首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gold–silver sulfoselenides of Ag3Au(Se,S)2 series—Ag3AuSe1.5S0.5, Ag3AuSeS, and Ag3AuSe0.5S1.5—have been synthesized by fusing the elements in the required stoichiometric amounts in evacuated quartz ampoules. The single crystal X-ray diffraction data indicate the existence of two solid-solution series: petzite-type cubic Ag3AuSe2—Ag3AuSeS (space group I4132) and trigonal Ag3AuSe0.5S1.5—Ag3AuS2 (space group $ R\overline{3} c $ ). Both crystal structures differ in the distribution of Ag+/Au+ cations in the same distorted body-centered cubic sublattice of chalcogen anions. The morphotropic transformation results from the shrinkage of anion packing accompanied by the shortening of Ag–Ag distances. The structure of uytenbogaardtite mineral, earlier incorrectly interpreted as a tetragonal or cubic cell, is similar to that of the trigonal Ag3AuS2 end-member.  相似文献   

2.
Doklady Earth Sciences - Quaternary chalcogenides of AuX (AuTe0.7Se0.2S0.1), Au3X10 (Au3Te6Se3S, Au3Te6Se2.5S1.5), and AuX2 (AuTe1.8Se0.2, AuTe1.8Se0.1S0.1) composition were synthesized for the...  相似文献   

3.
The 7.1 Ma Broken Hills adularia-sericite Au–Ag deposit is currently the only producing rhyolite-hosted epithermal deposit in the Hauraki Goldfield of New Zealand. The opaque minerals include pyrite, electrum, acanthite (Ag2S), sphalerite, and galena, which are common in other adularia-sericite epithermal deposits in the Hauraki Goldfield and elsewhere worldwide. Broken Hills ores also contain the less common minerals aguilarite (Ag4SeS), naumannite (Ag2Se), petrovskaite (AuAgS), uytenbogaardtite (Ag3AuS2), fischesserite (Ag3AuSe2), an unnamed silver chloride (Ag2Cl), and unnamed Ag?±?Au minerals. Uytenbogaardtite and petrovskaite occur with high-fineness electrum. Broken Hills is the only deposit in the Hauraki Goldfield where uytenbogaardtite and petrovskaite have been identified, and these phases appear to have formed predominantly from unmixing of a precursor high-temperature phase under hypogene conditions. Supergene minerals include covellite, chalcocite, Au-rich electrum, barite, and a variety of iron oxyhydroxide minerals. Uytenbogaardtite can form under supergene and hypogene conditions, and textural relationships between uytenbogaardtite and associated high-fineness electrum may be similar in both conditions. Distinguishing the likely environment of formation rests principally on identification of other supergene minerals and documenting their relationships with uytenbogaardtite. The presence of aguilarite, naumannite, petrovskaite, and fischesserite at Broken Hills reflects a Se-rich mineral assemblage. In the Hauraki Goldfield and the western Great Basin, USA, Se-rich minerals are more abundant in provinces that are characterized by bimodal rhyolite–andesite volcanism, but in other epithermal provinces worldwide, the controls on the occurrences of Se-bearing minerals remain poorly constrained, in spite of the unusually high grades associated with many Se-rich epithermal deposits.  相似文献   

