首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new version of the tectonic map for the Vendian–Lower Paleozoic structural stage of the Lena–Tunguska petroleum province is presented. The map is based on the electronic structure map at a scale of 1:1,000,000, which was the first to be compiled for the uppermost Vendian within the study area. However, no tectonic zonation was made for the deep-buried Meso-Cenozoic Yenisei–Khatanga and Vilyui depressions. The principles and methodology of mapping are given. The study presents spatial, morphological, and quantitative characteristics of the major and large structures.  相似文献   

2.
Lithology and Mineral Resources - New data on the structure and formation conditions of the Anabar–Lena sedimentary basin in the Nordvik facies region at the beginning of the Early Jurassic...  相似文献   

3.
The paper presents a new interpretation of the surface structure of the crystal basement of the Kazan–Kazhim aulacogen based on geological–geophysical data and reprocessed regional seismic profiles. It is shown that the formation of the Vyatka uplift is related to deep reverse thrusts and that tangential stresses were a major factor in the formation of the aulacogen. The presence of a large left-lateral strike-slip fault is established, which cuts the Kazan–Kazhim aulacogen from west to east. Our data confirm wide-spread horizontal movements occurred in the crust in the eastern part of the East European Platform and help to optimize hydrocarbon exploration in the region.  相似文献   

4.
We present results of lithofacies, reservoir, geochemical, well logging, and petrophysical studies of the key section of the Vendian–Lower Cambrian Preobrazhenka productive horizon in the Lena–Tunguska province. We have considered the composition, structure, and formation conditions of the deposits as well as the intensity of postsedimentation processes and the rock geochemistry, petrophysics, and reservoir properties.  相似文献   

5.
The South Oman Salt Basin (SOSB) is host to the world’s oldest known commercial deposits. Most of the South Oman oils have been proven to be associated with the source rocks of the Neoproterozoic to Cambrian Huqf Supergroup, but the assignment of oils to specific Huqf intervals or facies has been hampered by the geochemical similarity of the organic matter across the entire Huqf sequence, possibly as a consequence of limited change in the local palaeoenvironment and biota over the time of its deposition. This study was conducted to establish improved correlations between organic-rich rock units and reservoir fluids in the SOSB through detailed molecular and isotopic analysis of the Huqf Supergroup, with special emphasis directed towards understanding the Ara carbonate stringer play.Unusual biomarkers, tentatively identified as A-norsteranes, show distinctive patterns among carbonate stringer oils and rocks different from those observed in Nafun sediments and Ara rocks from the Athel basin. These putative A-norsteranes form the basis for new oil-source correlations in the SOSB and provide for the first time geochemical evidence of a self-charging mechanism for the carbonate stringer play. The paucity of markers specific to the Nafun Group (Shuram, Buah and Masirah Bay formations) confounds attempts to quantify their respective contributions to Huqf oil accumulations. Nafun inputs can only be determined on the basis of subtle differences between Nafun and Ara biomarker ratios. The most useful geochemical characteristics delineating Nafun Group organic matter from Ara Group intra-salt source rocks included: low relative abundance of mid-chain monomethyl alkanes (X-compounds); low relative abundance of gammacerane, 28,30-dinorhopane, 25,28,30-trinorhopane and 2-methylhopanes; low C22T/C21T and high C23T/C24T cheilanthanes ratio values. Based on these parameters, molecular evidence for major contributions of liquid hydrocarbons from Nafun Group sediments (Shuram, Buah and Masirah Bay formations) is lacking. Our results suggest that the majority of SOSB hydrocarbon accumulations originate from within the Ara group, either from the carbonate stringers or from the package of sediments that comprises the Thuleilat, Athel Silicilyte and U shale formations. Subtle aspects of the composition of some carbonate stringer and post-salt Huqf oils could suggest some degree of sourcing from the Nafun rocks but stronger evidence is needed to confirm this.  相似文献   

