首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The cocrystallization coefficient of Mn and Fe (DMn/Fe) in magnetite crystals is determined in hydrothermal-growth experiments with internal sampling at 450 and 500 °C and 100 MPa (1 kbar). It is weakly dependent on temperature in the studied PT-region and is constant over a wide range of Mn/Fe values. This permits using the magnetite composition as an indicator of Mn/Fe in the fluid under equilibrium: (Mn/Fe)aq  100 (Mn/Fe)mt. Since Mn is often a macrocomponent of the fluid and a microcomponent of magnetite, local analysis of fluid inclusions for Mn might help to determine Fe even in iron minerals. This will permit evaluation of the contents of other ore metals if the DMe/Fe values are known. For fine crystals (< 0.1–0.2 mm) with low contents of Mn (< 0.01–0.02%), it is necessary to take into account the fractionation of Mn into the surficial nonautonomous phase, in which its content can reach several percent. Comparison of these data with earlier data on the distribution of Mn in the system magnetite–pyrite–pyrrhotite–greenockite–hydrothermal solution shows that DMn/Fe remains constant in the presence of sulfur and sulfides. Precipitation of magnetite, in which Mn is a compatible admixture, cannot affect radically Mn/Fe in the solution because of the low DMn/Fe value. This effect is still more unlikely for pyrrhotite and pyrite, in which Mn is an incompatible admixture. The most probable mechanism of Mn fractionation into the solid phase is crystallization of FeOOH at lower temperatures. This is indirectly supported by the strong fractionation of Mn into the nonautonomous oxyhydroxide phase on the surface of magnetite crystals. The necessity of a more rigorous validation of “the new Fe/Mn geothermometer for hydrothermal systems” is substantiated.  相似文献   

2.
Distribution coefficients D of Au and Pd between magnetite (manganmagnetite) and ammonium chloride hydrothermal solution and the structural Dstr and surface-related Dsur terms of these coefficients were determined at 450 and 500°С and a pressure of 1 kbar using internal sampling techniques. Quantitative data on the speciation of precious metals are obtained using the technique of statistical selections of analytical data on single crystals SSADSC and compared with LA-ICP-MS data. Both Pd and Au are elements compatible with magnetite and its manganoan variety: Dstr is ≈3 for Pd and ≈1 for Au, although Au seems to weakly enrich fluid at 500°C: Dstr ≈ 0.5–0.8. The trends of postmagmatic Pd and Au fractionation can thus strongly depend on the presence of spinel-group minerals, first of all, magnetite and its solid solutions. The dualistic nature of the distribution coefficients provides sound grounds to believe that both elements are highly compatible, with regard not only for the structural but also for the surface-related modes of their occurrence (Dsur ≈ 17 and ≈50–70 for Au and Pd, respectively). The maximum concentrations of structural modes of the elements are 5.3 ppm for Au and 5.1 ppm for Pd and were found in the solid solution whose jacobsite mole fractions were 0.82 and 0.49, respectively. The principal distribution patterns of the elements in crystals are confirmed by LA-ICP-MS data. Data on this system testify that the distribution coefficients of minor and trace elements are geochemically dualistic because of the abnormal absorption properties of nanometer-sized nonautonomous phases on the surface of ore minerals, and this dualism plays an important geochemical role.  相似文献   

3.
Wang  Yanjun  Zhu  Weiguang  Zhong  Hong  Bai  Zhongjie  Yao  Junhua  Xu  Chong 《中国地球化学学报》2019,38(3):376-390

The Pingchuan iron deposit, located in the Yanyuan region of Sichuan Province, SW China, has an ore reserve of 40 Mt with ~ 60 wt% Fe. Its genesis is still poorly understood. The Pingchuan iron deposit has a paragenetic sequence of an early Fe-oxide–Pyrite stage (I) and a late Fe-oxide–pyrrhotite stage (II). Stage I magnetite grains are generally fragmented, euhedral–subhedral, large-sized crystals accompanying with slightly postdated pyrite. Stage II magnetite grains are mostly unfragmented, anhedral, relatively small-sized grains that co-exist with pyrrhotite. Combined with micro-textural features and previously-obtained geochronological data, we consider that these two stages of iron mineralization in the Pingchuan deposit correspond to the Permian ELIP magmatism and Cenozoic fault activity event. Both the Stage I and II magnetites are characterized with overall lower contents of trace elements (including Cr, Ti, V, and Ni) than the ELIP magmatic magnetite, which suggests a hydrothermal origin for them. “Skarn-like” enrichment in Sn, Mn, and Zn in the Stage I magnetite grains indicate significant material contributions from carbonate wall-rocks due to water–rock interaction in ore-forming processes. Stage II magnetite grains contain higher Mn concentrations than Stage I magnetite grains, which possibly implies more contribution from carbonate rocks. In multiple-element diagrams, the Stage I magnetite shows systematic similarities to Kiruna-type magnetite rather than those from other types of deposits. Combined with geological features and previous studies on oxygen isotopes, we conclude that hydrothermal fluids have played a key role in the generation of the Pingchuan low-Ti iron deposit.

