首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of the study of carbonaceous metasedimentary rocks in the northern part of the Khanka and eastern part of the Bureya massifs (Primorye and Khabarovsk territories, JAR) and associated platinum mineralization are presented. It is shown that platinum minerals are represented by microparticle dispersion in shales of the greenschist-facies metamorphism (Sutyr and Kimkan sequences, Mitrofanovo Formation) and by Pt and PtO2 nanoparticles associated closely with graphite in shales of the amphibolite facies (Turgenev and Soyuznoe graphite deposits). The studied carbonaceous sequences were likely formed in the hemipelagic setting in a suprasubduction trench during the intense input of terrigenous material into basin. Carbon was derived from the marine biogenic material and superimposed graphitization related to a lower crustal material. Iron ores in the carbonaceous shales are hydrothermal formations. Platinum mineralization was likely related to two sources: (i) sedimentary-chemogenic source that made up the protolith of graphite–sericite–quartz shales of the Sutyr and Kimkan sequences (Mitrofanovo Formation); (ii) graphitizing fluid generated in deep magma chambers. Mineralization produced from these sources is transformed during the hydrothermal activity (coarsening of microparticles) and/or regional metamorphism (disintegration of microparticles and remobilization of Pt into graphite).  相似文献   

2.
This paper reports the geochemical characteristics of PGE- and Au-bearing carbonaceous shales of the Sutyr and Kimkan sequences from the eastern Bureya Massif in the Russian Far East. The weakly altered shales are chemically close to the average upper crustal shale (NASC) but differ in the lower contents of iron, manganese, magnesium, phosphorus, calcium, and REE. According to the discrminant diagrams, these sediments are similar to the modern sediments accumulated under the influence of the continental terrigenous runoff, suprasubduction volcanism, and seawaters, which suggest their relation either with the deep-water trench near the active continental margin or with the central part of the marginal sea. The iron-rich sedimentary rocks of the Kimkan Sequence, including the Kimkan iron ore, are characterized by a positive Eu anomaly, which probably indicates their rift origin. The superimposed hydrothermal alterations of the Sutyr Sequence, including sericitization, sulfidization, and formation of quartz veinlets, were accompanied by the removal of silica and the input of potassium, LREE, and MREE with the formation of a well expressed Eu anomaly. The rocks from the weakly altered to metalliferous sediments of the Kimkan Sequence show a decrease in alkalis and especially in potassium. The carbon isotope composition of the Sutyr shales corresponds to that of the biogenic carbon (δ13CVPDB from ?20.7 to ?23.7‰). The shales of the Kimkan Sequence have a heavier carbon isotope composition (δ13CVPDB from ?15.6 to ?19.1‰), which may indicate either partial carbon influx from an endogenous source or its formation during decarbonatization in the presence of iron.  相似文献   

3.
Carbonaceous matter (CM) in shales of some deposits and occurrences of the Russian Far East has been studied by scanning and transmission electron microscopy, Raman spectroscopy, and X-ray phase and differential thermal analyses. It was shown that the carbonaceous matter in the high-temperature shales (amphibolite facies) of the Soyuznoe deposit is represented by holocrystalline graphite, while the low-temperature (greenschist facies) shales of the Sutyr and Kimkan sequences contain mainly nanocrystalline graphite. It was substantiated for natural objects that platinum is assimilated by graphite at high temperatures. This should be taken into account in planning the prospecting works, as well as in developing a technique for enrichment of carbonaceous ore, because high-temperature carbonaceous shales with holocrystalline graphite are promising for Pt, unlike their low-temperature analogues with nanocrystalline graphite.  相似文献   