6.
We present results of geochemical studies of organic matter of the Jurassic–Cretaceous deposits in the west of the Yenisei–Khatanga regional trough. The studies were carried out on a representative set of well cores by a complex of modern organic-geochemistry methods (determination of organic-carbon content in rocks, pyrolysis, estimation of the carbon isotope composition in the kerogen of rocks, extraction, liquid and gas–liquid chromatography, and chromato-mass spectrometry). Based on the distribution of biomarkers in the studied bitumens and pyrolysis of rocks, two groups of the samples were recognized: with terrigenous (type III) and marine (type II) organic matter. The terrigenous bitumens are characterized by a low hydrogen index (HI) and a predominance of hydrocarbons C29 among steranes and C19 and C20 among tricyclanes. The marine bitumens, revealed in stratigraphic analogs of the Bazhenovo Formation and in the Malyshevka, Nizhnyaya Kheta, and Shuratovka Formations, show an even distribution of sterane homologues and a predominance of medium-molecular tricyclanes. The Pr/Ph and C35/C34 ratios and the presence of diahopanes testify to the burial of organic matter in suboxidizing sea coast environments. In the Yanov Stan (J3–K1), Gol’chikha (J2–K1), and, to a lesser extent, Malyshevka (J2), Nizhnyaya Kheta, and Shuratovka (K1) Formations, we have recognized widespread stratigraphic levels with marine organic matter of rocks. Its contents and degree of maturity permit these rocks to be considered oil-generating.  相似文献   

7.
8.
New data on the stratigraphy and lithology of the Lower–Middle Devonian rocks at junction of the Volga–Ural anteclise, Ural foredeep, and North Caspian basin are reported. Facies maps are also presented for the Takatinian, Koiva–Vyazov, Eifelian, and Givetian stages of the region evolution. The paleogeographic evolution and structural zonation of the basin in the Early–Middle Devonian are discussed. The evolution of carbonate buildups (Akbulak and Saraktash) in connection with their possible petroleum potential is examined.  相似文献   

9.
A new interpretation of the seismic profile series for the Taimyr Orogen and the Yenisei–Khatanga Basin is given in terms of their tectonics and geological history. The tectonics and tectonostratigraphy of the Yenisei–Khatanga and the Khatanga–Lena basins are considered. In the Late Vendian and Early Paleozoic, a passive continental margin and postrift shelf basin existed in Taimyr and the Yenisei–Khatanga Basin. From the Early Carboniferous to the Mid-Permian, the North and Central Taimyr zones were involved in orogeny. The Late Paleozoic foredeep was formed in the contemporary South Taimyr Zone. In the Middle to Late Triassic, a new orogeny took place in the large territory of Taimyr and the Noril’sk district of the Siberian Platform. A synorogenic foredeep has been recognized for the first time close to the Yenisei–Khatanga Basin. In the Jurassic and Early Cretaceous, this basin was subsided under transpressional conditions. Thereby, anticlinal swells were formed from the Callovian to the Aptian. Their growth continued in the Cenozoic. The Taimyr Orogen underwent tectonic reactivation and apparently right-lateral transpression from Carboniferous to Cenozoic.  相似文献   

10.
The Guarguaraz Complex, in western Argentina, comprises a metasedimentary assemblage, associated with mafic sills and ultramafic bodies intruded by basaltic dikes, which are interpreted as Ordovician dismembered ophiolites. Two kinds of dikes are recognized, a group associated with the metasediments and the other ophiolite-related. Both have N-MORB signatures, with εNd between +3.5 and +8.2, indicating a depleted source, and Grenville model ages between 0.99 and 1.62 Ga. A whole-rock Sm–Nd isochron yielded an age of 655 ± 76 Ma for these mafic rocks, which is compatible with cianobacteria and acritarchae recognized in the clastic metasedimentary platform sequences, that indicate a Neoproterozoic (Vendian)–Cambrian age of deposition.The Guarguaraz metasedimentary–ophiolitic complex represents, therefore, a remnant of an oceanic basin developed to the west of the Grenville-aged Cuyania terrane during the Neoproterozoic. The southernmost extension of these metasedimentary sequences in Cordón del Portillo might represent part of this platform and not fragments of the Chilenia terrane. An extensional event related to the fragmentation of Rodinia is represented by the mafic and ultramafic rocks. The Devonian docking of Chilenia emplaced remnants of ocean floor and slices of the Cuyania terrane (Las Yaretas Gneisses) in tectonic contact with the Neoproterozoic metasediments, marking the Devonian western border of Gondwana.  相似文献   