  相似文献   

4.
Techniques of X-ray photoelectron and Auger electron spectroscopy, scanning probe microscopy were used to demonstrate that the natural surface of hydrothermally synthesized pyrite, as well as vacuum fractures, contain a number of sulfide-sulfur species: disulfide, monosulfide, and, more rarely, polysulfide. The natural surface of hydrothermal pyrite is chemically modified compared to the inner volume into a nonautonomous phase film up to ~500 nm thick, which has a variable composition resembling that of pyrrhotite but with broader variations toward FeS2. Its principal distinctive feature is the presence of a peak at ~710 eV in the XPS Fe 2p3/2 spectrum, which is often higher than the main peak of bivalent low-spin Fe(II) in the pyrite structure (707 eV). The “basic” structure of the nonautonomous phase is a layer of variable composition Fe2+[S, S2, S n ]2?, whose S/S2 ratio varies from ~0.5 to ~2.0, averaging at ~1.1. This layer may include admixtures of minor elements, as follows from the appearance of a nonautonomous phase in the presence of As, which does not, however, form an individual phase. The polymerization of S at the surface is thereby more significant. The major oxisulfide components of this phase may be the sulfite and thiosulfate ions at a subordinate concentration of sulfate because of the instability of coexisting sulfate and disulfide ions, which results, in the presence of oxygen, in sulfite (thiosulfate) and sulfide ions in the nonautonomous phase. In line with XPS, scanning probe microscopic (SPM) data show that, at a high S activity in the “pure” system, the surface of the crystals contains practically no nanometer-sized phases and is characterized by low roughness (14–17 nm). At a low S fugacity in equilibrium with pyrrhotite and sphalerite, the average roughness of the surface increases to 25–65 nm, with the maximum height of the surface features of ~100–500 nm. This is consistent with Auger spectroscopic data, obtained after the etching (ion milling) of the surface with Ar+, on the thickness of the nonstoichiometric surface layer. Comparison with analogous data on other sulfides shows that crystals growing in hydrothermal environments have surface layers up to ~500 nm thick, which are different from the main volume of the crystal in chemistry, stoichiometry, and, possibly, also structure. This is scale of the surface heterogeneity at which the typochemistry of mineral surfaces may be manifested. The typochemistry of pyrite stems from the ability of the nonautonomous phase to “record” the growth conditions of crystals in terms of two major factors: the purity of the system (the occurrence of other phases, including virtual ones, i.e., potentially possible phases of admixture elements) and S fugacity (which influences the S/S2 ratio at the surface). The geochemical role of the surface nonautonomous phase in pyrite may be very significant, particularly when minor elements are captured that are incompatible with the pyrite structure but can be easily accommodated in the less rigid structure of the nonautonomous phase.  相似文献   

5.
FTIR microspectroscopic data were used to construct two-dimension maps showing the distribution of structural impurities and mineral microinclusions in cubic and coated octahedral diamond crystals from the Udachnaya kimberlite pipe in Yakutia. Elevated concentrations of hydrogen and total nitrogen are detected in parts corresponding to the early growth of single-episode growth regions of diamond crystals. These concentrations decrease toward the peripheral portions of these regions. The microinclusions contain water and polyphase mineral associations that preserve a high residual pressure. Microinclusions in the coats of octahedral diamond crystals are dominated by silicates, in which the intensity of IR spectral bands increases toward the peripheries, whereas the cubes posses irregularly distributed domains rich in these phases. The carbonate phases of the microinclusions are distributed according to growth zones of the crystals, and their distribution is often not correlated with the concentrations of structural impurities. The facts that microinclusions in the diamond cuboids are dominated by carbonates and that the rims of the octahedra are dominated by silicates suggest that the diamonds crystallized from dominantly carbonate and silicate fluids/ melts, respectively. The chemical composition of the microinclusions point to an eclogitic paragenesis of the crystals. Facts are obtained that provide support for the earlier hypothesis that cubic diamond crystals and coated octahedral crystals grow at metasomatic interaction between deep fluids and eclogitic rocks in the lithospheric mantle.  相似文献   

