首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Shakhtama Mo–Cu porphyry deposit is located within the eastern segment of the Central Asian Orogenic Belt, bordering the southern margin of the Mongol–Okhotsk suture zone. The deposit includes rocks of two magmatic complexes: the precursor plutonic (J2) and ore-bearing porphyry (J3) complexes. The plutonic complex was emplaced at the final stages of the collisional regime in the region; the formation of the porphyry complex may have overlapped with a transition to extension. The Shakhtama rocks are predominantly metaluminous, I-type high K calc-alkaline to shoshonitic in composition, with relatively high Mg#, Ni, Cr and V. They are characterized by crustal-like ISr (0.70741–0.70782), relatively radiogenic Pb isotopic compositions, εNd(T) values close to CHUR (−2.7 to +2.1) and Nd model ages from 0.8 to 1.2 Ga. Both complexes are composed of rocks with K-adakitic features and rocks without adakite trace element signatures. The regional geological setting together with geochemical and isotopic data indicate that both juvenile and old continental crust contributed to their origin. High-Mg# K-adakitic Shakhtama magmas were most likely generated by partial melting of thickened lower crust during delamination and interaction with mantle material, while magmas lacking adakite-like signatures were probably generated at shallower levels of lower crust. The derivation of melts, related to the formation of plutonic and porphyry complexes involved variable amounts of old Precambrian lower crust and juvenile Phanerozoic crust. Isotopic data imply stronger contribution of juvenile mantle-derived material to the fertile magmas of the porphyry complex. Juvenile crust is proposed as an important source of fluids and metals for the Shakhtama ore-magmatic system.  相似文献   

2.
Several complexes are recognized within the Sora porphyry Cu-Mo deposit: plutonogenic, porphyry (ore-bearing), and dike. They formed since Ordovician till Devonian at the collision, postcollisional, and rift stages of the regional evolution, respectively. Magmatism was manifested at the deposit synchronously with intraplate magmatism, which was widespread within Kuznetsk Alatau and was initiated by the Altai–Sayan mantle plume. In structural position and geochemical characteristics the dike complex is similar to the intraplate complexes in adjacent regions. It formed after the development of the Sora ore-magmatic system including the plutonogenic and porphyry complexes with similar geochemistry and metallogeny. According to the models for the relationship of mantle plumes with ore-magmatic systems, the plutonogenic and porphyry complexes of the Sora deposit developed at the stage of the thermal plume effect on lithosphere, which caused its melting and, as a result, calc-alkalic magmatism. A change of the collision and postcollisional geodynamic regime by the rift one favored the ascent of plume melts, which then participated in the formation of intraplate structures, in particular, the dike complex of the Sora deposit.  相似文献   

3.
Two intrusive complexes are recognized in the Zhireken deposit: Amanan and ore-bearing porphyry. According to the ages obtained by U–Pb zircon dating (Amanan complex—162.6 ± 1.4 Ma, granites and monzonite-porphyry of the ore-bearing complex—159.0 ± 1.6 and 157.5 ± 2.9 Ma), the Amanan complex formed at the end of collision, and the ore-bearing porphyry complex, during the change of the geodynamic regime by the postcollisional (rift) one. The rocks of two complexes have high contents of LILE and LREE and low contents of HFSE and HREE. The (87Sr/86Sr)0 ratio in the gabbro and granites of the Amanan complex is 0.70501 and 0.70534, respectively, and that in the rocks of the porphyry complex is within 0.70451–0.70633. The Amanan gabbro, gabbro-diorites, and granites are characterized by εNd(T) = –1.4, –1.8, and –10.3, respectively, and the rocks of the ore-bearing complex, by εNd(T) = –3.7 to + 1.0. The model TNd(DM) age of the Amanan granites is 1.5 Ga, and that of the granites and porphyry of the ore-bearing complex is 1.0–0.8 Ga. The Pb isotope ratios in the rocks of the Amanan and porphyry complexes are: 206Pb/204Pb = 18.086–18.136 and 18.199–18.442, 207Pb/204Pb = 15.487–15.499 and 15.506–15.545, and 208Pb/204Pb = 38.046–38.256 and 38.230–38.456. The results of geological, geochemical, and isotope studies admit that magmas were generated from juvenile and ancient crusts. Melts probably ascended from a depth of no less than 55 km during the melting of crust thickened as a result of tectonic deformations (in the upper horizons) and during the basic-magma supply (in the lower horizons). Juvenile mafic crust is considered to be the major source of fluid components and metals. Favorable conditions for the ore generation in the magmatic system during the formation of the porphyry complex arose at the previous stage, during the formation of the Amanan complex, which we regard as a preparatory stage in the evolution of the long-living ore-magmatic system.© 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

