of Omp (Jd70–73)+Ky±Phn in pseudomorphs after plagioclase. Both massive and weakly deformed coesite-bearing eclogites contain Omp+Ky+Grt+Phn+Coe/Qtz+Rt, and preserve a faint gabbroic texture. Coesite inclusions in garnet and omphacite exhibit limited conversion to palisade quartz; some intergranular coesite and quartz pseudomorphs after coesite also occur. Assemblages of the coronal stage, transitional and UHP peak occurred at about 540±50 °C at c. 13 kbar, 600–800 °C at ≥15–25 kbar and 800–850 °C at >30 kbar, respectively. Garnet from the coronal- through the transitional- to the eclogite-stage rocks show a decrease in almandine and an increase in grossular±pyrope components; garnet in low-grade rocks contains higher MnO and lower pyrope components. The growth textures of garnet within pseudomorphs after plagioclase or along grain boundaries between plagioclase and other phases are complex; the application of garnet zoning to estimate P–T should be carried out with caution. Some garnet enclosing quartz aggregates as inclusions shows radial growth boundaries; these quartz aggregates, as well as other primary and low-P phases, persisted metastably at UHP conditions due to sluggish reactions resulting from the lack of fluid during prograde and retrograde P–T evolution.  相似文献   

2.
在滇西鲁甸地区金沙江结合带新发现退变榴辉岩,其在野外呈透镜体状产于石榴子石白云母石英片岩中.利用电子探针及激光拉曼分析发现石榴子石和锆石中残留绿辉石包体.石榴子石及基质中的白云母为多硅白云母(Si(p.f.u)=3.27~3.53),指示岩石经历了高压变质作用过程.石榴子石发育进变质生长成分环带.岩相学及矿物化学特征显示,退变榴辉岩大致经历了进变质角闪岩相、峰期榴辉岩相、早期退变质以及晚期强退变这4个世代矿物组合,各阶段典型的矿物组合依次为Grt+AmpI+Qtz、Grt+Omp+Rt+Qtz+Phe、Pl+Di+AmpⅡ+Ilm+Spn+Qtz、AmpⅢ+Pl+Czo+Ilm+Qtz.该新发现对金沙江结合带复杂的变质演化P-T-t轨迹样式及年代格架、以金沙江洋为代表的整个西南三江地区古特提斯洋-陆俯冲-碰撞-造山的复杂构造演化历史以及微陆块的拼贴机制等关键科学问题的解决提供了极为重要的素材和更多的约束,具有重要的科学意义.   相似文献   

3.
吕增  王凯 《地球科学》2018,43(1):150-163
角闪岩是西南天山超高压变质带变基性岩的常见岩石类型之一.野外关系和矿物反应结构表明,大多数角闪岩是由榴辉岩或蓝片岩受到不同程度的钠长绿帘角闪岩相退变质叠加形成的.但对于一些平衡结构发育良好且孤立产出的角闪岩类型(如石榴角闪岩)仍缺乏系统的岩石学研究.本次从岩相学、矿物成分以及热力学模拟几个方面对哈布腾苏河下游地区超高压带内不含钠长石的石榴角闪岩开展了详细的工作.这些石榴角闪岩的主要矿物为绿色角闪石(钙质-钠钙质闪石)、帘石(黝帘石-绿帘石)和石榴石,三者总体积占80%~90%,明显有别于大多数由榴辉岩退变而成的含有钠长石变斑晶的石榴角闪岩.虽然这些角闪岩化学成分十分相近,都具有富钙贫钠和高的Mg/(Mg+Fe)比值,但在结构、构造和矿物组成等方面存在显著差异,据此将它们划分为两类.第一类角闪岩基质中不含石英,保存在变斑晶中的少量残余矿物组合为石榴石+绿辉石+硬柱石+蓝闪石+金红石,指示峰期硬柱石榴辉岩相变质条件,富钛矿物全部为金红石.第二类角闪岩强烈面理化,面理由绿色角闪石、绿帘石和绿泥石以及条带状石英集合体构成.石榴石粒度呈双峰式分布,粗粒比细粒低钙低锰.基质和包体中均未发现高压变质特征矿物绿辉石和蓝闪石.富钛矿物以榍石为主,金红石和钛铁矿仅存在于个别石榴石中.两类角闪岩的石榴石成分具有较大区分度,前者的钙含量较高而镁含量较低.P-T视剖面计算显示它们的峰期条件为480~520 ℃,30~33 kbar,均达到超高压范围,与哈布腾苏河下游及以西地区的榴辉岩相似,表明西南天山超高压变基性岩构成沿中天山南缘断裂延伸数十千米的独立地质单元,不存在所谓的俯冲隧道混杂现象.   相似文献   