6.
The migmatites of Chandrapur area near Guwahati, which forms a part of the Assam-Meghalaya Gneissic Complex (AMGC) in Northeast India, have preserved magnetite ocelli. Petrographic observations have revealed that magnetite crystals occurring in the ocellar rock are surrounded by partial to complete thin rims of biotite. Moreover, mineral chemical analyses, backscattered electron images, and quantitative elemental mapping have revealed that magnetite crystals occurring in the ocellar rock have been extensively replaced by manganoan ilmenite at the periphery. From field observations, textural, and mineral chemical analyses, it has been inferred that invasion of hot, volatile-bearing pegmatitic magmas into thermally rejuvenated basement gneisses of the AMGC during the late Pan-African tectonothermal episode (ca. 530–450 Ma) induced very restricted partial melting in the gneissic rocks producing neosomes. The newly formed neosomes were then infiltrated by the nearby pegmatitic melts leading to mixing between the two melts. The mixing event facilitated transformation of magnetite to manganoan ilmenite owing to diffusion of elements like Mn and Ti from the neosome to the pegmatitic domains. Moreover, formation of ilmenite released surplus Fe hosted in the magnetite that combined with in situ K and Al, and diffusing Mg from the neosome to form biotite crystals around magnetite. From this study, it can be concluded that magnetite-manganoan ilmenite transformation may be considered as one of the petrogenetic indicators to decipher magma mixing events.  相似文献   

7.
The Shevaroy Hills of northern Tamil Nadu, southern India, expose the highest-grade granulites of a prograde amphibolite facies to granulite facies deep-crustal section of Late Archaean age. These highly oxidized quartzofeldspathic garnet charnockites generally show minor high-TiO2 biotite and amphibole as the only hydrous minerals and are greatly depleted in the incompatible elements Rb and Th. Peak metamorphic temperatures (garnet–orthopyroxene) and pressures (garnet–orthopyroxene–plagioclase–quartz) are near 750 °C and 8 kbar, respectively. Pervasive veinlets of K-feldspar exist throughout dominant plagioclase in each sample and show clean contact with orthopyroxene. They are suggested to have been produced by a low H2O activity, migrating fluid phase under granulite facies conditions, most likely a concentrated chloride/carbonate brine with high alkali mobility accompanied by an immiscible CO2-rich fluid. Silicate, oxide and sulphide mineral assemblages record high oxygen fugacity. Pyroxenes in the felsic rocks have high Mg/(Mg+Fe) (0.5–0.7). The major oxide mineral is ilmenite with up to 60 mole per cent exsolved hematite. Utilizing three independent oxygen barometers (ferrosilite–magnetite–quartz, ferrosilite–hematite–quartz and magnetite–hematite) in conjunction with garnet–orthopyroxene exchange temperatures, samples with XIlmHm>0.1 yield a consistent oxygen fugacity about two log units above fayalite stability. Less oxidized samples (XIlmHm<0.1) show some scatter with indications of having equilibrated under more reducing conditions. Temperature-f (O2 ) arrays result in self consistent conditions ranging from 660 °C and 10?16 bar to 820 °C and 10?11.5 bar. These trends are confirmed by calculations based on the assemblage clinopyroxene–orthopyroxene–magnetite–ilmenite using the QUIlF program. In the most oxidized granulite samples (XIlmHm>0.4) pyrite is the dominant sulphide and pyrrhotite is absent. Pyrite grains in these samples have marginal alteration to magnetite along the rims, signifying a high-temperature oxidation event. Moderately oxidized samples (0.1no coexisting magnetite. Chalcopyrite is a common accessory mineral of pyrite and pyrrhotite in all the samples. Textures in some samples suggest that it formed as an exsolution product from pyrrhotite. Extensive vein networks of magnetite and pyrite, associated principally with the pyroxene and amphibole, give evidence for a pervasive, highly oxidizing fluid phase. Thermodynamic analysis of the assemblage pyrrhotite, pyrite and magnetite yields consistent high oxidation states at 700–800 °C and 8 kbar. The oxygen fugacity in our most oxidized pyrrhotite-bearing sample is 10?12.65 bar at 770 °C. There are strong indications that the Shevaroy Hills granulites recrystallized in the presence of an alkali-rich, low H2O-activity fluid, probably a concentrated brine. It cannot be demonstrated at present whether the high oxidation states were set by initially oxidized protoliths or effected by the postulated fluids. The high correspondence of maximally Rb-depleted samples with the highest recorded oxidation states suggests that the Rb depletion event coincided with the oxidation event, probably during breakdown of biotite to orthopyroxene+K-feldspar. We speculate that these alterations were effected by exhalations from deep-seated alkali basalts, which provided both heat and high oxygen fugacity, low aH2O fluids. It will be of interest to determine whether greatly Rb-depleted granulites in other Precambrian terranes show similar highly-oxidizing signatures.  相似文献   