11.
12.
Zircons from 71 diverse rocks from the Qinling-Tongbai-Dabie-Sulu orogenic belt in east-central China and, for comparison, eight from adjoining areas in the South China and North China blocks, have been analyzed for in situ 18O/16O ratio and/or U–Pb age to further constrain the spatial distribution and genesis of Neoproterozoic low-δ 18O magmas, that is, δ 18O(zircon) ≤4 ‰ VSMOW. In many metaigneous rock samples from Tongbai-Dabie-Sulu, including high-pressure and ultrahigh-pressure eclogites and associated granitic orthogneisses, average δ 18O values for Neoproterozoic “igneous” zircon cores (i.e., 800–600 Ma) vary from ?0.9 to 6.9 ‰, and from ?9.9 to 6.8 ‰ for Triassic metamorphic rims (i.e., 245–200 Ma). The former extend to values lower than zircons in primitive magmas from the Earth’s mantle (ca. 5–6 ‰). The average Δ 18O (metamorphic zircon ? “igneous” zircon) values vary from ?11.6 to 0.9 ‰. The large volume of Neoproterozoic low-δ 18O igneous protoliths at Tongbai-Dabie-Sulu is matched only by the felsic volcanic rocks of the Snake River Plain hotspot track, which terminates at the Yellowstone Plateau. Hence, the low-δ 18O values at Tongbai-Dabie-Sulu are proposed to result from shallow subcaldera processes by comparison with Yellowstone, where repeated caldera-forming magmatism and hydrothermal alteration created similar low-δ 18O magmas. However, the possibility of involvement of meltwaters from local continental glaciations, rather than global Neoproterozoic glaciations, cannot be precluded. Our data indicate that Neoproterozoic low-δ 18O magmas that are either subduction- or rift-related are present locally along the western margin of the South China Block (e.g., Baoxing Complex). It appears that Neoproterozoic 18O-depletion events in the South China Block as the result of hydrothermal alteration and magmatism affected a much larger area than was previously recognized.  相似文献   

13.
The granite‐greenstone terranes of the Eastern Goldfields Province, Yilgarn Craton, Western Australia, are a major Australian and world gold and nickel source. The Kalgoorlie region, in particular, hosts several world‐class gold deposits. To attempt to understand why these deposits occur where they do, it is important to understand the crustal architecture in the region and how the major mineral systems operate in this architecture. One way to understand these relationships is to develop a detailed 3–D geological model for the region. The best method to map the 3–D geometry of major geological structures is by acquisition and interpretation of seismic‐reflection profiles. To contribute to this aim, a grid of deep seismic‐reflection traverses was acquired in 1999 to examine the 3–D geometry of the region in an area including the Kalgoorlie mineral region and mineral fields to the north and west. This grid was tied to the 1991 regional deep seismic traverse and 1997 high‐resolution seismic profiles in the same region. The grid covers an area measuring approximately 50 km wide by 50 km long and extended to a depth of approximately 50 km (below the base of the crust in this region). The resulting 3–D geological model was further constrained by both surface geological data and geophysical interpretations, with the seismic interpretations themselves also constrained by gravity and magnetic modelling. The 3–D model was used to investigate the geometric relationships between the major faults and shear zones in the area, the relationship between the granite‐greenstone succession and the basement, and the spatial relationships between the greenstones and the granites. Interpretation of the grid of seismic lines and construction of the 3–D geological model confirmed the existence of the detachment surface and led to the recognition that the granite‐greenstone contact usually occurs at a much shallower level than the detachment. Also, west‐dipping faults in the vicinity of the Golden Mile, including the Abattoir Shear through to Boulder‐Lefroy Fault, appear to be more important than previously thought in controlling the structure of that area. An antiformal thrust stack occurs beneath a triangle zone centred on the Golden Mile. The Black Flag Group was deposited in a probable extensional setting, and late extension was also probably more important than previously thought. The granite‐gneiss domes were uplifted by the formation of antiformal thrust stacks at depth beneath them.  相似文献   