4.
The ore-bearing geological structural units of the southern Cis-Argun region are considered in the context of varying geodynamic regimes related to the Proterozoic, Caledonian, and Hercynian tectono-magmatic cycles, as well as during the Late Mesozoic within-plate tectono-magmatic activity, which give rise to the formation of subalkaline igneous rocks of the Shakhtama Complex with Au, Cu–Mo, Pb–Zn–Ag metallogenic specialization; volcano-plutonic complexes of calderas with Mo–U, Pb–Zn, and fluorite ores; and rare-metal granite of the Kukulbei Complex with a Sn–W–Li–Ta spectrum of mineralization. The comparative geochemical characteristics inherent to Mesozoic ore-bearing felsic igneous rocks are considered, as well as geodynamic settings of ore-bearing fluido-magmatic systems, taking into consideration new data on geochemistry of bimodal trachybasalt–trachydacite series and rhyolite of the Turga Series, which fill the Strel’tsovka Caldera, whose trend of evolution is defined as a reference for geological history of the studied territory. The geodynamic conditions, phase composition, and geochemistry of rocks along with metallogenic specialization of Mesozoic volcano-plutonic complexes of southern Cis-Argun region are close to those of the Great Khingan Belt in northeastern China and eastern Mongolia.  相似文献   

5.
秦岭造山带柞山盆地多处发育与晚中生代中酸性小岩体有关的铜钼矿床(点),最近在池沟深部发现了厚大的斑岩型铜矿体,但对这些小岩体的形成时代和成因的研究很少。本文选择池沟地区不同类型的花岗质岩石开展地球化学特征和锆石U-Pb测年的研究。结果表明:该区小岩体主要为闪长岩、石英闪长岩和斑状花岗岩,它们为钾质钙碱性Ⅰ型花岗质岩石。矿物学、地球化学和Sr-Nd同位素特征均暗示它们是上地幔和下地壳同熔的深熔岩浆产物。与成矿密切相关的含矿岩体LA-MC-ICPMS锆石U-Pb谐和年龄为~145Ma,结合区域地质资料和成岩成矿关系的研究,认为池沟含矿岩体形成于晚侏罗世-早白垩世,柞水盆地存在一期重要的晚侏罗世-早白垩世中酸性岩浆岩和相应的斑岩-矽卡岩铜钼金矿化,与华北地块南缘晚中生代岩体和相关的钼铅锌矿床形成于同一地质事件。  相似文献   

6.
This paper considers the geological structure, composition, and age of the Darkhintui, Barun-Gol, and Khuldat granitoid plutons of the Dzhida zone of Caledonides of the Central Asian Fold belts. These plutons were formed in the Late Cambrian-Early Ordovician in the range between 490 ± 2 and 477 ± 6 Ma, after tectonic juxtaposition of the oceanic and island-arc complexes of the Dzhida Zone and volcanogenic-carbonate-terrigenous rocks of the Khamardaban zone, i.e., at the collisional stage of the region evolution. Geological, geochronological, geochemical, and Nd isotope data indicate that the collisional granitoids of the Dzhida zone were derived by melting of continental crust thickened through accretion. The sources for parental melts of the granitoids were presumably Vendian-Early Cambrian juvenile igneous rocks of ophiolite and island-arc complexes, as well as the crustal material of the Lower Paleozoic flyschoid sediments of the back-arc basin of the Dzhida zone and metaterrigenous rocks of the Khamardaban zone.  相似文献   