8.
A dialysis procedure was used to assess the distribution coefficients of ∼50 major and trace elements (TEs) between colloidal (1 kDa–0.22 μm) and truly dissolved (<1 kDa) phases in Fe- and organic-rich boreal surface waters. These measurements allowed quantification of both TE partitioning coefficients and the proportion of colloidal forms as a function of solution pH (from 3 to 8). Two groups of elements can be distinguished according to their behaviour during dialysis: (i) elements which are strongly associated with colloids and exhibit significant increases of relative proportion of colloidal forms with pH increase (Al, Ba, Cd, Co, Cr, Cu, Fe, Ga, Hf, Mn, Ni, Pb, rare earth elements (REEs), Sr, Th, U, Y, Zn, Zr and dissolved organic C) and (ii) elements that are weakly associated with colloids and whose distribution coefficients between colloidal and truly dissolved phases are not significantly affected by solution pH (As, B, Ca, Cs, Ge, K, Li, Mg, Mo, Na, Nb, Rb, Sb, Si, Sn, Ti, V). Element speciation was assessed using the Visual MINTEQ computer code with an implemented NICA-Donnan humic ion binding model and database. The model reproduces quantitatively the pH-dependence of colloidal form proportion for alkaline-earth (Ba, Ca, Mg, Sr) and most divalent metals (Co, Cd, Mn, Ni, Pb, Zn) implying that the complexation of these metals with low molecular weight organic matter (<1 kDa fraction) is negligible. In contrast, model prediction of colloidal proportion (fraction of 1 kDa–0.22 μm) of Cu2+ and all trivalent and tetravalent metals is much higher than that measured in the experiment. This difference may be explained by (i) the presence of strong metal-binding organic ligands in the <1 kDa fraction whose stability constants are several orders of magnitude higher than those of colloidal humic and fulvic acids and/or (ii) coprecipitation of TE with Fe(Al) oxy(hydr)oxides in the colloidal fraction, whose dissolution and aggregation controls the pH-dependent pattern of TE partitioning. Quantitative modeling of metal – organic ligand complexation and empirical distribution coefficients corroborate the existence of two colloidal pools, formerly reported in boreal surface waters: “classic” fulvic or humic acids binding divalent transition metals and alkaline-earth elements and large-size organo-ferric colloids transporting insoluble trivalent and tetravalent elements.  相似文献   

9.
The dependence of trace-element concentration on the size of crystal in sample is experimentally studied by the example of gold distribution among single crystals of different sizes of hydrothermally grown pyrite, As-pyrite, and magnetite. The effect is modeled on the assumption that the Au uptake is due to a nonautonomous phase (NAP) at crystal surface. The structurally bound gold admixture is estimated from the dependence of the average content of evenly distributed gold on the specific surface of average crystal (1.5, 0.5, and 0.7 ppm for pyrite, As-pyrite with 0.02–0.08 wt.% As, and magnetite, respectively). The gold concentrations in hypothetical “pure” NAPs have been estimated by the extrapolation of the concentration dependence to the characteristic size of an NAP. The coefficients of fractionation of Au into an NAP relative to the bulk phase are 1.1 × 103, 3.5 × 103, and 2.4 × 103 for pyrite, As-pyrite, and magnetite, respectively. Thus, the above effect is comparable in magnitude with the known effect of trace-element trapping by defects of crystal structure. Arsenic admixture favors the fractionation of gold into an NAP. We also considered other manifestations of this effect and its significance for solving problems of experimental geochemistry and analytical chemistry of trace elements and mineral processing. The data obtained substantiate the new mechanism of uptake of incompatible elements (including noble metals) during endogenic ore formation as more common and more effective than classical adsorption, including reducing adsorption of mercury and noble metals on mineral phases.  相似文献   

