首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quaternary sediments from the borehole DBC-1 drilled in the Darhad Basin, northern Mongolia, have been studied by thermomagnetic analysis (248 samples) and probe microanalysis (9 samples) to determine the origin (cosmic or terrestrial) of native iron. Most of the samples showed extremely low contents of native iron. Only 26 samples have iron in contents sufficient for its reliable identification (10–5–10–3%). The negligible content of native iron in the Darhad Basin sediments distinguishes them from the earlier studied sediments of different geologic associations of Eurasia and the Atlantic, which we explain by the high sedimentation rate in this basin. However, the bimodal distribution of native-iron contents in the samples with a distinct “zero” mode, similar to that in the objects of Eurasia and the Atlantic, testifies to the predominantly cosmic origin of the native iron.  相似文献   

2.
The relative paleointensity of sedimentation is studied for sediments stripped by deep-water drilling in Lake Baikal (BDP-99 borehole). Two intervals are considered: 0–420 ka (Brunhes chron) and 1.05–1.09 Ma (before, during, and after the Matuyama–Jaramillo reversal). For these intervals, curves of the ideal magnetization of samples are plotted.The paleointensity data obtained along the borehole section reveal four excursions for the Baikal sediments whose identification on the inclination–depth curve is complicated.The lower part of the section (Matuyama–Jaramillo subzones) shows a paleointensity decrease by a factor of five or more relative to periods of invariable polarity.  相似文献   

3.
Past changes in phytoplankton assemblages in Lake Baikal over the last 4.5 Ma, both in population and composition, are inferred from the downcore profiles of the relatively stable chlorophyll derivatives steryl esters of pyropheophorbides a and b (steryl chlorine esters; SCEs) in the 0–200 m section of the BDP-98 drill core, supplemented by the data on biogenic silica (BSi) and total organic carbon (TOC) contents. SCEs-a and -b dominate among sedimentary chlorophyll derivatives in the BDP-98 sediments except for the upper few meters, indicating their high stability during diagenetic alteration of sediments. The depth (age) profiles of SCEs-a are consistent with BSi and TOC profiles and are interpreted as reflecting primary productivity of the lake in the past. Baikal proxies reveal close correlation with marine oxygen isotope records (MIS stratigraphy). These observations confirm that climate change in the northern hemisphere has been a primary factor controlling the total phytoplankton productivity in Lake Baikal during the last several million years.Among SCEs-a, C30 (dinostanol)-SCE-a, a marker of dinoflagellates was identified by GC–MS analysis. SCE-b, a marker of green algae, was identified by its UV–vis spectrum. The ratio of C30-SCE-a to total SCEs-a (TSCEs-a) was higher during 4.5–4.2 and 1.7–1.3 Ma, suggesting that dinoflagellates proliferated preferentially in those periods. The early Pleistocene maximum of this ratio corresponds to the broad minimum of diatom abundance previously suggested to have recorded a prolonged regional cooling. An abrupt increase in the SCE-b/TSCEs-a ratio was observed at 2.5–2.6 Ma, indicating that green algae containing chlorophyll b have proliferated in Lake Baikal during this period. This interval has also been suggested to contain evidence for a significant regional cooling based on minima of diatom abundance and BSi in sediments. The depth profile of C27Δ5 (cholesterol)-SCE-a relative to TSCEs-a showed a trend similar to that of BSi, suggesting that C27Δ5-SCE-a/TSCEs-a ratio is a potential marker of diatoms in Lake Baikal.Certain mismatches between the Lake Baikal profiles of biological indicators and the marine oxygen isotope records, as well as the slight temporal offsets between different Lake Baikal biological marker signals suggest that the regional component of climatic and/or lacustrine environmental changes also have played a role in determining the composition of the Lake Baikal Plio-Pleistocene phytoplankton assemblage.  相似文献   