7.
The Erdenet-Ovoo magmatic center (EOMC) lies within the North Mongolian magmatic area formed through the interaction of a Permo-Triassic plume with the lithosphere in an environment of active continental margin. Two stages are recognized in the EOMC history: subduction stage with participation of basalt-andesite-dacite-rhyolite series and rifting stage with trachybasalt series. The granitoid magmatism (258–220 Ma) is expressed as the Selenge, Shivota, and ore-bearing porphyry complexes. The formation of the Selenge and Shivota granitoids was preceded by the intrusion of gabbroids. Trachybasalts formed during the granitoid magmatism after the Selenge complex, nearly synchronously with the Shivota and ore-bearing porphyry complexes. At the subduction stage of the EMC evolution, the plume influence is documented from the appearance of gabbros both depleted and enriched in lithophile trace elements similar to volcanic rocks of trachybasalt series and basaltoids of bimodal series in northern Mongolia. The Rb-Sr and Sm-Nd isotope characteristics of the enriched gabbros suggest the participation of a lower mantle source in their formation. The plume, as a heat carrier, led to a large-scale manifestation of volcanism and, obviously, a wide development of basic rocks of this stage at depth. The basic rocks were the source of granitoid magma that produced the Selenge granitoids. The protolith melted in the >50 km thick crust preventing the wide manifestation of basaltoid volcanism in that period. The increased plume influence, rifting, uplift of the region, and extension of the crust favored the basaltoid and granitoid (Shivota and ore-bearing porphyry) magmatism activity.  相似文献   

8.
Berzina AN  Berzina AP 《岩石学报》2008,24(12):2657-1668
The Aksug deposit, located in Altay-Sayan region of Russia, is one of the largest porphyry Cu-Mo deposits in Southern Siberia. The ore-bearing porphyries of the Aksug porphyry Cu-Mo system were formed in post-collisional environment. Geochemically they belong to calk-alkaline and high K-calk-alkaline series. Rocks are characterized by enrichment of LILE and depletion of HSFE and HREE, showing the importance of subduction-related components in magma generation. Large plutonic intrusions that host porphyry systems have been formed during collision. The origin of porphyritic rocks is dominantly the mantle with lower crustal contribution. The mainly economically important Cu-Mo mineralization is closely related to a porphyry series in time and space, being emplaced towards the end of magmatic activity. Though the emplacement of plutonic and ore-bearing porphyry complexes took place in different geodynamic environments, both complexes are characterized by certain similarity in geochemical composition, alkalinity, trace element content, Sr isotopic composition. This fact evidently indicates a common deep-seated magmatic source (at the lower crust-upper mantle level). Low initial 87 Sr/86 Sr, sulfur isotopic characteristics and presence of PGE-Co-Ni mineralization in associated pyrite-chalcopyrite ores suggest that mantle source of chalcophile elements was of high importance in porphyry Cu-Mo mineralization of the Aksug deposit.  相似文献   

9.
The paper presents new geological, geochemical, and isotopic data on igneous rocks from a thoroughly studied area in the western Baikal-Muya Belt, which is a representative segment of the Neoproterozoic framework of the Siberian Craton. Three rock associations are distinguished in the studied area: granulite-enderbite-charnockite and ultramafic-mafic complexes followed by the latest tonalite-plagiogranitegranite series corresponding to adakite in geochemical characteristics. Tonalites and granites intrude the metamorphic and gabbroic rocks of the Tonky Mys Point, as well as Slyudyanka and Kurlinka intrusions. The tonalites yielded a U-Pb zircon age of 595 ± 5 Ma. The geochronological and geological information indicate that no later than a few tens of Ma after granulite formation they were transferred to the upper lithosphere level. The Sm-Nd isotopic data show that juvenile material occurs in rocks of granitoid series (?Nd(t) = 3.2–7.1). Ophiolites, island-arc series, eclogites, and molasse sequences have been reviewed as indicators of Neoproterozoic geodynamic settings that existed in the Baikal-Muya Belt. The implications of spatially associated granulites and ultramafic-mafic intrusions, as well as granitoids with adakitic geochemical characteristics for paleogeodynamic reconstructions of the western Baikal-Muya Belt, are discussed together with other structural elements of the Central Asian Belt adjoining the Siberian Platform in the south.  相似文献   