10.
The interfacial crystal layer of poorly soluble mineral grown under hydrothermal conditions is modified chemically into a surficial nonautonomous phase (SNAP) and, in this capacity, takes part in growth process, doing several important functions. This paper considers some of them related to geochemistry and mineralogy. The new interpretation is given to the following phenomena: (1) selection of components during crystal growth in multiphase associations; (2) stability of multiphase parageneses having a common chemical component; (3) dual character of the distribution coefficients due to different properties of the crystal volume and SNAP; (4) formation of nano- and microinclusions of unusual composition different from the basic mineral phase; (5) spatial ordering of nano- and microparticles during their directed aggregation at the growing crystal face; (6) accumulation of valuable components (primarily noble metals), incompatible in most of mineral matrixes, in the surficial layer; and (7) effect of “hidden” metal content, associated with the presence of noble metals in the SNAP or of nano- and microinclusions formed during the SNAP evolution.  相似文献   

11.
The use of trace elements (TE) as geochemical indicators is complicated by the dualism of their distribution coefficients D due to the additional (i.e., above the concentrations of an isomorphic component) incorporation of elements at structural defects of various nature (including the surface of the crystal). A pressing problem in this situation is to determine the true D values that pertain to the structural component of an admixture D str and evaluate effects of other modes of TE occurrence. Only upon distinguishing D str in the bulk coefficient D bulk it is possible to evaluate the ore potential of fluid in terms of certain TE from the composition of a mineral containing the TE. Pyrite synthesized in solutions of variable pH at 450°C and 1 kbar (100 MPa) at fluid portions sampled in a trap is utilized to demonstrate the role of a surface nonautonomous phase (NP) in the incorporation of gold in this mineral. The distribution coefficient of gold between pyrite and hydrothermal solution is 0.14 for “pure” pyrite and 0.05 for As-bearing pyrite (containing 0.02–0.05 wt % As), and these coefficients for NP are 310 and 170, respectively. This increases the D bulk for evenly distributed (“invisible”) gold by factors of four and nine. In contrast to the results of earlier studies conducted at room temperature and pressure or parameters close to them, our data demonstrate that the accumulation of “invisible” Au in pyrite is controlled not only by reducing adsorption with the development of Au(0) particles and films but also by Au incorporation in NP developing in the surface layer of the crystal approximately 500 nm thick as chemically bound Au [most likely as Au(I)]. The possible reason for the high absorption capacity of NP is the defect (pyrrhotite-like) structure, which is not saturated with bonds of excess S and sulfoxi onions.  相似文献   

12.
The Acoje massif is part of a mafic-ultramafic complex, the Zambales ophiolite, and is a fragment of Mesozoic oceanic crust. This paper documents the occurrence and phase relations of sulfides and associated phases in the critical zone of the Acoje massif. The Acoje critical zone (ACZ) forms the basal cumulate sequence of the massif and consists of a variably serpentinized lower ultramafic zone and a relatively less altered upper mafic zone. Two distinct sulfide associations have been identified: (1) a troilite (±pyrrhotite)-dominated group hosted by the mafic zone and (2) a pentlandite-dominated group hosted by the ultramafic zone. Troilite-dominated assemblages represent the original mineralogy of magmatically precipitated sulfides in the entire cumulate sequence. The pentlandite-dominated group appears to have evolved from the primary magmatic sulfides during low-temperature re-equilibration. The paragenetic evolution from the magmatic assemblage to the low-temperature assemblage appears to have proceeded as follows: (1) S-rich hexagonal pyrrhotite+pentlandite+chalcopyrite (or cubanite)+magnetite, (2) S-poor hexagonal pyrrhotite+pentlandite+intermediate solid solution (iss) phase (and/or cubanite)+magnetite, (3) troilite (or mackinawite)+pentlandite+iss+magnetite, (4) troilite (or mackinawite)+pentlandite+iss+native Cu+magnetite, (5) pentlandite+native Cu+magnetite, and (6) pentlandite+native Cu+Fe-Ni alloy+magnetite. This evolutionary trend, in conjunction with the observed textural, chemical, and sulfur-isotopic relations, indicates that the native metal and alloy phases in the ACZ were produced by low-temperature reduction of the primary magmatic sulfides. Correlations between sulfide assemblages and coexisting silicate-hydrosilicate-oxide assemblages further indicate that this alteration occurred during retrograde serpentinization of the Acoje massif. Two end-member models that could explain the inferred low-temperature mineralogic evolution of the ACZ sulfides are described: (1) an isothermal reduction model and (2) a non-isothermal equilibration model. Both isothermal and non-isothermal effects apparently were involved in the development of variably reduced sulfide-oxide-metal assemblages from the initial magmatic sulfides.  相似文献   