4.
We have applied the method of one temperature log suggested by Kutasov in 1987 to process an unsteady temperature log of the 674 m deep submarine borehole BDP-98-2 (Akademichesky Ridge, Lake Baikal) and found it suitable to reconstruct the primary steady thermal gradient not disturbed by drilling. The steady gradient we derived using a special formalism, with reference to drilling conditions and measured thermal properties of sediments, was 63 mK/m, more than two times the unsteady gradient at different depths. Heat flow calculated with this gradient and a mean thermal conductivity of 1.1 W/(m·K) was 70 mW/m2, which is consistent with earlier geothermal data from the same area. Thus, the one-log procedure is a useful tool to predict the original undisturbed thermal gradients and estimate approximate heat flows if a single unsteady temperature log is available.  相似文献   

5.
Results of investigations of Baikal bottom sediments from a long core (BDP-97) and several short (0–1 m) cores are presented. It has been shown that the Holocene sediments in the Baikal basins consist of biogenic-terrigenous muds, accumulated under calm sedimentation conditions, and of turbidites, formed during catastrophic events. The turbidites can be distinguished from the host sediments by their enrichment in heavy minerals and thus their high magnetic susceptibility. Often, Pliocene and Pleistocene diatom species observed in the Holocene sediments (mainly in the turbidites) point to redeposition of ancient offshore sediments. Our results indicate that deltas, littoral zones, and continental slopes are the source areas of turbidites. The fact that the turbidites occur far from their sources confirms the existence of high-energy turbidity currents responsible for long-distance lateral-sediment transport to the deep basin planes of the lake.  相似文献   

6.
The component and carbon isotope compositions were studied in the hydrocabon gases from sediments of the underwater high Posolskaya Bank (Lake Baikal). It was established that sediments of this Baikal area contain methane of microbial (C1/C2 >16000; δ13C 70 ± 3‰) and thermocatalytic (C1/C2 <100; δ13C–46 ± 3‰) origin. Some samples represent a gas mixture of thermocatalytic and microbial origin. This gas is characterized by δ13C of methane varying from–60 to–70‰ and contains a significant amount of ethane. The main homolog of methane in the thermocatalytic and mixed gas is ethane. Owing to biodegradation, propane and butanes are present in trace amounts.  相似文献   

7.
The distribution of iron in a 6-m core of post-glacial sediment from an oligotrophic lake (Connistonwater, England) was determined, principally by Mossbauer spectroscopy on dried samples. The immediate post-glacial deposits contain 4.8 wt. % of iron, with a Fe2+; Fe3+ ratio ~- 4. The iron there is predominantly in the form of chlorite, but there are small amounts in hematite and illite. The distribution of iron is different, and very variable in the recent sediments (~ < 13,000 BP), which contain 25–35 per cent organic matter and 5.2 wt. % of iron relative to the inorganic fraction. Typically half the iron is present there as chlorite, and the rest is ferric, mostly in the form of an amorphous gel which is also present in undried samples. To explain the observed ferrous:ferric profile, it is proposed that the latter includes iron which was once mobile, having been leached from the Fe2+-bearing clays under reducing conditions in the soils of the drainage basin, or in the sediment itself. It was subsequently precipitated as ferric hydroxide on contact with the oxic lake water. In contrast, the ferrous iron in the sediments is immobile iron, which remained locked in the chlorite phase of the clay particles as they were carried from soil to sediment intact.All the sediments are rather inhomogeneous. Chlorite, and especially hematite, are mechanically concentrated in pink varves in the immediate post-glacial deposits. In the partly inorganic sediments, the concentration of ferrous iron (chlorite) is approximately uniform, but the ferric content may differ by a factor of five between regions only a few millimeters apart.  相似文献   