4.
The Marcona–Mina Justa deposit cluster, hosted by Lower Paleozoic metaclastic rocks and Middle Jurassic shallow marine andesites, incorporates the most important known magnetite mineralization in the Andes at Marcona (1.9 Gt at 55.4% Fe and 0.12% Cu) and one of the few major iron oxide–copper–gold (IOCG) deposits with economic Cu grades (346.6 Mt at 0.71% Cu, 3.8 g/t Ag and 0.03 g/t Au) at Mina Justa. The Middle Jurassic Marcona deposit is centred in Ica Department, Perú, and the Lower Cretaceous Mina Justa Cu (Ag, Au) prospect is located 3–4 km to the northeast. New fluid inclusion studies, including laser ablation time-of-flight inductively coupled plasma mass spectrometry (LA-TOF-ICPMS) analysis, integrated with sulphur, oxygen, hydrogen and carbon isotope analyses of minerals with well-defined paragenetic relationships, clarify the nature and origin of the hydrothermal fluid responsible for these contiguous but genetically contrasted deposits. At Marcona, early, sulphide-free stage M-III magnetite–biotite–calcic amphibole assemblages are inferred to have crystallized from a 700–800°C Fe oxide melt with a δ18O value from +5.2‰ to +7.7‰. Stage M-IV magnetite–phlogopite–calcic amphibole–sulphide assemblages were subsequently precipitated from 430–600°C aqueous fluids with dominantly magmatic isotopic compositions (δ34S = +0.8‰ to +5.9‰; δ18O = +9.6‰ to +12.2‰; δD = −73‰ to −43‰; and δ13C = −3.3‰). Stages M-III and M-IV account for over 95% of the magnetite mineralization at Marcona. Subsequent non-economic, lower temperature sulphide–calcite–amphibole assemblages (stage M-V) were deposited from fluids with similar δ34S (+1.8‰ to +5.0‰), δ18O (+10.1‰ to +12.5‰) and δ13C (−3.4‰), but higher δD values (average −8‰). Several groups of lower (<200°C, with a mode at 120°C) and higher temperature (>200°C) fluids can be recognized in the main polymetallic (Cu, Zn, Pb) sulphide stage M-V and may record the involvement of modified seawater. At Mina Justa, early magnetite–pyrite assemblages precipitated from a magmatic fluid (δ34S = +0.8‰ to +3.9‰; δ18O = +9.5‰ to +11.5‰) at 540–600°C, whereas ensuing chalcopyrite–bornite–digenite–chalcocite–hematite–calcite mineralization was the product of non-magmatic, probably evaporite-sourced, brines with δ34S ≥ +29‰, δ18O = 0.1‰ and δ13C = −8.3‰. Two groups of fluids were involved in the Cu mineralization stage: (1) Ca-rich, low-temperature (approx. 140°C) and high-salinity, plausibly a basinal brine and (2) Na (–K)-dominant with a low-temperature (approx. 140°C) and low-salinity probably meteoric water. LA-TOF-ICPMS analyses show that fluids at the magnetite–pyrite stage were Cu-barren, but that those associated with external fluids in later stages were enriched in Cu and Zn, suggesting such fluids could have been critical for the economic Cu mineralization in Andean IOCG deposits.  相似文献   

5.
6.
We carried out experiments on crystallization of Fe-containing melts FeS2Ag0.1–0.1xAu0.1x (x = 0.05, 0.2, 0.4, and 0.8) with Ag/Au weight ratios from 10 to 0.1. Mixtures prepared from elements in corresponding proportions were heated in evacuated quartz ampoules to 1050 ºC and kept at this temperature for 12 h; then they were cooled to 150 ºC, annealed for 30 days, and cooled to room temperature. The solid-phase products were studied by optical and electron microscopy and X-ray spectroscopy. The crystallization products were mainly from iron sulfides: monoclinic pyrrhotite (Fe0.47S0.53 or Fe7S8) and pyrite (Fe0.99S2.01). Gold–silver sulfides (low-temperature modifications) are present in all synthesized samples. Depending on Ag/Au, the following sulfides are produced: acanthite (Ag/Au = 10), solid solutions Ag2–xAuxS (Ag/Au = 10, 2), uytenbogaardtite (Ag/Au = 2, 0.75), and petrovskaite (Ag/Au = 0.75, 0.12). They contain iron impurities (up to 3.3 wt.%). Xenomorphic micro- (<1–5 μm) and macrograins (5–50 μm) of Au–Ag sulfides are localized in pyrite or between the grains of pyrite and pyrrhotite. High-fineness gold was detected in the samples with initial ratio Ag/Au ≤ 2. It is present as fine and large rounded microinclusions or as intergrowths with Au–Ag sulfides in pyrite or, more seldom, at the boundary of pyrite and pyrrhotite grains. This gold contains up to 5.7 wt.% Fe. Based on the sample textures and phase relations, a sequence of their crystallization was determined. At ~1050 ºC, there are probably iron sulfide melt L1 (Fe,S ? Ag,Au), gold–silver sulfide melt L2 (Au,Ag,S ? Fe), and liquid sulfur LS. On cooling, melt L1 produces pyrrhotite; further cooling leads to the crystallization of high-fineness gold (macrograins from L1 and micrograins from L2) and Au–Ag sulfides (micrograins from L1 and macrograins from L2). Pyrite crystallizes after gold–silver sulfides by the peritectic reaction FeS + LS = FeS2 at ~743 ºC. Elemental sulfur is the last to crystallize. Gold–silver sulfides are stable and dominate over native gold and silver, especially in pyrite-containing ores with high Ag/Au ratios.  相似文献   