10.
西天山喇嘛苏岩体年代学、地球化学及成矿意义   总被引:1,自引:0,他引:1  
文中主要对西天山喇嘛苏岩体进行SHRIMP锆石U-Pb年龄、主微量及Sr-Nd-Pb同位素测定,阐明岩体成因及形成构造背景。喇嘛苏岩体主要由石英二长闪长岩、花岗闪长斑岩和英云闪长斑岩组成。其中,石英二长闪长岩形成于(394.8±4.9)Ma,花岗闪长斑岩和英云闪长斑岩形成于(380.9±3.9)Ma,略晚于石英二长闪长岩。岩体具有埃达克质岩的特征,且显示从钙碱性向高钾钙碱性演化的趋势,稀土元素配分曲线显示相对富集轻稀土((La/Yb)N:3.55~15.52)及中等的负或正Eu异常(δEu:0.53~1.12)。岩体具有较高的Sr含量((322~808)×10-6)和较低的Y含量((12.90~18.86)×10-6)。微量元素特征显示岩体富集LILE亏损HFSE,并具有Nb、Ta和Ti负异常。岩体初始Sr-Nd同位素组成为εNd(t)=-4.29~+0.75和ISr=0.706 052~0.708 263,Nd模式年龄为1.03~1.46Ga。花岗闪长斑岩和英云闪长斑岩的铅同位素特征为206Pb/204Pb=18.500~19.044,207Pb/204Pb=15.575~15.626,208Pb/204Pb=38.443~38.864;石英二长闪长岩为206Pb/204Pb=18.694~18.711,207Pb/204Pb=15.622~15.630,208Pb/204Pb=38.648~38.660。所有地球化学特征显示喇嘛苏岩体是俯冲洋壳部分熔融形成的熔体,上升过程中与受俯冲带沉积物交代的地幔楔相互作用,且有少量古老地壳的混染而形成。岩体形成于晚泥盆世准噶尔残余洋盆向伊犁—中天山地块俯冲的大陆弧背景,与该区Cu(Au)矿化有较密切的联系。  相似文献   

11.
The Sr-Nd isotopic ratios of selected post-collisional, calc-alkaline, I-type granitoids from the Pangeon pluton, intruding the lower tectonic unit (LTU) in the Southern Rhodope in the Miocene, support the existence of two types of granitoids (PTG porphyritic tonalite granodiorite and MGG biotite granodiorite to two-mica granite) unrelated by crystal fractionation and likely derived by partial melting of the same source under different P-T conditions. The Sr-Nd isotopic ratios of mafic enclaves in the granitoids as well as metamorphic rocks from the LTU have also been determined. At 22 Ma, the IRSr range between 0.706850 and 0.708381, whereas the εNd(22) range from –3.86 to –1.05, with no relationship to granitoid types. The relationships between Sr and Nd isotopes as well as these isotopes and SiO2 provide evidence of contamination of mafic melts by interaction with crust during magma differentiation. Both partial melting and AFC processes (r = 0.2) may account for compositional variations in the Pangeon magmas. The mafic enclaves display IRSr from 0.706189 to 0.707139, and εNd(22) from –2.29 to –1.94, similar to the granitoids, supporting the hypothesis of a common origin. Amphibolites inferred to be subduction-enriched metabasalts under-plated crust during old subduction can represent the source of the Pangeon melts. The TDM of the Pangeon granitoids is in the range 0.7–1.1 Ga for the inferred extraction age of the LILE-enriched subcontinental lithospheric mantle source. The upper crustal geochemical signatures and the relatively small isotopic composition of the Pangeon granitoids make these rocks similar to the coeval eastern-Mediterranean lamproites emplaced within the same geodynamic setting; this prompts similar melt sources. Lastly, the Pangeon granitoids display geochemical characteristics, isotopic ratios, and TDM also similar to other Tertiary magmatic rocks from the Southern Rhodope and Biga peninsula, western Anatolia, suggesting a similar tectonic environment and co-magmatic evolution throughout the area.  相似文献   