4.
夏家店金矿床位于南秦岭造山带内,是一个受构造和地层控制的大型金矿床,矿石类型为角砾岩型、碎裂岩型和石英脉型3种类型,赋矿围岩主要为寒武系水沟口组的炭泥质板岩、炭硅质板岩、硅质岩及白云岩,次为泥盆系西岔河组的角砾岩。本文对夏家店金矿床中矿石(角砾状炭硅质板岩、碎裂硅化白云岩、碎裂炭泥质板岩和石英脉状矿化的硅质岩)和围岩(硅质岩、硅化白云岩和硅质板岩)的微量元素、铂族元素(PGE)质量分数进行测试,进而探讨成矿物质来源以及矿床成因。结果表明:不同类型的矿石与其各自的围岩具有高度的相似性,均富集Sr、Ga、Zr等元素;不同类型的矿石稀土总量均高于各类围岩,但是两者具有相似的稀土配分模式,轻稀土富集,重稀土亏损,均表现出负Eu异常(δEu值为0.51~0.63);不同类型的矿石PGE总量(7.71×10-9~38.30×10-9,平均值23.00×10-9)均明显大于各类围岩PGE总量(1.28×10-9~2.44×10-9,平均值1.86×10-9),相比上地壳,不同类型的矿石均明显富集Os、Ir、Pt和Pd,亏损Ru、Rh,而各类围岩均富集Os,亏损Pt、Ru、Rh、Pd,但两者的铂族元素配分曲线具有高度相似性,呈Ru亏损的V型,为地壳的(Os)-Pt-Pd型配分模式。以上特征表明不同类型的矿石和围岩具有明显的微量、稀土元素和PGE地球化学继承性,暗示夏家店下寒武统有可能是重要的矿源层之一。同时,所有矿石和围岩的Au/Ir值(分别为4 821~299 666)和406~8 050)及Pd/Ir值(分别为16.9~588.0和15.2~47.5)变化范围均较大,两者Au/Ir值远高于炭质球粒陨石和原始地幔值、Pd/Ir值远高于岩浆成因矿石值,且夏家店金矿床矿石和围岩的PGE配分曲线与典型热液成因矿床一致。这些特征显示夏家店金矿床具有明显的热液成因,是构造-热液流体成矿作用的产物。  相似文献   

5.
The relationship between noble metal mineralization and carbonaceous rocks (black shales and brown coals) is considered. We have confirmed the previous conclusions of multistage syn- and epimetamorphic formation of gold-bearing deposits in black shales and syn- and epigenetic accumulation of noble metals in brown coals. The gold and PGE in the brown coals of the Verkhnii Amur region and Primorye were presumably derived by disintegration of adjacent ore sources in the Cenozoic. Addition studies and sampling are required at the coal and graphite objects of the Russian Far East to solve this problem.  相似文献   

6.
The concentration levels and distribution features of the platinum group elements (PGE) in quartz-sulfide and base-metal ores in deposits of the Sayan-Baikal Fold Region (SBFR) are discussed. Microfire assay neutron activation analysis (MF-NAA), which enables one to work on a nondestructive basis and allows one to avoid inaccuracies related to chemical sample preparation, was used as the main analytical technique. Three types of hydrothermal mineralization with elevated grades of PGE (especially Pt, Pd, and Ru) have been identified: (1) pyrite-pyrrhotite (massive sulfide) mineralization hosted in black shales of the Il’chir Sequence; (2) gold-sulfide ores of the Zun-Kholba, Tainsky, Kamenny, and some other gold deposits; and (3) silver-basemetal ores of the Dzhida-Vitim Zone. The PGE contents significantly vary, from global average values to tens of grams per ton. An absence of PGE minerals implies that these elements are finely dispersed in sulfide minerals and native gold. Taking into account difficulties in conversion of PGE into analytical forms, their nonuniform distribution in sulfide minerals, their high affinity to coordination compounds, and experimental results, cluster species of Pt and Pd in major minerals are suggested for the gold-sulfide and silver-base-metal ores in deposits, which are related to suprasubduction ophiolites and island-arc and intraplate settings in the SBFR.  相似文献   