8.
A new composite BDP-96 biogenic silica record over the entire Pleistocene was generated by splicing BDP-96-1 and BDP-96-2 drill cores from Lake Baikal, crosschecked against a similar record from a nearby BDP-98 drill core. A new astronomically tuned age model is proposed based on correlating peak biogenic silica responses with the timing of September perihelia. This target is derived from analysis of regional climate proxy responses during the Holocene, the last interglacial and around paleomagnetic reversals. By resolving virtually every precessional cycle during the Pleistocene, the new age model represents a major improvement compared with previously reported Lake Baikal timescales. The astronomically tuned ages of the Pleistocene paleomagnetic reversals are consistent with published dates. The minimal tuning approach we used (precession only) has also aligned high signal power in a narrow obliquity band, confirming the strong presence of orbital forcing. There are also strong ca 100-ka scale cycles, but these are not aligned with the orbital eccentricity.Despite the location of Lake Baikal in a continental interior that is highly sensitive to insolation forcing, the tuned biogenic silica record reveals a consistent phase difference of −32° (ca 4 ka) relative to insolation in the obliquity band. An inherent lag embedded in a continental proxy record, not driven by global ice volume, is an intriguing finding. Another new observation is that long-term changes in sedimentation rates in Lake Baikal appear to be related to the amplitude of orbital forcing; both amplitudes and sedimentation rates undergo significant changes during MIS 24-MIS 19 interval corresponding to the Middle Pleistocene Transition. With potential for linking continental and marine climato-stratigraphies, the new Baikal record serves a new benchmark correlation target in continental Eurasia, as an alternative to June 65°N insolation and ODP-correlated timescales.  相似文献   

9.
This paper presents data on the lithological composition of Cenozoic deposits penetrated for the first time by boreholes BDP-96-1, BDP-96-2, and BDP-98 down to a depth of 600 m on the underwater Akademicheskii Ridge in Lake Baikal. The deposits are subdivided into the upper (Angara) and lower (Barguzin) sequences, which span the Middle Miocene-Holocene period. They formed under different climatic conditions and tectonic settings. Sources of the terrigenous material were also different. Outbursts of diatom-and mineral formation in Lake Baikal can be related to not only climatic fluctuations in the Miocene-Holocene, but also the endogenous activity. By the analogy with the World Ocean, underwater gas-hydrothermal fluid discharge detected at the water-bottom interface in this lake may be accompanied by the formation of diatomaceous oozes and ferromanganese nodule fields and the concentration of rare elements.  相似文献   

10.
 With this paper we present a first attempt to combine the direct results on lithology, composition and age dating in the boreholes BDP-93, BDP-96 and BDP-97 with geological and seismic data from the areas where those sections were drilled. The sedimentary environments represented by the BDP boreholes are markedly different and possess characteristic lithological features. The results of the deep drilling provide the essential means for testing numerous age models used in geological reconstructions of the Lake Baikal rifting dynamics. Neither the basin-wide unconformity interpreted from seismic data, nor the interpreted change from shallow-water to deep-water facies at the boundary of the seismic stratigraphic complexes were found in the BDP-96 boreholes on Academician Ridge. Also, lithology does not support the proposed reconstructions of intense lake level fluctuations and transgressions during the Pliocene at Academician Ridge. The continuous deep-water hemipelagic sedimentation at Academician Ridge has existed for the past 5 Ma. The beginning of an intense rifting phase of the Neobaikalian sub-stage and related drastic changes in sedimentation processes were interpreted on seismic sections as the basin-wide unconformity B10. Different age estimates for this boundary ranged from Late Pliocene (3.5 Ma) to Plio-Pleistocene boundary. As shown by BDP-96 borehole, B10 is associated with a lithological change from diatomaceous ooze to dense silty clay and not with an erosional contact. The new age for this boundary in BDP-96 is approximately 2.5 Ma. This new age constraint suggests that the upper sedimentary strata of Northern Baikal (1.5–1.7 km thick) have formed during the past 2.5 Ma with average sedimentation rates of 60–70 cm/ka. The BDP-93 boreholes at Buguldeika suggest that uplift in Primorsky Range took place prior to 1.07–1.31 Ma, a date which exceeds the age of previous geological models. Received: 12 March 1999 / Accepted: 10 February 2000  相似文献   

11.
A new technique for the determination of uranium and thorium in lacustrine sediments is based on non-destructive synchrotron radiation X-ray fluorescence analysis (SR-XRF) of sediment samples using monochromatic beams of different energies as excitation sources, with the recording and subsequent iterative processing of the X-ray fluorescence spectra. The technique has a multielement capability and enables fast, simultaneous analysis of a few tens of elements. The proposed SR-XRF technique was tested against INAA and ICP-MS methods and showed a number of advantages with a generally good correlation of results by the three methods. Uranium and Th profiles have been measured at a time resolution of 2 kyr in a drill core (BDP-96) from Lake Baikal bottom sediments deposited between 780 and 40 kyr B P. During this time span, peaks in the U and U/Th concentration marked warm climates. Oscillations of U and U/Th in Baikal bottom sediments during the Brunhes chron reflect climate-induced global change in the volume of polar ice, controlled by long-term cyclicity of the Earths orbital parameters. The response of these warm periods is similar to that observed earlier in shorter cores that span the two last interglacials (220-0 kyr BP).  相似文献   