7.
《Applied Geochemistry》2001,16(11-12):1369-1375
The heavy metal contamination of soils and waters by metalliferous mining activities in an area of Korea was studied. In the study area of the Imcheon Au–Ag mine, soils and waters were sampled and analyzed using AAS for Cd, Cu, Pb and Zn. Analysis of HCO3, F, NO3 and SO42− in water samples was also undertaken by ion chromatography. Elevated concentrations of the metals were found in tailings. The maximum contents in the tailings were 9.4, 229, 6160 and 1640 mg/kg extracted by aqua regia and 1.35, 26.4, 70.3 and 410 mg/kg extracted by 0.1 N HCl solution for Cd, Cu, Pb and Zn, respectively. These metals are continuously dispersed downstream and downslope from the tailings by clastic movement through wind and water. Because of the existence of sulfides in the tailings, a water sample taken on the tailings site was very acidic with a pH of 2.2, with high total dissolved solids (TDS) of 1845 mg/l and electric conductivity (EC) of 3820 μS/cm. This sample also contained up to 0.27, 1.90, 2.80, 53.4, 4,700 mg/l of Cd, Cu, Pb, Zn and SO42−, respectively. TDS, EC and concentrations of metals in waters decreased with distance from the tailings. The total amount of pulverized limestone needed for neutralizing the acid tailings was estimated to be 46 metric tons, assuming its volume of 45,000 m3 and its bulk density of 1855 kg/m3.  相似文献   

8.
The forms of Au and Ag occurrence in the crystallization products of melts in the Fe–S–Ag–Au system depending on the proportions of Fe/S and Ag/Au have been studied at (Fe + S)/(Ag + Au) = 0.1. It is shown that the S-rich systems with S/Fe = 2 contain Au–Ag sulfides and Au–Ag alloys. The systems depleted in S with S/Fe = 1 contain only Au–Ag alloys. The results of XPS provide evidence for the sulfide and metallic components of Au and Ag among the crystallization products of melts in the system studied at S/Fe = 2 and a metallic component with S/Fe = 1. According to the data of electron microprobe analysis, the content of “invisible” forms of noble metals in pyrite and pyrrhotite is < 0.024 wt % for Au and <0.030 wt % for Ag; the contents of “invisible” Au and Ag in troilites are 0.040 ± 0.013 wt % Au and 0.079 ± 0.016 wt % Ag.  相似文献   

9.
Geology of Ore Deposits - The Burgali deposit is located in the Paleozoic Kedon volcanic belt (KVB) within the Omolon cratonic terrane. The orebodies of the Burgali deposit are veined and...  相似文献   

10.
11.
Sulfoselenides [Ag2(S,Se)] and Se-bearing polybasite have been discovered at the Kongsberg silver district. The selenium-bearing minerals occur in two samples from the northern part of the district, forming either single or polyphase inclusions together with chalcopyrite within native silver. The Ag-sulfoselenides show large chemical variations, covering nearly the complete compositional range between acanthite (Ag2S) and naumannite (Ag2Se). For the data presented here, there is no local maximum at the composition Ag4SSe attributed to the distinct phase called aguilarite, suggesting that this composition can be considered as one of many possible along the monoclinic Ag2S–Ag2S0.4Se0.6 solid solution series rather than a specific mineral phase. We present a model explaining the variations in the Se-content of Ag2(S,Se) as a result of gradual de-sulfidization of the rock under oxidizing conditions. During this process, sulfur from the Ag2S-component of Ag2(S,Se) oxidized and dissolved in the fluid phase as SO42?, resulting in the formation of native silver. The activity ratio \({a_{{{\text{S}}^{2 - }}}}/{a_{{\text{S}}{{\text{e}}^{2 - }}}}\) of the system gradually decreased due to the removal of SO42?, which resulted in the stabilization of a sulfoselenide with higher selenium content. As a result of reaction progress, grains of Ag2(S,Se) became gradually enclosed in newly formed native silver, and therefore isolated from further reactions with the grain-boundary fluid. Grains isolated early during the process show low content of Se reflecting high \({a_{{{\text{S}}^{2 - }}}}/{a_{{\text{S}}{{\text{e}}^{2 - }}}}\) of the equilibrium fluid, while grains showing high Se reflect the composition of late low \({a_{{{\text{S}}^{2 - }}}}/{a_{{\text{S}}{{\text{e}}^{2 - }}}}\) fluids. Analyses of Se-bearing polybasite show that selenium is preferentially partitioned into Ag2(S,Se) compared to polybasite. The model presented here demonstrates how oxidation of sulfoselenides leads to fractionation of sulfur and selenium.  相似文献   