12.
报道了滇东南个旧超大型锡多金属矿区西区北部白云山碱性岩新的锆石U-Pb年龄、全岩地球化学和Sr-Nd同位素数据。LA-ICP-MS锆石U-Pb定年结果表明,白云山碱性正长岩形成于晚白垩世(80.0±0.6 Ma),与个旧地区的中基性岩及花岗岩均为同一次构造岩浆事件的产物;碱性正长岩与霞石正长岩具有相似的主微量元素地球化学特征及Sr-Nd同位素组成,暗示二者很可能是源于同一富集地幔源区并经历了不同程度演化的产物。结合已有的元素和同位素组成结果,认为碱性岩、中基性岩和成矿花岗岩很可能分别源自富集的岩石圈地幔、正常的岩石圈地幔和地壳源区。在晚白垩世伸展构造背景控制下,源于不均一岩石圈地幔的碱性和中基性的岩浆底侵,促使中下地壳岩石部分熔融形成花岗质熔体,在上升至近地表过程中引起构造活动带成矿物质的富集,从而形成个旧超大型锡多金属矿床的矿化格局。可以说,源于富集地幔的碱性岩浆在含矿花岗质岩浆的成岩成矿过程中,应不只是提供热量的贡献。  相似文献   

13.
Simultaneous determinations of U–Pb dating and Hf isotopes on single zircon grains by excimer laser-ablation quadrupole and multiple-collector ICP-MS and petrologic and ore geochemical studies have been applied to the ore-bearing porphyry of the Jinduicheng porphyritic molybdenum deposit in East Qinling. Lithogeochemical data show that the porphyry is characteristic of high K2O, K-feldspar porphyritic calc-alkaline granitoids with 176Hf/177Hf=0.282020–0.282436 and εHf(t)=?23.7 to ?8.9, which indicates its mixed origin involving a crustal and a mantle component. The weighted average U–Pb age from single zircon grains of the porphyry is 141.5±1.5 Ma. This age coincides with the oldest molybdenite Re-Os model age as dated by others, suggesting that the period of mineralization was almost simultaneous with the porphyry emplacement, or slightly later. The porphyry intrusion and the molybdenum mineralization occurred during the transition from compression to extension in the Jurassic – Cretaceous periods. The corresponding tectonic setting was the intracontinental orogenic and extension stage after collision and orogenesis between the Southern China plate and the Northern China plate. The Jinduicheng porphyry and the deposit's geochemical data indicate that the ore-forming material originated from a mixing of lower crust and upper mantle. When the molybdenum-enriched magma intruded into the upper crust along zones of structural weakness, ore-forming fluid generated by magma crystallization of the porphyry interacted with wall rock or mingled with meteoric water to form the deposit.  相似文献   

14.
覃永军  曾键年  曾勇 《地质通报》2010,29(6):851-862
安徽庐枞火山岩盆地中的罗河-泥河铁矿田产有与燕山期岩浆活动有关的大型铁矿床,是长江中下游玢岩型铁矿的一个重要组成部分。对矿田的含矿岩体进行了薄片鉴定和化学分析,结果表明该类岩浆岩为超浅成的中偏基性辉石粗安玢岩。运用锆石LA-ICP-MSU-Pb定年方法进行年龄测定,测得的206Pb/238U平均年龄分别为133.3Ma±0.6Ma(LJ23)、133.2Ma±1.1Ma(LJ37)、132.8Ma±2.6Ma(NHK1-2),3个年龄在误差范围内基本一致,表明矿田内辉石粗安玢岩的形成年龄约为133Ma。这一时间正好位于区内龙门院-砖桥和双庙-浮山两大火山喷发旋回的间歇期,为砖桥火山喷发旋回后期潜火山作用的产物。结合基础地质、矿床地质分析和含矿岩体、磁铁矿单矿物化学分析结果,推测矿田的成矿时间为133~131Ma。表明成岩成矿作用与发生于中国东部140Ma左右的构造体制大转折和130Ma左右的大规模岩石圈拆沉两大地质事件相吻合。  相似文献   

15.
覃永军  曾键年  曾勇 《地质通报》2010,29(5):851-862
安徽庐枞火山岩盆地中的罗河-泥河铁矿田产有与燕山期岩浆活动有关的大型铁矿床,是长江中下游玢岩型铁矿的一个重要组成部分。对矿田的含矿岩体进行了薄片鉴定和化学分析,结果表明该类岩浆岩为超浅成的中偏基性辉石粗安玢岩。运用锆石LA-ICP-MS U-Pb定年方法进行年龄测定,测得的206Pb/238U平均年龄分别为133.3Ma±0.6Ma(LJ23)、133.2Ma±1.1Ma(LJ37)、132.8Ma±2.6Ma(NHK1-2),3个年龄在误差范围内基本一致,表明矿田内辉石粗安玢岩的形成年龄约为133Ma。这一时间正好位于区内龙门院-砖桥和双庙-浮山两大火山喷发旋回的间歇期,为砖桥火山喷发旋回后期潜火山作用的产物。结合基础地质、矿床地质分析和含矿岩体、磁铁矿单矿物化学分析结果,推测矿田的成矿时间为133~131Ma。表明成岩成矿作用与发生于中国东部140Ma左右的构造体制大转折和130Ma左右的大规模岩石圈拆沉两大地质事件相吻合。  相似文献   