13.
For the bulk rocks of CI chondrites, various values are given for the modal abundance of matrix (95–100 vol%) and the accompanying mineral constituents. Here, we have determined the modal abundance of phases >5 μm in the CI chondrites Orgueil, Ivuna, Alais, and Tonk. Considering this cut-off grain-size to distinguish between matrix and coarse-grained constituents, then, we find the modal abundance of the minor phases magnetite, pyrrhotite, carbonate, olivine, and pyroxene to be 6 vol% in total, and these phases are embedded within the fine-grained, phyllosilicate-rich matrix, making up 94 vol%. The values vary slightly from meteorite to meteorite. Considering all four chondrites, the most abundant phase is - by far - magnetite (4.3 vol%) followed by pyrrhotite (∼1.1 vol%). All four CI chondrites are complex breccias, and their degree of brecciation decreases in the sequence: Orgueil > Ivuna > Alais ∼ Tonk. Because these meteorites contain clasts with highly variable modal abundances, we therefore also studied individual clasts with high abundances of specific coarse-grained phases. In this respect, in Orgueil we found a fragment with a 21.5 vol% of magnetite as well as a clast having 31.8 vol% phosphate. In Ivuna, we detected an individual clast with a 21.5 vol% of carbonates. Thus, since the CI composition is used as a geochemical standard for comparison, one also should keep in mind that sufficiently large sample masses are required to reveal a homogeneous CI composition. Small aliquots with one dominating lithology may significantly deviate from the suggested standard CI composition.  相似文献   

14.
BUTLER  P.  Jr. 《Journal of Petrology》1969,10(1):56-101
Forty-seven specimens of the Wabush Iron Formation were collectedfrom ten outcrop areas. Twenty-five specimens contain the assemblage(1), quartz+clinopyroxene+calcite with or without orthopyroxene,grunerite, magnetite, ankerite, and siderite. Five specimenscontain assemblage (2), quartz+clinopyroxene+actinolite+calcite+magnetite+hematite,and two contain assemblage (3), quartz+orthopyroxene+actinolite+magnetite+hematite.In three specimens of assemblage (1), graphite occurs in theabsence of magnetite; pyrrhotite and pyrite occur separatelyor together in specimens with assemblage (1). Thirty-nine clinopyroxenes, 38 orthopyroxenes, 18 grunerites,7 actinolites, 16 calcites, 1 ankerite, and 1 siderite wereanalyzed for iron, manganese, and calcium by X-ray emissionspectrography. Magnesium contents were estimated by assumingstoichiometric proportions. Minerals occurring with hematite show low Fe/(Fe+Mg) ratios,and those in the other assemblages show higher values with awide range of variation. In orthopyroxene, Fe/(Fe+ Mg) rangesfrom 0·17 (with hematite) to 0·77. Regularity in the distributions of Fe, Mn, and Ca between pairsof coexisting minerals shows that equilibrium was attained inmost of the rocks studied. This regularity is also accomplishedin the distribution of Mn between calcite and coexisting silicatesas well as between the silicates themselves. Small differencesin the distributions of Ca and Fe depend on both outcrop areaand mineral assemblage. Phase rule considerations suggest that the specimens with dolomite-ankeriteor magnesitesiderite do not represent equilibrium assemblages.Variations in orthopyroxene compositions in assemblages withpyrite or pyrrhotite, or both, and magnetite indicate non-equilibrationof sulfides with silicates. The presence of the oxygen buffer,magnetite+hematite, attests to the immobility of oxygen duringmetamorphism. Within each outcrop area, over which the temperature and pressureare assumed to have been uniform, variations in the compositionsof the silicates in the sub-assemblages quartz+ orthopyroxene+gruneriteand quartz+orthopyroxene+clinopyroxene+calcite indicate gradientsof µH2O µCO2 and respectively. As characterizedby the composition of orthopyroxene, both gradients are relativelylow along strike, and high across strike. The direction of gradientsacross strike is almost without reversals, which is consistentwith intergranular diffusion of H2O and CO2. Phase rule restrictionsfor a majority of assemblages are not in accord with the simultaneousimposition of µH2O and µCO2 gradients on the rocks,nor the formation of an H2O-CO2 fluid phase during metamorphism.  相似文献   