12.
The genesis of mineralized systems across the Mountain Freegold area, in the Dawson Range Cu–Au?±?Mo Belt of the Tintina Au province was constrained using Pb and stable isotope compositions and Ar–Ar and Re–Os geochronology. Pb isotope compositions of sulfides span a wide compositional range (206Pb/204Pb, 18.669–19.861; 208Pb/204Pb, 38.400–39.238) that overlaps the compositions of the spatially associated igneous rocks, thus indicating a magmatic origin for Pb and probably the other metals. Sulfur isotopic compositions of sulfide minerals are broadly similar and their δ34S (Vienna-Canyon Diablo Troilite (V-CDT)) values range from ?1.4 to 3.6 ‰ consistent with the magmatic range, with the exception of stibnite from a Au–Sb–quartz vein, which has δ34S values between ?8.1 and ?3.1 ‰. The δ34S values of sulfates coexisting with sulfide are between 11.2 and 14.2 ‰; whereas, those from the weathering zone range from 3.7 to 4.3 ‰, indicating supergene sulfates derived from oxidation of hypogene sulfides. The δ13C (Vienna Peedee Belemnite (VPDB)) values of carbonate range from ?4.9 to 1.1 ‰ and are higher than magmatic values. The δ18O (V-SMOW) values of magmatic quartz phenocrysts and magmatic least-altered rocks vary between 6.2 and 10.1 ‰ and between 5.0 and 10.1 ‰, respectively, whereas altered magmatic rocks and hydrothermal minerals (quartz and magnetite) are relatively 18O-depleted (4.2 to 7.9 ‰ and ?6.3 to 1.5 ‰, respectively). Hydrogen isotope compositions of both least-altered and altered igneous rock samples are D-depleted (from ?133 to ?161 ‰ Vienna-Standard Mean Ocean Water (V-SMOW)), consistent with differential magma degassing and/or post-crystallization exchange between the rocks and meteoric ground water. Zircon from a chlorite-altered dike has a U–Pb crystallization age of 108.7?±?0.4 Ma; whereas, the same sample yielded a whole-rock Ar–Ar plateau age of 76.25?±?0.53 Ma. Likewise, molybdenite Re–Os model ages range from 75.8 to 78.2 Ma, indicating the mineralizing events are genetically related to Late Cretaceous volcano-plutonic intrusions in the area. The molybdenite Re–Os ages difference between the nearby Nucleus (75.9?±?0.3 to 76.2?±?0.3 Ma) and Revenue (77.9?±?0.3 to 78.2?±?0.3 Ma) mineral occurrences suggests an episodic mineralized system with two pulses of hydrothermal fluids separated by at least 2 Ma. This, in combination with geological features suggest the Nucleus deposit represents the apical and younger portion of the Revenue–Nucleus magmatic-hydrothermal system and may suggest an evolution from the porphyry to the epithermal environments.  相似文献   

13.
We studied two sections that accumulated during the Paleocene–Eocene transition in shelf waters in the northeastern Tethys. Stable carbon isotopic compositions of marine and terrestrial biomarkers are consistent with a 13C depletion in the oceanic and atmospheric carbon dioxide pools during the Late Paleocene Thermal Maximum (LPTM; Subzone P5b). The 2–3‰ negative δ 13C excursion in planktic foraminifera coincides with minimum δ 18O values, an incursion of transient subtropical planktic foraminiferal fauna, and the occurrence of an organic-rich sapropelite unit in Uzbekistan, which accumulated at the onset of a transgressive event. Biomarker distributions and hydrogen indices indicate that marine algae and bacteria were the major organic matter sources. During the Late Paleocene (Subzones P4 and P5a), the marginal northeastern Tethys experienced a temperate to warm climate with wet and arid seasons. Most likely, warm and humid climate initiated during the LPTM (Subzone P5b) and subsequently extended during the Eocene (Zone P6) onto adjacent land areas of the marginal northeastern Tethys. Received: 18 May 1999 / Accepted: 2 February 2000  相似文献   