4.
The late Palaeozoic western Tianshan high‐pressure /low‐temperature belt extends for about 200 km along the south‐central Tianshan suture zone and is composed mainly of blueschist, eclogite and epidote amphibolite/greenschist facies rocks. P–T conditions of mafic garnet omphacite and garnet–omphacite blueschist, which are interlayered with eclogite, were investigated in order to establish an exhumation path for these high‐pressure rocks. Maximum pressure conditions are represented by the assemblage garnet–omphacite–paragonite–phengite–glaucophane–quartz–rutile. Estimated maximum pressures range between 18 and 21 kbar at temperatures between 490 and 570 °C. Decompression caused the destabilization of omphacite, garnet and glaucophane to albite, Ca‐amphibole and chlorite. The post‐eclogite facies metamorphic conditions between 9 and 14 kbar at 480–570 °C suggest an almost isothermal decompression from eclogite to epidote–amphibolite facies conditions. Prograde growth zoning and mineral inclusions in garnet as well as post‐eclogite facies conditions are evidence for a clockwise P–T path. Analysis of phase diagrams constrains the P–T path to more or less isothermal cooling which is well corroborated by the results of geothermobarometry and mineral textures. This implies that the high‐pressure rocks from the western Tianshan Orogen formed in a tectonic regime similar to ‘Alpine‐type’ tectonics. This contradicts previous models which favour ‘Franciscan‐type’ tectonics for the southern Tianshan high‐pressure rocks.  相似文献   

5.
Coesite inclusions in garnet have been found in eclogite boudins enclosed in coesite‐bearing garnet micaschist in the Habutengsu Valley, Chinese western Tianshan, which are distinguished from their retrograde quartz by means of optical characteristics, CL imaging and Raman spectrum. The coesite‐bearing eclogite is mainly composed of porphyroblastic garnet, omphacite, paragonite, glaucophane and barroisite, minor amounts of rutile and dotted (or banded) graphite. In addition to coesite and quartz, the zoned porphyroblastic garnet contains inclusions of omphacite, Na‐Ca amphibole, calcite, albite, chlorite, rutile, ilmenite and graphite. Multi‐phase inclusions (e.g. Czo + Pg ± Qtz, Grt II + Qtz and Chl + Pg) can be interpreted as breakdown products of former lawsonite and possibly chloritoid. Coesite occurs scattered within a compositionally homogenous but narrow domain of garnet (outer core), indicative of equilibrium at the UHP stage. The estimate by garnet‐clinopyroxene thermometry yields peak temperatures of 420–520 °C at 2.7 GPa. Phase equilibrium calculations further constrain the P–T conditions for the UHP mineral assemblage Grt + Omp + Lws + Gln + Coe to 2.4–2.7 GPa and 470–510 °C. Modelled modal abundances of major minerals along a 5 °C km?1 geothermal gradient suggests two critical dehydration processes at ~430 and ~510 °C respectively. Computed garnet composition patterns are in good agreement with measured core‐rim profiles. The petrological study of coesite‐bearing eclogite in this paper provides insight into the metamorphic evolution in a cold subduction zone. Together with other reported localities of UHP rocks from the entire orogen of Chinese western Tianshan, it is concluded that the regional extent of UHP‐LT metamorphism in Chinese western Tianshan is extensive and considerably larger than previously thought, although intensive retrogression has erased UHP‐LT assemblages at most localities.  相似文献   