7.
A new noble metal-graphite mineralization has been revealed in the Ruzhino amphibolite-facies rocks of the northern Khanka block. It is characterized by Au and PGE (platinum group elements) contents (up to tens g/t, Pt > Au) as high as those in world-class deposits hosted by sedimentary and magmatic rocks, but is distinguished from them by isotopic composition of carbon, hydrogen and oxygen, all suggesting a distinct mantle contribution (δ13СVPDB from − 8.5 to − 10.5‰ in graphite, δDVSMOW from − 82.5 to − 106.7‰ and δ18OVSMOW from 8.2 to 10.1‰ in biotite). The Ruzhino-type mineralization is highly resistant to common chemical treatments, so that detection of their metals requires that some special methods be developed. Atomic Absorption Spectrophotometry and Inductively Coupled Plasma Mass Spectrometry following severe chemical treatments and ignition at 600–650 °C, as well as Ion Mass Spectrometry allowing a direct detection of elements in solid materials were employed in this study. These methods increased noble-metal contents of the graphitized rocks compared to standard analyses including a conventional fire assay. In addition, electron microscopy surveys discovered extremely diverse native-metal and intermetallic complexes with C, O, Cl, F, REE and other elements. The microinclusions, however, represent a minor part of the mineralization. Major constituents seem to form carbonaceous nanocompounds invisible under a microscope. These graphite-based nanocomplexes, which are especially developed in the case of Pt, seem to be responsible for the highly resistant character of the Ruzhino mineralization. They also may be present in the latent form among the common Au ± PGE ores hosted by carbonaceous shales like those we studied in the close vicinity of the Ruzhino amphibolite-facies rocks and in the northeastern Bureya–Jiamusi terrane.  相似文献   

8.
We studied the mineralogic and geochemical features of metasomatic rocks and ores from the Pogromnoe gold deposit, which is unconventional for Transbaikalia. The deposit, which formed in the Early Cretaceous, at the rifting stage of the regional evolution, is localized in the dynamoclastic strata of the Mongol-Okhotsk suture, along which the Siberian continent joined the Mongolia-China continent in the Early-Middle Jurassic. Gold mineralization occurs as two morphologic types of ores: stockwork quartz-carbonate-arsenopyrite-pyrite ores in altered volcanics (orebody no. 1) and veinlet-vein quartz ones (with disseminated sulfides) in altered carbonaceous shales (orebody no. 10). The host rocks of the deposit are the highly altered volcanosedimentary rocks of the Butorovskii Formation (Shadoron Group, J2–3), which transformed into metasomatic (by composition) and dynamoclastic (by texture and structure) rocks. It has been found that the formation of the metasomatic rocks and mineralization proceeded in several stages. Propylites formed at the preore stage (J3); tectonic schists and albitophyres, at the late preore stage; and sericitolites and albite-carbonate-sericite-quartz metasomatic rocks (quartzites), at the synore stage. The 40Ar/39Ar age of the stockwork system of ore-bearing fractures and metasomatic rocks which formed at the late preore stage is estimated as 139.5 ± 1.8 Ma. The gold-bearing rocks at the deposit are the late preore and synore metasomatic rocks formed after volcanics with sulfide mineralization (gold concentrators are pyrite II and III and arsenopyrite I and II) and after altered carbonaceous shales (gold concentrators are vein quartz and arsenopyrite II). Gold grade is completely consistent with silicification, saturation with quartz-sulfide and sulfide microveinlets, and fine sulfide dissemination. By genesis, the Pogromnoe deposit belongs to objects which formed in shear zones with the contribution of gold-bearing mantle fluids. The authors presume that the sources of mineralization are the ore-producing granitoids of the Amudzhikan-Sretensk intrusive assemblage within the Aprelkovo ore-magmatic system (OMS) (Os’kina and Urguchan plutons). This is confirmed by Pb isotope compositions (207Pb/204Pb and 206Pb/204Pb) for the pyrite and arsenopyrite of the Pogromnoe gold-bearing ores, which testify to the widespread occurrence of “mantle” Pb isotope signatures. The 40Ar/39Ar age of the ore-producing granitoids of the Aprelkovo OMS is 131.0 ± 1.2 Ma. Gold in the orebodies occurs in native form and is fine and very fine. By gold grade, the Pogromnoe deposit deserves very close attention as a new commercial type of gold mineralization in Transbaikalia.  相似文献   