15.
Dependences of magnetic susceptibility (MS) on the temperature of natural iron sulfide samples (pyrite, marcasite, greigite, chalcopyrite, arsenopyrite, pyrrhotite) from the deposits of northeastern Russia were studied. The thermal MS curves for pyrite and marcasite are the same: On heating, MS increases at 420–450 °C, and unstable magnetite (maghemite) and monoclinic pyrrhotite with a well-defined Hopkinson peak are produced. In oxygen-free media with carbon or nitrogen, magnetite formation is weak, whereas pyrrhotite generation is more significant. The heating curves for chalcopyrite are similar to those for pyrite. They show an increase in MS at the same temperatures (420–450 °C). However, stable magnetite is produced, whereas monoclinic pyrrhotite is absent. In contrast to that in pyrite, marcasite, and chalcopyrite, magnetite formation in arsenopyrite begins at > 500 °C. Arsenopyrite cooling is accompanied by the formation of magnetite (S-rich arsenopyrite) or maghemite (As-rich arsenopyrite) with a dramatic increase in MS. Arsenopyrite with an increased S content is characterized by insignificant pyrrhotite formation. Greigite is marked by a decrease in MS on the heating curves at 360–420 °C with the formation of unstable cation-deficient magnetite.Monoclinic pyrrhotite is characterized by a decrease in MS at ~ 320 °C, and hexagonal pyrrhotite, by a transition to a ferrimagnetic state at 210–260 °C. The addition of organic matter to monoclinic pyrrhotite stimulates the formation of hexagonal pyrrhotite, which transforms back into monoclinic pyrrhotite on repeated heating. The oxidation products of sulfides (greigite, chalcopyrite) show an increase in MS at 240–250 °C owing to lepidocrocite.  相似文献   

16.
Silica-bearing magnetites   总被引:1,自引:0,他引:1  
Some varieties of magnetite with relatively high content of SiO2 (about 5,4%) were found by the authors. Silica-bearing magnetite of the Korshunovskoye scarn deposit is enriched in Ca (up to 1.99% CaO), Al, Mg, Ti. In serpentinites of the Atlantic and Indian oceans Si-magnetite forms pseudomorphs on Cr-spinel and includes impurities of Mn (to 3.5% MnO), Cr, Mg and Al. Distinct quantitative correlations of silica and other trace elements are observed. The authors suggest possible models of cation distribution in Si-magnetites and suppose that emplacement of silica into the magnetite crystal structure is due to the presence of chlorine in mineral-forming solutions.  相似文献   

17.
The FeS2–Ag–Pt–As system was studied using hydrothermal thermogradient synthesis (with internal sampling) of pyrite crystals at a temperature of 500°C and pressure of 1 kbar in ammonium chloridebased solutions. The modes of occurrence of precious metals (PM) were determined using atomic absorption spectrometry (AAS) in its version of statistical selections of analytical data on single crystals (SSADSC), electron microprobe analysis (EMPA), scanning electron microscopy with energy-dispersive spectrometry (SEM-EDS), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The concentration of Pt in its structural mode in pyrite is as high as 10–11 ppm and is practically not correlated with the As concentration. The dualistic distribution coefficient of Pt between pyrite and hydrothermal solution is 21 ± 7 for the structural mode and 210 ± 80 for the surface-related mode of this element. No inclusions of either any Pt-bearing minerals or Pt itself was detected. Platinum is an element highly compatible with hydrothermal pyrite and is different in this sense from gold, and pyrite is underestimated as a potential concentrator of platinumgroup elements (PGE). The distribution of Ag in pyrite is highly heterogeneous. The likely reason for this is that the Ag solid solution cannot be quenched, and hence, the Ag concentrations broadly vary and are very unsystematically distributed in natural pyrite crystals. Assuming this hypothesis, the limit for Ag accommodation in FeS2 can be estimated using SSADSC at 0.09 ± 0.06 wt % under the experimental parameters, and the distribution coefficient of the structural Ag mode is thereby evaluated at 1400 ± 700. When crystallizing together with FeS2 proustite (Ag3AsS3) near its melting point, forms mixtures with dervillite (Ag2AsS2), in which Ag deficit is counterbalanced by excess divalent As. The limit of As incorporation into pyrite under these conditions is ≤0.1 wt %. SEM-EDS and XPS data indicate that the surface phases are of three types. In the course of crystal growth, practically two-dimensional nonautonomous phases (NP) are aggregated into submicroscopic and micrometer-sized crystalline bodies (mesocrystals) that largely inherit their unusual minor-element composition from NP and are enriched in Ag, Pt, As, and other minor elements. NP and mesocrystals are enriched in Al, which was transferred into them from the Al-bearing Ti alloy of the reaction containers. Silver occur in the volume of the crystals and on their surface as monovalent silver sulfide. Arsenic was detected mostly in the form of di- and trivalent arsenic sulfides. Pentavalent arsenic oxide was identified only on the surface of the crystals and can be easily eliminated by ion milling.  相似文献   