6.
Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite‐dominated volcano‐sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite‐bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet–staurolite–kyanite–biotite–plagioclase–muscovite–quartz–ilmenite ± rutile ± silli‐manite and prograde‐zoned garnet includes chloritoid–chlorite–paragonite–margarite, staurolite–chlorite–paragonite–margarite and kyanite–chlorite–rutile. In pseudosection modelling in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite + paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet–staurolite–biotite–muscovite–quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet–amphibole–plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610–660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase–clinopyroxene symplectites, epidote and late amphibole–plagioclase domains. Garnet commonly includes rutile–quartz–epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O‐undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote–amphibole–plagioclase indicating that decompression occurred under decreasing temperature into garnet‐free epidote–amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km?1, respectively, to metamorphic pressure peaks that are 6–7 kbar apart. The eclogite–orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared.  相似文献   

7.
Zhang Zeming  Xu Zhiqin  Xu Huifen 《Lithos》2000,52(1-4):35-50
The 558-m-deep ZK703 drillhole located near Donghai in the southern part of the Sulu ultrahigh-pressure metamorphic belt, eastern China, penetrates alternating layers of eclogites, gneisses, jadeite quartzites, garnet peridotites, phengite–quartz schists, and kyanite quartzites. The preservation of ultrahigh-pressure metamorphic minerals and their relics, together with the contact relationship and protolith types of the various rocks indicates that these are metamorphic supracrustal rocks and mafic-ultramafic rock assemblages that have experienced in-situ ultrahigh-pressure metamorphism. The eclogites can be divided into five types based on accessory minerals: rutile eclogite, phengite eclogite, kyanite–phengite eclogite, quartz eclogite, and common eclogite with rare minor minerals. Rutile eclogite forms a thick layer in the drillhole that contains sufficient rutile for potential mining. Two retrograde assemblages are observed in the eclogites: the first stage is characterized by the formation of sodic plagioclase+amphibole symplectite or symplectitic coronas after omphacite and garnet, plagioclase+biotite after garnet or phengite, and plagioclase coronas after kyanite; the second stage involved total replacement of omphacite and garnet by amphibole+albite+epidote+quartz. Peak metamorphic PT conditions of the eclogites were around 32 to 40 kbar and 720°C to 880°C. The retrograde PT path of the eclogites is characterized by rapidly decreasing pressure with slightly decreasing temperature. Micro-textures and compositional variations in symplectitic minerals suggest that the decompression breakdown of ultrahigh-pressure minerals is a domainal equilibrium reaction or disequilibrium reaction. The composition of the original minerals and the diffusion rate of elements involved in these reactions controlled the symplectitic mineral compositions.  相似文献   

8.
High-pressure zoisite- and clinozoisite-bearing segregations are common in garnet- and albite-bearing amphibolites of the Palaeozoic part of the Lower Schieferhülle, south-central Tauern Window, Austria. The zoisite segregations (primary assemblage: Zo+Qtz+Cal) formed during an early to pre-Hercynian high-pressure event (P≫0.6 GPa, T =500–550 °C) by hydrofracturing as a result of protolith dehydration. Zoisite is growth zoned from Fe3+-poor cores (Al2Fe=9 mol%) to Fe3+-rich rims (17 mol%), and has high Sr, Pb and Ga contents and LREE-enriched REE patterns, controlling the trace element budget of the segregations. Hercynian deformation at c. 0.7 GPa/600 °C kinked and cracked primary zoisite and enhanced breakdown into secondary zoisite (13 mol% Al2Fe), clinozoisite (40–55 mol% Al2Fe), albite (an<20), calcite and white mica during an Eoalpine high-pressure event at 0.9–1.2 GPa/400–500 °C. The clinozoisite segregations (primary assemblage: Czo+Qtz+Omp+Ttn+Chl+Cal) are mm- to cm-wide, vein-like bodies, cross-cutting fabric elements of the host garnet amphibolite. They formed during the Eoalpine high-pressure event at 0.9–1.2 GPa/400–500 °C. During Alpine exhumation, omphacite was pseudomorphed by amphibole, albite, quartz and clinozoisite. Oxygen isotope data suggest equilibrium between host metabasite and zoisite segregations and indicate an internal fluid source and fluid buffering by the protolith. Mobility of P, Nb and LREE changed the protolith’s trace element composition in the vicinity of the zoisite segregations: Mobilization of LREE is evidenced by decreasing modal amounts of LREE-rich epidote and decreasing LREE contents in LREE-rich epidote towards the segregations, changing the REE patterns of the host metabasite from LREE-enriched to LREE-depleted. Tectonic discrimination diagrams, based on the trace element content of metabasites, should be applied with extreme caution.  相似文献   