14.
At Colquijirca, central Peru, a predominantly dacitic Miocene diatreme-dome complex of 12.4 to 12.7 Ma (40Ar/39Ar biotite ages), is spatially related to two distinct mineralization types. Disseminated Au–(Ag) associated with advanced argillic alteration and local vuggy silica typical of high- sulfidation epithermal ores are hosted exclusively within the volcanic center at Marcapunta. A second economically more important mineralization type is characterized as "Cordilleran base metal lode and replacement deposits." These ores are hosted in Mesozoic and Cenozoic carbonate rocks surrounding the diatreme-dome complex and are zoned outward from pyrite–enargite–quartz–alunite to pyrite–chalcopyrite–dickite–kaolinite to pyrite–sphalerite–galena–kaolinite–siderite. Alunite samples related to the Au–(Ag) epithermal ores have been dated by the 40Ar/39Ar method at 11.3–11.6 Ma and those from the Cordilleran base metal ores in the northern part of the district (Smelter and Colquijirca) at 10.6–10.8 Ma. The significant time gap (~0.5 My) between the ages of the two mineralization types in the Colquijirca district indicates they were formed by different hydrothermal events within the same magmatic cycle. The estimated time interval between the younger mineralization event (base metal mineralization) at ~10.6 Ma and the ages of ~12.5 Ma obtained on biotites from unmineralized dacitic domes flanking the vicinity of the diatreme vent, suggest a minimum duration of the magmatic–hydrothermal cycle of around 2 Ma. This study on the Colquijirca district offers for the first time precise absolute ages indicating that the Cordilleran base metal lode and replacement deposits were formed by a late hydrothermal event in an intrusive-related district, in this case post Au–(Ag) high-sulfidation epithermal mineralization.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial handling: O. Christensen  相似文献   

15.
Doklady Earth Sciences - The exsolution texture of the Au–Ag–Cu–Pt solid solution is represented by numerous lamellae of cupreous gold in the Ag–Au–Pd matrix. On...  相似文献   

16.
The İnkaya Cu–Pb–Zn–(Ag) prospect is a typical example of the hydrothermal mineralization occurring in the Menderes Massif, which crop out in Western Anatolia. The prospect located approximately 20 km west of Simav (Kütahya-Turkey) in northern part of the Menderes Massif have been characterized through the detailed examinations involving geological, mineralogical, whole-rock geochemistry, fluid inclusion, stable isotope and lead isotope.The İnkaya Cu–Pb–Zn–(Ag) prospect is located along an E–W-trending fault in the Cambrian Simav Metamorphics, which consist of quartz–muscovite schist, quartz–biotite schist, muscovite schist, biotite schist and the Arıkayası Formation, which is composed of marbles. Galena, sphalerite, chalcopyrite, pyrite and fahlore are the main minerals, and they are accompanied by small amounts of cerussite, anglesite, digenite, enargite, chalcocite, covellite, bornite, and Fe-oxides with gangue quartz. In addition to Pb, Zn, Cu, Ag, the ore samples contain substantial quantities of As, Cd and Bi and small amount of Au. Average contents of Cu, Pb, Zn and Ag are 77,400 ppm, 102,600 ppm, 6843 ppm and 203 ppm, respectively.The δ34S values for galena, chalcopyrite and pyrite formed in the same stage vary in the range from − 1.7 to − 2.1‰ (average − 2.0), 0.1 to 0.3‰ (average 0.2) and − 1.5 to 2.6‰ (average + 1.5), respectively.δ34S values for H2S, representing the composition of the fluids responsible for the sulfide mineral formations and calculated from the δ34S value are between − 2.77 and 1.33‰; it is consistent with the sulfur in sulfide minerals. δ18Oquartz values range from 11.3 to 16.4‰ and estimated δ18Ofluid values range from 5.4 to 10.6‰.Pyrite–galena and pyrite–chalcopyrite pairs calculated to determine equilibrium isotope temperatures based on δ34S values are between 254.6 and 277.4 °C for pyrite–galena and 274.7 °C for pyrite–chalcopyrite. Sulfur and oxygen isotope values similar to the values for fluid equilibrated with an felsic magmatic source.Fluid inclusion studies on quartz of the same silicification stage coexisting with galena, sphalerite and chalcopyrite collected from the mineralized vein indicate that the temperature range of the fluids is 235 °C to 340 °C and that the salinities are 0.7 to 4.49 wt.% NaCl equivalent. The wide range of homogenization temperatures and relatively lower salinities of the fluid inclusions indicate that at least two different fluid generations were trapped in the quartz from only one fluid type. Also, lower salinities of fluid inclusion probably indicate mixing of meteoric water and magmatic fluid.The galena has 206Pb/204Pb values of 18.862–18.865, 207Pb/204Pb values of 15.707–15.711, and 208Pb/204Pb values of 39.033–39.042. The lead isotope values show a similarity with upper crustal values.  相似文献   