9.
The geology and mineralogy of host metamorphic rocks, the mineralogy of sulfide ores, and the distribution of PGE mineralization were studied in detail for the Kvinum-1 and Kvinum-2 copper-nickel occurrences of the Kvinum ore field, which are the most promising targets for the copper-nickel-PGE mineralization of the Sredinny Range of Kamchatka. It was established that stringer-disseminated and massive copper-nickel ores are localized in amphibole peridotites, cortlandites, and form ore bodies varying from tens of centimeters to 5–20 m thick among the layered cortlandite-gabbroid massifs. The massive sulfide ores were found only at the bottom of cortlandite bodies and upsection grade into stringer-disseminated and disseminated ores. Pyrrhotite, chalcopyrite, and pentlandite are the major ore minerals with a sharply subordinate amount of pyrite, sphalerite, galena, arsenopyrite, and löllingite. Besides pentlandite, the Ni-bearing minerals include sulforasenides (gersdorffite), arsenides (nickeline), and tellurides (melonite) of nickel. It was found that PGE mineralization represented by antimonides (sudburyite) and tellurobismuthides (michenerite) of Pd with sharply subordinate platinum arsenide (sperrylite) is confined to the apical parts of massive sulfide zones and the transition zone to the stringer-disseminated ores. Ore intervals enriched in arsenides and tellurides of Ni, Pd, and Bi contain high-purity gold. In the central parts of the orebodies, the contents of PGE and native gold are insignificant. It is suggested that the contents of major sulfide minerals and the productivity of PGE mineralization in the cortlandites are defined by combined differentiation and sulfurization of ultramafic derivatives under the effect of fluids, which are accumulated at the crystallization front and cause layering of parental magmas with different sulfur contents. The fluid-assisted layering of mafic-ultramafic massifs resulted in the contrasting distribution of PGM in response to uneven distribution of sulfur (as well as As, Te, and Bi) during liquid immiscibility. The productivity of PGE mineralization significantly increases with increasing contents of S, As, Te, and Bi (elements to which Pt and, especially, Pd have high affinity) in fluids.  相似文献   

10.
The mineral and chemical composition of the carbon-bearing rocks of the Late Permian Pionerskaya Formation containing the Degdekan gold deposit has been studied. The bulk contents of Au, Ag, Pt, and Pd in the black shales and their light, sulfide, and electromagnetic fractions were determined by electrothermal atomization. The mineral composition and the phase analysis of the rocks were studied using a scanning electron microscope. Gold is present as fine xenomorphic grains of high fineness with an Fe admixture of up to 4 at %, as well as intergrowths of kustelite and electrum. The Au and Pt contents in the black shales and ores vary in a wide range (g/t): Au 0.01–13.12, Pt 0.001–1.34. The highest Au contents (up to 1748 g/t) were noted in the sulfide fraction. The Pt-bearing phases were not found, whereas a Pt content of about 0.61 wt % was determined using an electron microscope in a carbonaceous matrix. The initial rocks have a steady and low Pt content (less than 0.007 g/t). A stable even Au distribution in the studied rocks was established within 1.14–2.46 g/t. The chemical analysis of the soluble fraction of the carbonaceous matter extracted from the black shales showed the presence of Au 0.375, Ag 3.68, Pt 0.147, and Pd 0.052 g/t. It has been concluded that the carbon-bearing rocks of the Pionerskaya Formation play a resource role in the accumulation of noble metals, whereas economic concentrations of the latters are formed in the course of the superimposed metamorphic-hydrothermal processes.  相似文献   