9.
江苏东海榴辉岩向斜长角闪岩转化的研究   总被引:11,自引:1,他引:11  
东海榴辉岩曾被俯冲到上地幔,而后又折返回地表,经历了宽广的温度、压力、应力、流体条件等变化范围,形成了大量矿物反应结构,为研究岩石矿物反应提供了很好的素材。本文选取东海地区一个保留从初始榴辉岩到斜长角闪岩完整退变质序列的榴辉岩体作为研究对象,通过详细的显微结构观察、矿物成分分析、成分空间分析、成分迁移估算,揭示了东海榴辉岩向斜长角闪岩的转化过程。该过程可划分为两个阶段:早期为替代绿辉石的后成合晶形成阶段,通过绿辉石内部端元组分间的反应实现,反应产物之一的Fe^2 与金红石结合形成钛铁矿,Ca、Mg被排出到绿辉石体系之外。晚期退变为流体的渗滤交代作用,表现为石榴子石被角闪石部分取代、后成合晶的角闪石化,以及黝帘石、白云母的形成。退变质的最后阶段为石榴子石被绿帘石 角闪石 赤铁矿完全替代。榴辉岩转化成含帘石的斜长角闪岩。  相似文献   

10.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

11.
Abstract In the Su-Lu ultrahigh- P terrane, eastern China, many coesite-bearing eclogite pods and layers within biotite gneiss occur together with interlayered metasediments now represented by garnet-quartz-jadeite rock and kyanite quartzite. In addition to garnet + omphacite + rutile + coesite, other peak-stage minerals in some eclogites include kyanite, phengite, epidote, zoisite, talc, nyböite and high-Al titanite. The garnet-quartz-jadeite rock and kyanite quartzite contain jadeite + quartz + garnet + rutile ± zoisite ± apatite and quartz + kyanite + garnet + epidote + phengite + rutile ± omphacite assemblages, respectively. Coesite and quartz pseudomorphs after coesite occur as inclusions in garnet, omphacite, jadeite, kyanite and epidote from both eclogites and metasediments. Study of major elements indicates that the protolith of the garnet-quartz jadeite rock and the kyanite quartzite was supracrustal sediments. Most eclogites have basaltic composition; some have experienced variable 'crustal'contamination or metasomatism, and others may have had a basaltic tuff or pyroclastic rock protolith.
The Su-Lu ultrahigh- P rocks have been subjected to multi-stage recrystallization and exhibit a clockwise P-T path. Inclusion assemblages within garnet record a pre-eclogite epidote amphibolite facies metamorphic event. Ultrahigh- P peak metamorphism took place at 700–890° C and P >28 kbar at c . 210–230 Ma. The symplectitic assemblage plagioclase + hornblende ± epidote ± biotite + titanite implies amphibolite facies retrogressive metamorphism during exhumation at c . 180–200 Ma. Metasedimentary and metamafic lithologies have similar P-T paths. Several lines of evidence indicate that the supracrustal rocks were subducted to mantle depths and experienced in-situ ultrahigh- P metamorphism during the Triassic collision between the Sino-Korean and Yangtze cratons.  相似文献   