12.
The rate of aerobic oxidation of methane was calculated based on average profiles of the tritiumhelium age of the Baikal waters and concentrations of the dissolved methane in the water column. In the deep lake zone (>200 m), the intensity of oxidation vertically decreases and is (2–0.3) × 10?2 nl CH4l?1 days?1 in southern and central Baikal and (2.8–1.0) × 10?2 nl CH4 l?1 days?1 in northern Baikal. The effective coefficient of the oxidation rate in the lake depressions is 3.6 × 10?4, 3.3 × 10?4, and 3.7 × 10?4 days?1, respectively. At current methane concentrations in the water column, about 80 t of methane is oxidized per year. Oxidation of the dissolved methane in the water column was estimated at a possible increase of its concentration.  相似文献   

13.
Concentrations of helium isotopes were measured in gas and water samples from 28 thermal mineral springs in Tuva and adjacent regions of Buryatia and Gorny Altai. It is shown that fluids from 16 springs are rich in mantle helium (4–35%). With regard to the air contamination of the samples, the corrected ratios of helium isotopes (Rcor = 3He/4He) in these springs vary from 5.3 × 10–8 to 422 × 10–8. Using these Rcor values, we estimated the heat flow; these estimates were then applied to calculate the deep-level temperatures and thickness of thermal lithosphere. According to these parameters, the Tuva region is divided into two parts. Eastern Tuva (from ~96° E to the boundary with Buryatia) is characterized by abnormal helium isotope ratios and heat flow indicating the intense heating of the Earth’s crust in eastern Tuva: At a depth of 50 km, a temperature reaches 1000–1200 °C, and the thickness of thermal lithosphere is reduced to 70–50 km. This testifies to a rift process west (probably, up to 96° E) of the Baikal Rift Zone. In western Tuva, the average heat flow is much lower, ~45–50 mW/m2, which is commensurate with that in the Altai–Sayan folded area as a whole. The deep-level temperatures here are twice lower, and the lithosphere thickness increases to 150 km.  相似文献   

14.
Mercury distribution was examined in the sediments of Lake Baikal that were sampled within the scope of the Baikal Drilling International Project in 1996–1999. The Hg concentrations in the ancient sediments are close to those in the modern sediments with the exception of a few peak values, whose ages coincide with those of active volcanism in adjacent areas. Mercury was demonstrated to be contained in the sediments in the adsorbed Hg0 mode, predominantly in relation with organic matter. When the organic matter of the bottom sediments is decomposed in the course of lithification, Hg is retained in the sediments adsorbed on the residual organic matter, and the concentration of this element corresponds to its initial content in the bottom sediments during their accumulation. Mercury concentrations in lithologically distinct bottom sediments of Lake Baikal and its sediments as a whole depend on the climate. Sediments that were formed during warm periods of time contain more Hg than those produced during cold periods or glaciation. Periodical variations in the Hg concentrations in the bottom sediments of Lake Baikal reflect the variations in the contents of this element in the Earth’s atmosphere in the Late Cenozoic, which were, in turn, controlled by the climatic variations on the planet and, thus, can be used for detailed reconstructions of variations in the average global temperature near the planet’s surface.  相似文献   

15.
Crystallization of authigenic carbonates in mud volcanoes at Lake Baikal   总被引:1,自引:0,他引:1  
This paper presents data on authigenic siderite first found in surface sediments from mud volcanoes in the Central (K-2) and Southern (Malen’kii) basins of Lake Baikal. Ca is the predominant cation, which substitutes Fe in the crystalline lattice of siderite. The enrichment of the carbonates in the 13C isotope (from +3.3 to +6.8‰ for the Malen’kii volcano and from +17.7 to +21.9‰ for K-2) results from the crystallization of the carbonates during methane generation via the bacterial destruction of organic matter (acetate). The overall depletion of the carbonates in 18O is mainly inherited from the isotopic composition of Baikal water.  相似文献   