11.
Based on the study of rocks in fault zones on the western slope of the southern Urals, it is shown that carbonaceous rocks are confined to the most dislocated parts of the sections and spatially associated with magmatic rocks. They are characterized by specific geochemical features with anomalous contents of gold and platinum group elements (PGE) and native tin mineralization that is atypical of terrigenous rocks. Transformation of these rocks is mainly governed by reduced mantle fluids penetrating into upper levels of the Earths crust at early stages of tectonomagmatic activation. The subsequent inversion of the fluids in the Earths crust leads to the formation of carbonaceous rocks with atypical mineralization and high PGE content.__________Translated from Litologiya i Poleznye Iskopaemye, No. 3, 2005, pp. 281–291.Original Russian Text Copyright © 2005 by Kovalev, Michurin.  相似文献   

12.
李松涛 《地质与勘探》2022,58(3):475-488
黔西南滥木厂矿床是世界上罕见的汞(大型)-铊(大型)-金(小型)多金属矿床,具有独特的成矿元素分带现象。本文通过系统研究滥木厂矿床金、汞-铊、汞、铊矿石及围岩样品的主量、微量及稀土元素地球化学特征,对比分析不同类型矿化的成矿环境,以探讨成矿元素共生分离机制。研究表明,相对于滥木厂矿床的围岩样品,同岩性的各类矿化岩石的SiO_(2)含量显著增加,CaO和MgO含量之和明显降低,表明成矿过程中伴随广泛的硅化和去碳酸盐化作用,K_(2)O-Al_(2)O_(3)投图表明区内存在显著的高岭石化作用。各类矿石与围岩均显示Au、As、Sb、Hg、T1和轻稀土富集特征,且具有相似的稀土配分模式;但成矿元素分布于不同的特征因子中,并表现出富集程度的差异,表明成矿物质继承了原岩的部分地球化学特征,在成矿过程中发生了分离。Y/Ho比值在金矿石中普遍高于28,在其它矿化类型岩石中均低于28,反映金成矿热液富含氟络合物,汞和铊成矿热液以碳酸氢根的络合物为主。各类矿石通常具有Ce正异常,铊、汞-铊和金矿石普遍显示Eu正异常,汞矿石呈现轻微的Eu负异常,表明成矿环境处于相对氧化的状态,并具氧化还原波动性。综合元素地球化学特征与收集的碳、氢、氧、硫、铅同位素成果,认为滥木厂矿床金、汞、铊矿化的成矿物质及成矿流体具有多源性,各类矿化在温度、氧逸度、酸碱性及配合物类型等方面的差异可能是成矿元素产生分异的重要原因。  相似文献   

13.
西秦岭大水金矿的花岗岩成矿作用特征   总被引:14,自引:4,他引:14  
西秦岭大水金矿是西秦岭造山带南缘三叠系浅海相碳酸盐岩中新近发现的一类独特的特大型金矿床。矿区侵入岩属花岗岩大类 ,δ <4,ASI >1,属中性—中偏基性过铝质钙碱系列岩石 ,具深源浅成的特征。岩石化学成分δ τ图解以及稀土元素的w(Rb) w (Yb +Nb)和w(Rb) w(Yb +Ta)图解显示其属造山带同碰撞构造环境。金矿石的碳、氢、氧、硅同位素测试结果显示成矿物质来源于深部。矿石为轻稀土富集型 ,配分模式与岩浆岩接近。全岩K Ar同位素年龄表明格尔括合岩体为 190 0~ 190 5Ma ,矿化脉岩为 182 6~ 184 7Ma ,说明成岩与成矿具同源性但主成矿期滞后于脉岩的形成。花岗岩的成矿作用主要体现为 :( 1)沟通深部矿源场和成矿场 ;( 2 )岩浆高热能和岩浆水参与成矿流体的循环 ;( 3)花岗岩的就位机制为“气球膨胀”式 ,并通过就位扩容压缩围岩产生的张性断裂构造控制金矿体的产出。  相似文献   