12.
The Sivrihisar Massif, Turkey, is comprised of blueschist and eclogite facies metasedimentary and metabasaltic rocks. Abundant metre‐ to centimetre‐scale eclogite pods occur in blueschist facies metabasalt, marble and quartz‐rich rocks. Sivrihisar eclogite contains omphacite + garnet + phengite + rutile ± glaucophane ± quartz + lawsonite and/or epidote. Blueschists contain sodic amphibole + garnet + phengite + lawsonite and/or epidote ± omphacite ± quartz. Sivrihisar eclogite and blueschist have similar bulk composition, equivalent to NMORB, but record different P–T conditions: ~26 kbar, 500 °C (lawsonite eclogite); 18 kbar, 600 °C (epidote eclogite); 12 kbar, 380 °C (lawsonite blueschist); and 15–16 kbar, 480–500 °C (lawsonite‐epidote blueschist). Pressures for the Sivrihisar lawsonite eclogite are among the highest reported for this rock type, which is rarely exposed at the Earth's surface. The distribution and textures of lawsonite ± epidote define P–T conditions and paths. For example, in some lawsonite‐bearing rocks, epidote inclusions in garnet and partial replacement of matrix epidote by lawsonite suggest an anticlockwise P–T path. Other rocks contain no epidote as inclusions or as a matrix phase, and were metamorphosed entirely within the lawsonite stability field. Results of the P–T study and mapping of the distribution of blueschists and eclogites in the massif suggest that rocks recording different maximum P–T conditions were tectonically juxtaposed as kilometre‐scale slices and associated high‐P pods, although all shared the same exhumation path from ~9–11 kbar, 300–400 °C. Within the tectonic slices, alternating millimetre–centimetre‐scale layers of eclogite and blueschist formed together at the same P–T conditions but represent different extents of prograde reaction controlled by strain partitioning or local variations in fO2 or other chemical factors.  相似文献   

13.
Abstract Eclogites are distributed for more than 500 km along a major tectonic boundary between the Sino-Korean and Yangtze cratons in central and eastern China. These eclogites usually have high-P assemblages including omphacite + kyanite and/or coesite (or its pseudomorph), and form a high-P eclogite terrane. They occur as isolated lenses or blocks 10 cm to 300 m long in gneisses (Type I), serpentinized garnet peridotites (Type II) and marbles (Type III). Type I eclogites were formed by prograde metamorphism, and their primary metamorphic mineral assemblage consists mainly of garnet [pyrope (Prp) = 15–40 mol%], omphacite [jadeite (Jd) = 34–64 mol%], pargasitic amphibole, kyanite, phengitic muscovite, zoisite, an SiO2 phase, apatite, rutile and zircon. Type II eclogites characteristically contain no SiO2 phase, and are divided into prograde eclogites and mantle-derived eclogites. The prograde eclogites of Type II are petrographically similar to Type I eclogites. The mantle-derived eclogites have high MgO/(FeO + Fe2O3) and Cr2O3 compositions in bulk rock and minerals, and consist mainly of pyrope-rich garnet (Prp = 48–60 mol%), sodic augite (Jd = 10–27 mol%) and rutile. Type III eclogites have an unusual mineral assemblage of grossular-rich (Grs = 57 mol%) garnet + omphacite (Jd = 30–34 mol%) + pargasite + rutile. Pargasitic and taramitic amphiboles, calcic plagioclase (An68), epidote, zoisite, K-feldspar and paragonite occur as inclusions in garnet and omphacite in the prograde eclogites. This suggests that the prograde eclogites were formed by recrystallization of epidote amphibolite and/or amphibolite facies rocks with near-isothermal compression reflecting crustal thickening during continent–continent collision of late Proterozoic age. Equilibrium conditions of the prograde eclogites range from P > 26 kbar and T= 500–750°C in the western part to P > 28 kbar and T= 810–880°C in the eastern part of the high-P eclogite terrane. The prograde eclogites in the eastern part are considered to have been derived from a deeper position than those in the western part. Subsequent reactions, manifested by (1) narrow rims of sodic plagioclase or paragonite on kyanite and (2) symplectites between omphacite and quartz are interpreted as an effect of near-isothermal decompression during the retrograde stage. The conditions at which symplectites re-equilibrated tend to increase from west (P < 10 kbar and T < 580°C) to east (P > 9 kbar and T > 680°C). Equilibrium temperatures of Type II mantle-derived eclogites and Type III eclogite are 730–750°C and 680°C, respectively.  相似文献   