16.
铁格隆地区含矿岩石以闪长玢石及石英闪长玢岩为主,属钙碱性岩系和高钾钙碱性岩系,显示I型花岗岩的特点。岩体形成于早白垩世班公湖-怒江洋盆俯冲消减构造环境,成岩岩浆属氧化型岩浆,来源于壳幔结合部,并受到壳源物质的强烈混染。与玉龙、冈底斯斑岩矿带含矿岩石进行对比,该含矿玢岩在岩石类型、岩石化学、地球化学及成岩构造环境等方面均存在明显差异,指示其成矿动力学背景、成矿机理与"碰撞"及"碰撞后"的斑岩型矿床不同,属形成于"岛弧"环境的斑岩型铜金矿床。  相似文献   

17.
Geochemical and geochronological studies of the main types of granitoids of the Angara-Vitim batholith (AVB) and granites of the Zaza complex in western Transbaikalia were carried out. U-Pb (SHRIMP-II) and Rb-Sr dating yielded the age of autochthonous gneiss-granites of the Zelenaya Griva massif (325.3±2.8 Ma), quartz syenites of the Khangintui pluton (302.3±3.7 Ma) and intruding leucogranites of the Zaza complex (294.4±1 Ma), monzonites of the Khasurta massif (283.7±5.3 Ma), and quartz monzonites of the Romanovka massif (278.5±2.4 Ma). The U-Pb and Rb-Sr dates show that the Late Paleozoic magmatism in western Transbaikalia proceeded in two stages: (1) 340–320 Ma, when predominantly mesocratic granites of the Barguzin complex, including autochthonous ones, formed, and (2) 310–270 Ma, when most AVB granitoids formed. We suggest that at the early stage, crustal peraluminous granites formed in collision geodynamic setting. At the late (main) stage, magmatism occurred in postorogenic-extension setting and was accompanied by the formation of several geochemical types of granitoids: (1) typical intrusive mesocratic granites of the Barguzin complex, similar to those produced at the first stage; (2) melanocratic granitoids (monzonitoids, quartz syenites), which were earlier dated to the early stage of the AVB evolution; (3) leucocratic medium-alkali (peraluminous) granites of the Zaza intrusive complex; and (4) some alkali-granite and syenite intrusions accompanied by alkaline mafic rocks. The diversity of granitoids that formed at the late stage of magmatism was due to the heterogeneous composition of crust protoliths and different degrees of mantle-magma participation in their formation.  相似文献   

18.
The geodynamic setting of Mesozoic magmatic rocks and associated mineralization in eastern Tianshan, Northwest China, are attracting increasing attention. The newly discovered giant Donggebi molybdenum deposit (0.508 Mt at 0.115% Mo) is located in the central part of eastern Tianshan, Xinjiang. The molybdenum mineralization was genetically associated with the Donggebi stock, comprised of porphyritic granite and granite porphyry. Secondary ion mass spectrometry (SIMS) zircon U–Pb dating constrains that the porphyritic granite and granite porphyry emplacement occurred at 233.8 ± 2.5 Ma and 231.7 ± 2.6 Ma, respectively. The Re–Os model ages of six molybdenite samples range from 235.2 to 237.0 Ma, with a weighted mean age of 236.1 ± 1.4 Ma, which is roughly consistent within errors with the zircon U–Pb ages, suggesting a Middle Triassic magmatic–mineralization event at Donggebi. Geochemically, the Donggebi granitoids are characterized by high SiO2 and K2O contents, with low MgO contents, belonging to high-K calc-alkaline granites. These rocks show pronounced enrichment in K, Rb, U, and Pb, and depletion in Sr, Ba, P, and Ti, with negative Eu anomalies (Eu/Eu* = 0.20–0.38). In situ Hf isotopic analyses of zircon from the porphyritic granite and granite porphyry yielded εHf(t) values ranging from +6.6 to +10.5, and from +5.5 to +10.1, respectively. The geochemical and isotopic data imply that the primary magmas of the Donggebi granitoids could have originated by partial melting of a juvenile lower crust that involved some mantle components. Combined with the regional geological history, geochemistry of the Donggebi granitoids, and new isotopic age data, we thus propose that the Donggebi molybdenum deposit was formed in the Middle Triassic, and occurred in an intracontinental extension setting in eastern Tianshan.  相似文献   