17.
The chemical compositions of rock-forming minerals have been determined for both altered and least-altered igneous rocks spatially associated with numerous mineralized zones (Nucleus Au–Bi–Cu–As deposit, Revenue Au ± Cu and Stoddart Cu–Mo ± W mineral occurrences, and Laforma Au–Ag deposit) across the Freegold Mountain area, Yukon, Canada. Within the study area, K-feldspar has a narrow compositional range (89.4–91% Or), whereas plagioclase spans a wide range (4.4–70.07% An). In all of the investigated samples, T Ab = T An = T Or, suggesting that magmatic equilibrium between the coexisting plagioclase and K-feldspar was maintained. Igneous amphibole phenocrysts from hypabyssal dikes are typically calcic, whereas the Stoddart Cu–Mo ± W, Laforma Au–Ag, and Goldy Au mineralization are associated with Mg-enriched primary amphibole of edenite composition, and Au–Bi–Cu–As mineralization from Nucleus is related to Al-enriched primary amphibole of ferropargasite composition. Primary biotite phenocrysts across the Freegold Mountain area re-equilibrated with oxidized magma (f(O2) values between 10–13 and 10–11.5 bars, lying between the Ni/NiO and the magnetite/haematite buffers). However, biotite and amphibole phenocrysts from Stoddart, Goldy, Laforma, and the Highway zones crystallized from a more oxidized magma, as indicated by their elevated X Mg up to 0.65, relative to biotite and hornblende from Nucleus and Revenue characterized by a lower X Mg (typically < 0.50). This suggests that various sources and (or) rapid emplacement were involved in magma genesis, as further supported by the considerable variation of pressure (1.8–7.3 kb) of amphibole crystallization and of the total Al content in least-altered biotite (2.6–2.9 afu) within the Freegold Mountain area. Biotite and apatite equilibrated within the T range of 520–780°C, consistent with temperatures of equilibration between ilmenite and magnetite, and their compositions indicate that they formed from an oxidized I-type magma. Magma differentiated by fractional crystallization (indicated by the presence of normally zoned plagioclase with Ca-rich cores and Na-enriched outer rims) and multiple magma mixing (supported by the presence of reversed zoned plagioclase and coexistence of normally and reversely zoned plagioclase). Lower X Mg biotite associated with the mineralized (Cu–Mo ± W) potassic alteration incorporated more F and Cl relative to least-altered biotite with higher X Mg. In both Nucleus and Revenue Au–Cu mineralizations, secondary biotite composition varies with respect to the associated alteration mineral assemblages. Although secondary biotite in the skarn re-equilibrated with F-poor fluids, secondary biotite from the pervasive biotitization is related to F- and Cl-enriched fluids, and secondary biotite from the phyllitic zone is related to F-, Cl-, and Mg-depleted fluids, thus consistent with a change in mineralizing fluid composition during mineralization.  相似文献   

18.
New data are presented on the geology and composition of volcanic and intrusive rocks of the Orochenka caldera, which is located in the western part of the East Sikhote Alin volcanic belt. The SHRIMP and ICP MS age of zircons of volcanic and intrusive rocks, respectively, and the composition of the volcanic rocks allow comparison of these complexes with volcanic rocks of the eastern part of the volcanic structure. New data indicate the period of transition between subduction to transform regimes.  相似文献   