14.
豫南中温榴辉岩中角闪石的变质演化   总被引:1,自引:0,他引:1  
在该区中温榴辉岩的各个演化阶段中,出现了不同成分的角闪石。石榴石环带及其核部的闪石等矿物包囊体记录了前榴辉阶段及其进变质演化的特征。在榴岩阶段晚期,蓝闪石稳定出现,其成分环带反映了压力降低的连续过程;角闪石-斜长石后成合晶为石榴石和绿辉石的退变质产物;退变质后期,钙质闪石大量出现。角闪石的矿物组合及其成分变化,反映了中温榴辉岩的顺时针变质演化过程。  相似文献   

15.
In the Chinese southwestern Tianshan (U)HP belt, former lawsonite presence has been predicted for many (U)HP metamorphic eclogites, but only a very few lawsonite grains have been found so far. We discovered armoured lawsonite relicts included in quartz, which, on its part, is enclosed in porphyroblastic garnet in an epidote eclogite H711‐14 and a paragonite eclogite H711‐29. H711‐14 is mainly composed of garnet, omphacite, epidote and titanite, with minor quartz, paragonite and secondary barroisite and glaucophane. Coarse‐grained titanite occasionally occurs in millimetre‐wide veins in equilibrium with epidote and omphacite, and relict rutile is only preserved as inclusions in matrix titanite and garnet. H711‐29 shows the mineral assemblage of garnet, omphacite, glaucophane, paragonite, quartz, dolomite, rutile and minor epidote. Dolomite and rutile are commonly rimed by secondary calcite and titanite respectively. Porphyroblastic garnet in both eclogites is compositionally zoned and exhibits an inclusion‐rich core overgrown by an inclusion‐poor rim. Phase equilibria modelling predicts that garnet cores formed at the P‐peak (490–505 °C and 23–25.5 kbar) and coexisted with the lawsonite eclogite facies assemblage of omphacite + glaucophane + lawsonite + quartz. Garnet rims (550–570 °C and ~20 kbar) grew subsequently during a post‐peak epidote eclogite facies metamorphism and coexisted with omphacite + quartz ± glaucophane ± epidote ± paragonite. The results confirm the former presence of a cold subduction zone environment in the Chinese southwestern Tianshan. The P–T evolution of the eclogites is characterized by a clockwise P–T path with a heating stage during early exhumation (thermal relaxation). The preservation of lawsonite in these eclogites is attributed to isolation from the matrix by quartz and rigid garnet, which should be considered as a new type of lawsonite preservation in eclogites. The complete rutile–titanite transition in H711‐14 took place in the epidote eclogite facies stage in the presence of an extremely CO2‐poor fluid with X(CO2) [CO2/(CO2 + H2O) in the fluid] <<0.008. In contrast, the incomplete rutile–titanite transition in H711‐29 may have occurred after the epidote eclogite facies stage and the presence of dolomite reflects a higher X(CO2) (>0.01) in the coexisting fluid at the epidote eclogite facies stage.  相似文献   