19.
ABSTRACT

The Xilamulun Mo belt of Northeastern China, located in the southeastern segment of the Central Asia Orogenic Belt (CAOB), is composed of large deposits of porphyry Mo and quartz-vein-type Mo, which are related to Mesozoic granitoids. Previous studies led to the conclusion that all granitoids in the region formed during the Cretaceous and Triassic, but our new laser ablation inductively coupled plasma mass spectrometry U–Pb zircon dating of magmatic zircons from five samples of four mineralized plutons (Nailingou, Longtoushan, and Hashitu granites and Erbadi and Hashitu granite porphyries) reveals that these range in age from 143.8 ± 1.2 to 149.5 ± 1.0 Ma. These granites show post-collisional (A-type) geochemical characteristics (e.g. enrichment in total alkali, LILE, and LREE and depletion in Eu, Ba, P, and Nb). The Erbadi, Longtoushan, Hashitu, and Longtoushan granitoids exhibit moderately positive Hf isotopic compositions (εHf(t) = ?0.3 to 10.2), indicating that granitic magmas may reflect mixtures of mantle melts and continental crust. These mineralized granites were all emplaced along a major fault over a time span of ~6 million years during the Late Jurassic. We conclude that igneous activity and mineralization resulted from the rollback of the subducted Palaeo-Pacific plate beneath Eurasia. Confirming that the Late Jurassic granitic intrusives are related to the Mo mineralization is useful for understanding the Mesozoic tectonic evolution of the Xilamulun Mo belt and also has significant implications for the regional exploration of ores.  相似文献   

20.
The Kataev volcanoplutonic association has been recognized in western Transbaikalia. It unites the volcanosedimentary rocks of the Kataev Formation and associated granites localized within the lower plates of the Buteel-Nuur and Zagan metamorphic-core complexes. The rocks of the Kataev association are dynamometamorphosed to different degrees, which is due to the tectonic exposure of metamorphic-core complexes in the Early Cretaceous. The U-Pb zircon dating of the Kataev Formation rhyolites yielded an age of 226 ± 3 Ma. The U-Pb zircon age of the granites intruding the Kataev Formation rocks is 223.4 ± 5.0 Ma. The volcanics of the Kataev Formation belong to the subalkalic basalt-andesite-dacite-rhyolite series. The trachybasalts and trachyandesite-basalts of the Kataev Formation have geochemical characteristics of igneous rocks formed as a result of subduction, e.g., they show distinct negative Nb and Ti and positive Ba and Sr anomalies on multielemental patterns. The specific composition of mafic volcanics points to their formation through the melting of a mantle source resulted from the mixing of depleted mantle and subduction components. Trachyandesites have higher Th and U contents than basaltoids. They can result from the contamination of a mantle source, similar in composition to the Kataev Formation basaltoids, with crustal material. The felsic volcanics of the Kataev Formation and granites intruding them show nearly identical geochemical characteristics corresponding to both A-and I-type granites. These rocks might have formed through the melting of a moderately water-saturated magmatic source of diorite-tonalite composition at 742–833°C. We have established that the rocks of the Kataev volcanoplutonic association in western Transbaikalia and Northern Mongolia formed in the Late Triassic synchronously with the calc-alkaline granitoids of the Henteyn–Daurian batholith and the alkali granites and bimodal volcanic associations of the Kharitonovo and Tsagaan-Hurtey volcanoplutonic associations. The synchronous formation of volcanoplutonic associations of normal and high alkalinity agrees with the geodynamic setting of the Andean-type active continental margin existing in the area of present-day western Transbaikalia and Northern Mongolia in the Early Mesozoic. This setting was the result of the subduction of the Mongol-Okhotsk oceanic plate beneath the Siberian continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号