19.
The Guanajuato epithermal district is one of the largest silver producers in Mexico. Mineralization occurs along three main vein systems trending dominantly northwest–southeast: the central Veta Madre, the La Luz system to the northwest, and the Sierra system to the east. Mineralization consists dominantly of silver sulfides and sulfosalts, base metal sulfides (mostly chalcopyrite, galena, sphalerite, and pyrite), and electrum. There is a broad zonation of metal distribution, with up to 10 % Cu+Pb+Zn in the deeper mines along the northern and central portions of the Veta Madre. Ore occurs in banded veins and breccias and as stockworks, with gangue composed dominantly of quartz and calcite. Host rocks are Mesozoic sedimentary and intrusive igneous rocks and Tertiary volcanic rocks. Most fluid inclusion homogenization temperatures are between 200 and 300 °C, with salinities below 4 wt.% NaCl equivalent. Fluid temperature and salinity decreased with time, from 290 to 240 °C and from 2.5 to 1.1 wt.% NaCl equivalent. Relatively constant fluid inclusion liquid-to-vapor ratios and a trend of decreasing salinity with decreasing temperature and with increasing time suggest dilution of the hydrothermal solutions. However, evidence of boiling (such as quartz and calcite textures and the presence of adularia) is noted along the Veta Madre, particularly at higher elevations. Fluid inclusion and mineralogical evidence for boiling of metal-bearing solutions is found in gold-rich portions of the eastern Sierra system; this part of the system is interpreted as the least eroded part of the district. Oxygen, carbon, and sulfur isotope analysis of host rocks, ore, and gangue minerals and fluid inclusion contents indicate a hydrothermal fluid, with an initial magmatic component that mixed over time with infiltrating meteoric water and underwent exchange with host rocks. Mineral deposition was a result of decreasing activities of sulfur and oxygen, decreasing temperature, increasing pH, and, in places, boiling.  相似文献   

20.
The gold deposits at Kalgoorlie in the 2.7-Ga Eastern Goldfields Province of the Yilgarn Craton, Western Australia, occur adjacent to the D2 Golden Mile Fault over a strike of 8 km within a district-scale zone marked by porphyry dykes and chloritic alteration. The late Golden Pike Fault separates the older (D2) shear zone system of the Golden Mile (1,500 t Au) in the southeast from the younger (D4) quartz vein stockworks at Mt Charlotte (126 t Au) in the northwest. Both deposits occur in the Golden Mile Dolerite sill and display inner sericite–ankerite alteration and early-stage gold–pyrite mineralization replacing the wall rocks. Late-stage tellurides account for 20 % of the total gold in the first, but for <1 % in the second deposit. In the Golden Mile, the main telluride assemblage is coloradoite?+?native gold (898–972 fine)?+?calaverite?+?petzite?±?krennerite. Telluride-rich ore (>30 g/t Au) is characterized by Au/Ag?=?2.54 and As/Sb?=?2.6–30, the latter ratio caused by arsenical pyrite. Golden Mile-type D2 lodes occur northwest of the Golden Pike Fault, but the Hidden Secret orebody, the only telluride bonanza mined (10,815 t at 44 g/t Au), was unusually rich in silver (Au/Ag?=?0.12–0.35) due to abundant hessite. We describe another array of silver-rich D2 shear zones which are part of the Golden Mile Fault exposed on the Mt Charlotte mine 22 level. They are filled with crack-seal and pinch-and-swell quartz–carbonate veins and are surrounded by early-stage pyrite?+?pyrrhotite disseminated in a sericite–ankerite zone more than 6 m wide. Gold grade (0.5–0.8 g/t) varies little across the zone, but Au/Ag (0.37–2.40) and As/Sb (1.54–13.9) increase away from the veins. Late-stage telluride mineralization (23 g/t Au) sampled in one vein has a much lower Au/Ag (0.13) and As/Sb (0.48) and comprises scheelite, pyrite, native gold (830–854 fine), hessite, and minor pyrrhotite, altaite, bournonite, and boulangerite. Assuming 250–300 °C, gold–hessite compositions indicate a fluid log f Te2 of ?11.5 to ?10, values well below the stability of calaverite. The absence of calaverite and the dominance of hessite in the D2 lodes of the Mt Charlotte area point to a kilometer-scale mineral and Au/Ag zonation along the Golden Mile master fault, which is attributed to a lateral decrease in peak tellurium fugacity of the late-stage hydrothermal fluid. The As/Sb ratio may be similarly zoned to lower values at the periphery. The D4 gold–quartz veins constituting the Mt Charlotte orebodies represent a younger hydrothermal system, which did not contribute to metal zonation in the older one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号