16.
The discovery of eclogites is reported within the Great Himalayan Crystalline Complex in the Thongmön area, central Himalaya, and their metamorphic evolution is deciphered by petrographic studies, pseudosection modelling, and zircon dating. For the first time, omphacite has been found in the matrix of eclogites taken from a metamorphic mafic lens. Two groups of garnet have been identified in the Thongmön eclogites on the basis of major and rare earth elements and mineral inclusions. Core and intermediate sections of garnet represent Grt I, in which the major elements (Ca, Mg, and Fe) show a nearly homogenous distribution with little or weak zonation. This Grt I displays an almost flat chondrite‐normalized HREE pattern, and the main inclusions are amphibole, apatite, quartz, and abundant omphacite. Grt II, forms thin rims on large garnet grains, and is characterized by rim‐ward Ca decrease and Mg increase and MREE enrichment relative to HREE and LREE. No amphibole inclusions are found in Grt II, indicating the decomposition of amphibole contributed to its MREE enrichment. Two metamorphic stages, recorded by matrix minerals and inclusions in garnet and zircon, outline the burial of the Thongmön eclogites and progressive metamorphic processes to the pressure peak: (a) the assemblage of amphibole–garnet–omphacite–phengite–rutile–quartz, with the phengite interpreted as having been replaced by Bt+Pl symplectites, represents the prograde amphibole eclogite facies stage M1(1), (b) in the peak eclogite facies [stage M1(2)], amphibole was lost and melting started. Based on the compositions of garnet and omphacite inclusions, M1(1) is constrained to 19–20 kbar and 640–660°C and M1(2) occurred at >21 kbar, >750°C, with appearance of melt and its entrapment in metamorphic zircon. SHRIMP U–Pb dating of zircon from two eclogite samples yielded consistent metamorphic ages of 16.7 ± 0.6 Ma and 17.1 ± 0.4 Ma respectively. The metamorphic zircon grew concurrently with Grt II in the peak eclogite facies. Thongmön eclogites characterized by the prograde metamorphism from amphibolite facies to eclogite facies were formed by the continuing continental subduction of Indian plate beneath the Euro‐Asian continent in the Miocene.  相似文献   

17.
本文通过对CCSD主孔100~1100m范围内榴辉岩中单矿物的LA-ICP-MS分析,探讨了榴辉岩中单矿物之间的微量元素分配,发现超高压变质作用中石榴石和绿辉石之间Ti和C0的分配显著受Mg控制(如DCo^Grt/Omp=3.43DMg^Grt/Omp-0.34),而REE、Sr和Y的分配则受Ca分配所控制。绿辉石中REE、Pb和Th的含量则明显受超高压副矿物磷灰石的出现与否所控制。结合岩石学特征,对角闪石和绿辉石中微量元素的研究表明角闪石主要是绿辉石退变质的产物。但退变质矿物的微量元素组成不仅受原矿物控制,而且受退变质矿物组合类型影响。绿帘石的出现会显著降低共生角闪石中LREE和Sr的含量,而多硅白云母的分解则会增加角闪石中的Rb、Ba含量。另外,退变质过程中的流体活动也会影响退变质矿物中的LREE、Sr和Pb等。结合REE在榴辉岩各主要矿物间分配系数随温度、压力的变化,我们推测部分石榴石边部MREE的富集特征可能反映榴辉岩在折返过程中经历了短时增温作用,这可能是引起苏鲁地区榴辉岩相向麻粒岩相转变叠加现象以及超高压岩石经历部分熔融作用的重要原因。此外,榴辉岩中金红石Nb和Ta组成的高度不均一性为金红石形成于超高压变质阶段富Ti磁铁矿相变作用的成因机制提供了佐证。  相似文献   