14.
Voluminous Neoproterozoic granitoid sheets of the Imorona–Itsindro Suite are important components of exposed basement in west-central Madagascar. Here, we report precise new zircon U–Pb ages and whole-rock geochemistry for granitoids within the Maevatanana area of Madagascar. The new laser ablation inductively coupled plasma mass spectrometry zircon U–Pb dating undertaken during this study indicates that Antanimbary granitoid and Antasakoamamy granitoid were emplaced at 747 ± 9 Ma and 729 ± 9–727 ± 8 Ma, respectively. Geochemically, the Antanimbary granitoids show poor Nb, Ta anomalies, pronounced positive Zr anomalies, and are K-rich (K2O/Na2O > 1), but the Antasakoamamy granitoids are relatively depleted in Nb, Ta, show slightly negative Zr anomalies, and are Na-rich (Na2O/K2O > 1). Both suites contain zircons with strongly negative εHf(t), indicating participation of much older (Palaeoproterozoic and Archaean) crust. Their geochemical characteristics, along with the use of various discrimination diagrams, reveals that crustal delamination and asthenospheric upwelling resulted in crustal extension of the region before ~747 Ma, with subsequent lithospheric subduction and arc magmatism after 729–727 Ma.  相似文献   

15.
Based on new data on the age, mineralogy, and geochemistry of ultramafic–mafic complexes in the Precambrian structures of the southern periphery of the Siberian Platform, the East Siberian metallogenic (PGE–Cu–Ni) province is recognized. It includes the Yenisei Ridge, Precambrian Kan uplift, Alkhadyr terrane with the adjacent structures of the Biryusa block, and northern Baikal region (Yoko-Dovyren and other massifs of the Baikal–Patom basin). We have established that the U–Pb and Ar–Ar ages of ore-bearing complexes of dunite–peridotite– pyroxenite–gabbro association correspond to the Late Riphean (728–710 Ma). The mineralogical and geochemical similarity of ore-bearing complexes in different areas testifies to their genetic entity. All parental melts were similar in composition to picrites. The calculation results and the PGE enrichment of rocks and ores show high degrees of melting of the mantle source, which agrees with the plume model of formation of the ore-magmatic system. The recognized province is similar in the type of magmatism and time of its occurrence to the Franklin LIP in northern Canada. It is one of the highly promising ore districts of East Siberia.  相似文献   

16.
The Sanjiang Tethyan domain in SE Asia is one of the most important mineral belts in China. Cu, Pb–Zn, Ag, Au and Sn are the most important resources in this domain, while the tungsten mineralization is poorly reported. In this study, we report on mineralogy in recent discovered Damajianshan (DMJS) tungsten (–Cu–As–Mo–Bi) polymetallic deposit in the southern part of Sanjiang Tethyan domain related to Triassic quartz porphyry. Studies have shown that besides common ore minerals, such as native bismuth, bismuthinite, ikunolite, some specific minerals of Pb–Bi- and Pb–Sb-sulphosalts (e.g. izoklakeite, bournonite, cosalite, and boulangerite) have also been found. Based on paragenetic mineral assemblages, fluid inclusions, and thermodynamic studies, the physicochemical conditions were evaluated for the entire metallogenic process. The sulfur fugacity (logfS2) ranges from − 9.7 to − 37 with ore-forming temperatures between 190 °C and 330 °C, and the oxygen fugacity (logfO2) ranges from − 37.5 to − 38.5 when the temperature is 250 °C. The sulfur fugacity and oxygen fugacity show strong fluctuations with broadly negative correlation, indicating that these variations in physicochemical conditions should be responsible for mineral assemblages, and are one of the most significant factors leading to the formation of the DMJS deposit. Our mineralogical studies provide new information for tungsten mineralization and further exploration of tungsten resources in the Sanjiang Tethyan mineralization domain.  相似文献   