14.
The Lannigou deposit is a large-sized sedimentary rock-hosted disseminated gold (SRHDG) deposit located in the Youjiang Basin. It is hosted by the Middle Triassic turbidite. Wall rock alterations, including silicification, pyritization, arsenopyritization, carbonatization and argillization, commonly occur along fractures. PGE study demonstrates that either Permian basalts or Triassic ultrabasic intrnsives are unlikely to be the main source of gold mineralization. Coupled with the lack of other nmgmatic activity in the vicinity of the mining area, an amagmatic origin is proposed. Organic matter compositions and GC-MS analysis of the ores and host rocks show that the organics in the ores and the host rocks have a common source; the organic matter in the ores was mainly indigenous. The positive correlation between S2 and Au contents, along with the common occurrence of organic inclusions, suggest involvement of organic matter in the ore-forming process in terms of promoting Au leaching from the source rocks, making colloidal Au migration possible, as well as hydrocarbon reduction of sulphate. Geological and geochemical characteristics of the Lannigou deposit suggest that it was formed through circulation of meteoric water and probably less importantly organic bearing formation water driven by high geothermal gradient caused by late Yanshanian extension, which leached Au from the source bed, and then migrated as Au-bisnlfides and colloidal Au, culminating in deposition by reduction-adsorption and surface complexation of gold onto the growth surface of arsenlan pyrite.  相似文献   

15.
青海滩间山金矿床地质特征和控矿因素分析   总被引:2,自引:5,他引:2  
滩间山金矿床产于中元古界万洞沟群碳质糜棱片岩和华力西晚期侵入岩中。矿床是在热水沉积、区域变质和热变质的预富集基础上,与区域进变质型绿片岩相韧性剪切带的退化演化同步,经历了脆韧性、韧脆性和脆性剪切变形成矿阶段的演化,并遭受华力西晚期侵入岩浆活动相伴的热液成矿作用的叠加改造形成的。不同时期、不同成矿作用的叠加和多种有利因素的结合控制了滩间山金矿床的形成。经生产实践证实,具有形成大型金矿床的多种有利成矿地质条件  相似文献   

16.
The results of special-purpose investigations of the informativity of the SEM-XRSA method in the study of PGE- and Au-rich inclusions in highly carbonaceous rock matrixes are presented. As exemplified by the black schists of the Late Proterozoic-Early Cambrian Kimkan and Sutyr rock sequences of the Bureya massif in the Russian Far East, the SEM-XRSA method is an efficient tool for the prospecting and study of such inclusions. The method yields correct estimates of their chemical composition characterized by the presence of a substantial amount of admixtures, including oxygen and carbon.  相似文献   

17.
An analytical procedure involving Rock-Eval pyrolysis of whole-rocks was adopted on fresh outcrop samples covering the three lithostratigraphic units in the Afikpo Basin of the Lower Benue Trough. Three petroleum systems are present in the Cretaceous delta frame: the Asu-River Group, the Eze-Aku Group and proto-Niger Delta sequences. The Afikpo Basin has been correlated to three petroleum systems in the Lower Congo Basin, Niger Delta and the Anambra Basin. The organic geochemistry of the shales, carbonaceous mudstones and coal beds show relatively moderate to high total organic carbon contents. The best potential hydrocarbon source rocks are the Eze-Aku Group and proto-Niger Delta shales, carbonaceous mudstones and coal beds where maturation was attained. The high total or-ganic contents, thermal maturity and terrigenous characters of the Asu-River Group, Eze-Aku Group and proto-Niger Delta sediments, suggest the presence of a large amount of natural gas with a small quantity of oil accumulation. Variations in source rock facies were observed from one lithostratigraphic unit to another, and initial HI values as a function of TOC were proposed for each lithostratigraphic unit. The results also show that TOC, HI, OI, S2 and Tmax vary from older to younger rocks. The Tmax values discriminate the rocks into immature and mature source rocks. Source rocks with high Tmax suggest high geothermal gradient/or recycled organic matter. Also high Tmax and S2 yield indicate late and post maturity. Recycled organic matter is characterized by low Tmax. The principal source rocks for gas in the Afikpo Basin are the Eze-Aku Group and proto-Niger Delta beds deltaic systems, consisting mainly of III to IV kerogens with a subordinate amount of type II organic matter. Based on the obtained results, it is concluded that the Cretaceous shales, carbonaceous mudstones and coals in the Afikpo Basin of the Lower Benue Trough are capable of generating and expelling hydrocarbons in the case of sufficient maturity.  相似文献   