18.
In the North‐East Greenland Caledonides, P–T conditions and textures are consistent with partial melting of ultrahigh‐pressure (UHP) eclogite during exhumation. The eclogite contains a peak assemblage of garnet, omphacite, kyanite, coesite, rutile, and clinozoisite; in addition, phengite is inferred to have been present at peak conditions. An isochemical phase equilibrium diagram, along with garnet isopleths, constrains peak P–T conditions to be subsolidus at 3.4 GPa and 940°C. Zr‐in‐rutile thermometry on inclusions in garnet yields values of ~820°C at 3.4 GPa. In the eclogite, plagioclase may exhibit cuspate textures against surrounding omphacite and has low dihedral angles in plagioclase–clinopyroxene–garnet aggregates, features that are consistent with former melt–solid–solid boundaries and crystallized melt pockets. Graphic intergrowths of plagioclase and amphibole are present in the matrix. Small euhedral neoblasts of garnet against plagioclase are interpreted as formed from a peritectic reaction during partial melting. Polymineralic inclusions of albite+K‐feldspar and clinopyroxene+quartz±kyanite±plagioclase in large anhedral garnet display plagioclase cusps pointing into the host, which are interpreted as crystallized melt pockets. These textures, along with the mineral composition, suggest partial melting of the eclogite by reactions involving phengite and, to a large extent, an epidote‐group mineral. Calculated and experimentally determined phase relations from the literature reveal that partial melting occurred on the exhumation path, at pressures below the coesite to quartz transition. A calculated P–T phase diagram for a former melt‐bearing domain shows that the formation of the peritectic garnet rim occurred at 1.4 GPa and 900°C, with an assemblage of clinopyroxene, amphibole, and plagioclase equilibrated at 1.3 GPa and 720°C. Isochemical phase equilibrium modelling of a symplectite of clinopyroxene, plagioclase, and amphibole after omphacite, combined with the mineral composition, yields a P–T range at 1.0–1. 6 GPa, 680–1,000°C. The assemblage of amphibole and plagioclase is estimated to reach equilibrium at 717–732°C, calculated by amphibole–plagioclase thermometry for the former melt‐bearing domain and symplectite respectively. The results of this study demonstrate that partial melt formed in the UHP eclogite through breakdown of an epidote‐group mineral with minor involvement of phengite during exhumation from peak pressure; melt was subsequently crystallized on the cooling path.  相似文献   

19.
Abstract Widespread ultra-high-P assemblages including coesite, quartz pseudomorphs after coesite, aragonite, and calcite pseudomorphs after aragonite in marble, gneiss and phengite schist are present in the Dabie Mountains eclogite terrane. These assemblages indicate that the ultra-high-P metamorphic event occurred on a regional scale during Triassic collision between the Sino-Korean and Yangtze cratons. Marble in the Dabie Mountains is interlayered with coesite-bearing eclogite and gneiss and as blocks of various size within gneiss. Discontinuous boudins of eclogite occur within marble layers. Marble contains an ultra-high-P assemblage of calcite/aragonite, dolomite, clinopyroxene, garnet, phengite, epidote, rutile and quartz/coesite. Coesite, quartz pseudomorphs after coesite, aragonite and calcite pseudomorphs after aragonite occur as fine-grained inclusions in garnet and omphacite. Phengites contain about 3.6 Si atoms per formula unit (based on 11 oxygens). Similar to the coesite-bearing eclogite, marble exhibits retrograde recrystallization under amphibolite–greenschist facies conditions generated during uplift of the ultra-high-P metamorphic terrane. Retrograde minerals are fine grained and replace coarse-grained peak metamorphic phases. The most typical replacements are: symplectic pargasitic hornblende + epidote after garnet, diopside + plagioclase (An18) after omphacite, and fibrous phlogopite after phengite. Ferroan pargasite + plagioclase, and actinolite formed along grain boundaries between garnet and calcite, and calcite and quartz, respectively. The estimated peak P–T conditions for marble are comparable to those for eclogite: garnet–clinopyroxene geothermometry yields temperatures of 630–760°C; the garnet–phengite thermometer gives somewhat lower temperatures. The minimum pressure of peak metamorphism is 27 kbar based on the occurrence of coesite. Such estimates of ultra-high-P conditions are consistent with the coexistence of grossular-rich garnet + rutile, and the high jadeite content of omphacite in marble. The fluid for the peak metamorphism was calculated to have a very low XCO2 (<0.03). The P–T conditions for retrograde metamorphism were estimated to be 475–550°C at <7 kbar.  相似文献   

20.
大别山产出的榴辉岩相岩石包括石榴橄榄岩、榴辉岩、榴云片岩、榴辉片麻岩、榴玉英岩和榴辉大理岩等不同系列,它们均分布于花岗质片麻岩中。矿物共生序列研究表明,榴辉岩相岩石经历了从绿帘角闪岩相、柯石英榴辉岩相、角闪榴辉岩相、绿帘角闪岩相到绿片岩相的演化过程。花岗质片麻岩及变质火山—沉积岩系并未经历超高压变质作用,但却与榴辉岩相岩石经历了同一期绿帘角闪岩相变质事件,证明二者在地壳范围内发生了构造合并  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号