16.
We present U–Pb (LA-ICP-MS) data on detrital zircon from the Late Precambrian terrigenous rocks of the Baikal Group and Ushakovka Formation, western Cisbaikalia (southern flank of the Siberian craton). The sources of clastic material for the studied sediments are interpreted. The youngest group of detrital zircon grains from the upper Baikal Group and Ushakovka Formation permits assigning these sediments to the Vendian. The lack of Mesoproterozoic detrital zircon in most of the analyzed samples confirms the hypothesis of a global (~ 1 Gyr) break in endogenic activity within the southern flank of the Siberian craton through the Precambrian. The abundance of Neoproterozoic zircon in sandstones from the upper horizons of the Baikal Group and the Ushakovka Formation might be due to the shrinkage of the ocean basin as a result of the convergence of the craton with the microcontinents and island arcs within the Paleoasian ocean.  相似文献   

17.
Large earthquakes took place in southern Cisbaikalia in the first half of 1912. They might have caused a mass release of gas (methane?) into the water column of Lake Baikal and the atmosphere near Sharyzhalgai station of the Circum-Baikal Railroad. This phenomenon was observed in August 1912 by the residents as rising water columns several meters high and reported in the regional press.To find traces of this event, core was recovered from bottom sediments at a depth of 1300 m in winter 2010. The depth interval 1–8.7 cm is a homogeneous layer, no more than 100 years old (210Pb dating). The sediments here are poor in SiO2biog but richer in Corg than the underlying sediments. Also, they are marked by a considerable content of terrestrial plant remains, a lower content of planktonic diatoms, and higher contents of benthic and ancient diatoms. These data indicate that the layer under study formed as a result of the 1912 earthquake, with a considerable contribution from the littoral and shallow-water zones of Lake Baikal.  相似文献   

18.
About possibility of isotope dating of native gold by the (U-Th)/He method   总被引:2,自引:0,他引:2  
For investigation of helium in native gold, a new measuring complex was created and used: the high sensitivity mass spectrometer MSU-G (ZAO SKB “SPECTRON”). The sensitivity of measuring 4He was 5.3 × 10?13 cm3/g per impulse. Experiments in stepwise heating of samples have been carried out, and the kinetics of radiogenic 4He emanation from native gold was investigated. Migration parameters (activation energy and frequency factor) were determined. Model calculations of stability (closure temperature) of radiogenic 4He in the native gold structure with a given time and temperature of thermal influences were made using the data received. The concentration of 4He in native gold from the original deposit Nesterovskoe is (4.7 ± 0.1) × 10?5 cm3/g in the sample from the placer; from Chudnoe deposit, it is (3.8 ± 0.1) × 10?5 cm3/g; from sulfide deposits of Kitoiskii knot of Eastern Sayani, it is (1.9 ± 0.1) × 10?5 cm3/g; and from the South Muiskii ore region it is (8.7 ± 0.5) × 10?7 cm3/g. The received curve lines of kinetics of 4He emanation from native gold show that radiogenic helium is well bonded in the native gold structure: in all the examined samples, most 4He emanates only by reaching the temperature of 950–1000°C. A specific feature of the kinetics of radiogenic 4He emanation in all examined samples is an outburstlike emanation in the form of a peak of large amplitude in the area of temperatures near the melting temperature point of gold. This is stipulated by the existence of helium bubbles released by metals only while they melt. The spectrum of helium thermal desorption from native gold has a complicated form and is a result of superposition of several peaks. This proves the migration of groups of atoms located in the gold structure in different energy states. Very large values of the activation energy of helium migration from native gold were received: up to 161–176 kcal/mol. Extremely large values of the frequency factor, from 2 × 1018 to 3 × 1032, correspond to such values of activation energies. This is caused probably by helium migration in the form of gas bubbles. The received data indicate the very high stability of the (U-Th)/He isotope system in native gold. Using the (U-Th)/He method of isotope geochronology seems to be very promising for isotope dating of these strategic raw materials.  相似文献   