17.
The Hoshbulak Zn–Pb deposit is located in South Tianshan, Xinjiang, China. The Zn–Pb orebody is tabular and stratoid in form and it is hosted in calcareous rocks of the Upper Devonian Tan'gaitaer Formation which were thrust over the Carboniferous system. The ores are mineralogically simple and composed mainly of sphalerite, galena, pyrite, calcite, dolomite and exhibit massive, banded, veinlets, colloidal, metasomatic, eutectic, concentric ring and microbial-like fabrics. The Co/Ni ratios of pyrite in the ores range from 0.46 to 0.90 by electron microprobe, which suggested that the Hoshbulak Zn–Pb mineralization was formed in a sedimentary environment. The REE patterns of the hydrothermal calcite coincide well with those of recrystallized micritic limestones, suggesting that the Hoshbulak Pb–Zn mineralization was closely genetically related to limestones of the Tan'gaitaer Formation. The C-, H- and O-isotopic compositions of hydrothermal calcite and dolomite in the ores yield δ13C(VPDB) values ranging from − 1.9‰ to + 2.6‰ (mean 0.79‰), δ18O(VSMOW) values from 22.41‰ to 24.67‰ (mean 23.04‰) and δD values from − 77‰ to − 102‰ for fluid inclusions. It is suggested that the ore-forming fluids, including CO2, were derived from the calcareous strata of the Tan'gaitaer Formation in association with hydrocarbon brines. The δ34S(VCDT) ranges from − 22.3‰ to − 8.5‰ for early ore-stage sulfides and from 5.9‰ to 24.2‰ with a cluster between 14.4‰ and 24.2‰ for the sulfides (pyrite, sphalerite, galena) in the main ore-stage. The ore sulfur may have been derived from evaporite rocks by thermochemical sulfate reduction (TSR) as the predominant mechanism for H2S generation. The Pb-isotopic compositions of the sulfide minerals from the Hoshbulak ores yield 206Pb/204Pb ratios from 17.847 to 18.173, 207Pb/204Pb ratios from 15.586 to 15.873 and 208Pb/204Pb ratios from 37.997 to 38.905, which indicate that the metals were sourced mainly from the Tan'gaitaer Formation. We conclude that the genesis of the Hoshbulak Mississippi Valley-type deposit was closely related to thrust faulting in the South Tianshan orogen of China.  相似文献   

18.
Geotectonics - The general tectonic features of the Baltic-Mezen zone developed along the border of the Fennoscandian shield and the Russian Plate in the north of the East European platform, are...  相似文献   

19.
Kolodyazhnyi  S. Yu.  Baluev  A. S.  Zykov  D. S. 《Geotectonics》2019,53(1):60-83
Geotectonics - The tectonics, morphological features, and development stages of the Belomorian‒Severodvinsk shear zone (northwestern part) found in the East European Platform are considered....  相似文献   

20.
This paper gives a brief review of what I consider as the state of the art regarding the largely accepted data and ideas concerning the Proterozoic to Early Paleozoic tectonic evolution of South China. The South China craton was built by the welding of the Yangtze and Cathaysia blocks, with a different previous history giving a different pre-Neoproterozoic basement composition, due to the Jiangnan (Jinning, Sibao) orogeny. This Jiangnan orogeny was a collisional event, induced by the consumption of an intervening oceanic domain by subduction beneath the Yangzte plate. The evolution involved a volcanic arc on the Yangtze active margin, active from ca. 980 Ma to ca. 850 Ma, the subsequent collision beginning at around 870–860 Ma and responsible for the emplacement of thrust sheets of ophiolitic mélange (dated around 1000–900 Ma) and blueschists (900–870 Ma), followed by late- to post-collisional granitic plutonism (840–800 Ma). The newly amalgamated South China craton suffered from rifting, starting around 850 Ma, marked by mafic–ultramafic magmatism until ca. 750 Ma. The Nanhua rift basin evolved with a thick sedimentation in its middle part until the Ordovician. South China was affected by the Early Paleozoic orogeny (mainly Silurian), characterized by a strong quasi-symmetrical intracontinental shortening, involving the sedimentary cover of the rift and its margins as well as the basement, leading to crustal thickening. This crustal thickening induced an important anatexis and emplacement of peraluminous granites during the Silurian. Unlike the Jiangnan orogeny, which was of collisional type, the Early Paleozoic one was a bit similar to a Pyrenean intracontinental type.Some pending problems need further research for clarification, for example: the location and timing of integration of South China within Rodinia, the triggering factor of the Early Paleozoic orogeny, the mapping of the contacts bounding the Lower Paleozoic thrust sheets responsible for the crustal thickening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号