18.
On the basis of a representative collection of ultramafic rocks and chromite ores and a series of technological samples from the largest (Central and Western) deposits in the Rai-Iz massif of the Polar Urals and the Almaz-Zhemchuzhina and Poiskovy deposits in the Kempirsai massif of the southern Urals, the distribution and speciation of platinum-group elements (PGE) in various type sections of mafic-ultramafic massifs of the Main ophiolite belt of the Urals have been studied. Spectral-chemical and spectrophotometric analyses were carried out to estimate PGE in 700 samples of ultramafic rocks and chromite ores; 400 analyses of minerals from rocks, ores, and concentrates and 100 analyses of PGE minerals (PGM) in chromite ores and concentrates were performed using an electron microprobe. Near-chondritic and nonchondritic PGE patterns in chromitebearing sections have been identified. PGE mineralization has been established to occur in chromite ore from all parts of the mafic-ultramafic massifs in the Main ophiolite belt of the Urals. The PGE deposits and occurrences discovered therein are attributed to four types (Kraka, Kempirsai, Nurali-Upper Neiva, and Shandasha), which are different in mode of geological occurrence, geochemical specialization, and placer-forming capability. Fluid-bearing minerals of the pargasite-edenite series have been identified for the first time in the matrix of chromite ore of the Kempirsai massif (the Almaz-Zhemchuzhina deposit) and Voikar-Syn’ya massif (the Kershor deposit). The PGE grade in various types of chromite ore ranges from 0.1–0.2 to 1–2 g/t or higher. According to technological sampling, the average PGE grade in the largest deposits of the southeastern ore field of the Kempirsai massif is 0.5–0.7 g/t. Due to the occurrence of most PGE as PGM 10–100 mm in size and the proved feasibility of their recovery into nickel alloys, chromites of the Kempirsai massif can be considered a complex ore with elevated and locally high Os, Ir, and Ru contents. The Nurali-Upper Neiva type of ore is characterized by small-sized primary deposits, which nevertheless are the main source of large Os-Ir placers in the Miass and Nev’yansk districts of the southern and central Urals, respectively.  相似文献   

19.
Graphitic and graphite varieties are distinguished in the carbonaceous shales of the Riphean Upper Nyatygran Subformation in the Melgin fragment of the Turan block, eastern Bureya Massif. The protolith of the graphitic shales had a terrigenous source related to island-arc volcanism. Pelagic sedimentation played a great role in the formation of the protolith of the graphite shale. These rocks were juxtaposed during the formation of an accretionary wedge on an active continental margin. The carbonaceous shales are characterized by high (>600 ppm) REE + Y contents, especially in the zones of brecciation and hydrothermal reworking. Detrial monazite enriched in LREE and MREE is the main carrier of REE mineralization in the graphitic shales. The main REE carrier in the graphite shales is REE phosphate (xenotime) formed during lithogenesis of sediments. Preliminary experimental treatment of the graphite shales of the Upper Nyatygran Subformation by ammonium hydrofluoride shows their potential for economic extraction of REE and Y.  相似文献   

20.
This paper discusses the genesis of large Siberian alkaline massifs hosting major ore deposits. These reference massifs are grouped based on the predominance of alkalies (K or Na) and their agpaitic index (miaskitic and agpaitic). We proposed new emplacement schemes for the Tomtor, Murun, Burpala, Synnyr, and Bilibino massifs supported by petrochemical and geochemical data, as well as new age estimates. Types of their ore potential and genesis of rare-metal mineralization are discussed. The formational types of carbonatites as the main ore-bearing rocks are given. The depth of magma generation and types of mantle sources are determined using isotopic data from previous studies. A model of plume-related generation of ultramafic alkaline magmas is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号