19.
A simple, reliable, and high-performance method has been proposed for direct determination of the isotopic composition of authigenic uranium in silica lacustrine sediments. The method is based on studying the kinetics of the selective extraction of authigenic uranium from sediments with weak solutions of ammonium hydrocarbonate followed by the ICP-MS analysis of the nuclides. To estimate the contamination of authigenic uranium by terrigenous one, the contents of 232Th and some other clastogenic elements in the extracts were measured simultaneously. The selectivity of extraction of authigenic uranium from the sediments treated with a 1% NH4HCO3 solution appeared to be no worse than 99%. The method was used to analyze the isotopic composition of authigenic uranium at several key horizons of a core dated before. The measurements directly prove that the 234U/238U values in Baikal water varied depending on climate, which contradicts the previous statements. The measured 234U/238U ratios in paleo-Baikal water match the values reconstructed from isotopic data for total uranium in the sediments on the supposition that the U/Th ratio is constant in the terrigenous part of the sediment. Direct experimental determination of total and authigenic nuclides in sediments enhances the potentiality of the method for absolute 234U-230Th dating of carbonate-barren lacustrine sediments, including those from Lake Baikal, within the intervals corresponding to the periods of glaciation, where the sediments contain a large fraction of terrigenous component. Given the fractions of terrigenous and authigenic uranium are accurately determined, we have an opportunity to study the variability of the sources of terrigenous matter and to refine the previous model for reconstructing the climate humidity in East Siberia.  相似文献   

20.
Current deformation in Pribaikalia, Western and Central Mongolia, and Tuva has been studied from measured horizontal GPS velocities and respective computed strain and rotation rates using 1994–2007 data of the Baikal–Mongolian GPS triangulation network.The GPS velocity field shows two main trends: an NE trend within Jonggaria, the Mongolian Altay, and the Great Lakes Valley and an SE trend in the Hangayn and eastern Gobi Altay mountains, and in the Transbaikalian block of the Amur plate. The velocity magnitudes and vectors are consistent with an SE motion of the Amur plate at a rate of ~2 mm/year.The derived strain pattern includes domains of crustal contraction and extension recognized from the magnitudes of relative strains. Shortening predominates in the Gobi and Mongolian Altay and in the Khamar-Daban Range, where it is at ?2 = (19.2 ± 6.0)×10?9 yr?1 being directed northeastward. Extension domains exist in the Baikal rift and in the Busiyngol–West Hangayn area, where the crust is stretching along NW axes at ?1 = (22.2 ± 3.1) × 10–9 yr–1. The eastern Hangayn dome and the Gobi peneplain on its eastern border show low and unstable strain rates. In central and northern Mongolia (Orhon–Selenge basin), shortening and extension are at similar rates: ?2 = (15.4 ± 5.4)×10?9 yr?1 and ?1 = (18.1 ± 3.1)×10?9 yr?1. The strain pattern changes notably in the area of the Mogod earthquake of 1967.Most of rotation throughout Central Asia is clockwise at a low rate of about Ω = 6×10?9 deg·yr?1. High rates of clockwise rotation are observed in the Hangayn domain (18.1 ± 5.2)×10?9 deg·yr?1, in the Gobi Altay (10.4 ± 7.5)×10?9 deg·yr?1, and in the Orhon–Selenge domain (11.9 ± 5.2)×10?9 deg·yr?1. Counterclockwise rotation is restricted to several domains. One is in western Tuva and northwestern Great Lakes Valley of Mongolia (Ω = 3.7×10?9 deg·yr?1). Two more counterclockwise rotation regions occur on both flanks of the Baikal rift: along the craton edge and in basins of Transbaikalia on the rift eastern border, where rotation rates are as high as (13.0 ± 3.9)×10?9 deg·yr?1, while rotation within the Baikal basin does not exceed the measurement error. Another such domain extends from the eastern Hövsgöl area to the Hangayn northern foothills, with the counterclockwise rotation at a highest rate of (16.3 ± 2.8)×10?9 deg·yr?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号