18.
The gold distribution in 32 pyrite samples and some samples of other ore minerals is studied using the method of statistical samplings of analytical data for single crystals. The samples were recovered from deposits of different genetic types within the largest gold provinces of Russia and Uzbekistan. The contents of uniformly distributed gold and the ratios of its structurally to superficially bound forms have been determined. According to the Au–As diagram for the chemical states of gold, uniformly distributed gold in pyrite is chemically bound in the overwhelming majority of cases. The previous experimental data suggest that it is partly incorporated into pyrite and partly into the structures of nanosized nonautonomous phases on the surface of the pyrite crystals. Micro- and nanoparticles of native gold might appear during postgrowth transformations of these phases. Data on the other ore minerals suggest that the dependence of the content of uniformly distributed gold on the size or specific surface area of the crystal and the superficial position of its considerable part are common to the ore minerals. It is shown for pyrite that the observed features are commonly found at deposits of different genetic types, only with differences in the slope and determination coefficients of the dependences. The size dependences of the contents of gold and other elements in pyrite are genetically significant, because they give an insight into the ore-forming processes. The data on structurally bound gold permit comparative evaluation of gold concentrations in ore fluids forming gold deposits of different genetic types.  相似文献   

19.
The data on the mineral composition and crystallization conditions of magnesian skarn and magnetite ore at contacts of dolerite with rock salt and dolomite in ore-bearing volcanic—tectonic structures of the Angara—Ilim type have been integrated and systematized. Optical microscopy, scanning and transmission electron microscopy, electron microprobe analysis, electron paramagnetic resonance, Raman and IR spectroscopy, and methods of mineralogical thermometry were used for studying minerals and inclusions contained therein. The most diverse products of metasomatic reactions are found in the vicinity of a shallow-seated magma chamber that was formed in Lower Cambrian carbonate and saliferous rocks under a screen of terrigenous sequences. Conformable lodes of spinel-forsterite skarn and calciphyre impregnated with magnesian magnetite replaced dolomite near the central magma conduit and apical portions of igneous bodies. At the postmagmatic stage, the following mineral assemblages were formed at contacts of dolerite with dolomite: (1) spinel + fassaite + forsterite + magnetite (T = 820?740°C), (2) phlogopite + titanite + pargasite + magnetite (T = 600–500°C), And (3) clinochlore + serpentine + pyrrhotite (T = 450°C and lower). Rock salt is transformed at the contact into halitite as an analogue of calciphyre. The specific features of sedimentary, contact-metasomatic, and hydrothermal generations of halite have been established. The primary sedimentary halite contains solid inclusions of sylvite, carnallite, anhydrite, polyhalite, quartz, astrakhanite, and antarcticite; nitrogen, methane, and complex hydrocarbons have been detected in gas inclusions; and the liquid inclusions are largely aqueous, with local hydrocarbon films. The contact-metasomatic halite is distinguished by a fine-grained structure and the occurrence of anhydrous salt phases (CaCl2 · KCl, CaCl2, nMgCl2 · mCaCl2) and high-density gases (CO2, H2S, N2, CH4, etc.) as inclusions. The low-temperature hydrothermal halite, which occurs in skarnified and unaltered silicate rocks and in ore, is characterized by a low salinity of aqueous inclusions and the absence of solid inclusions. The composition and aggregative state of inclusions in halite and forsterite indicate that salt melt-solution as a product of melting and dissolution of salt was the main agent of high-temperature metasomatism. Its total salinity was not lower than 60%. The composition and microstructure of magnetite systematically change in different mineral assemblages. Magnetite is formed as a result of extraction of iron together with silicon and phosphorus from dolerite. The first generation of magnetite is represented by mixed crystals, products of exsolution in the Fe-Mg-Al-Ti-Mn-O system. The Ti content is higher at the contact of dolerite with rock salt, whereas, at the contact with dolomite, magnetite is enriched in Mg. The second generation of magnetite does not contain structural admixtures. The distribution of boron minerals and complex crystal hydrates shows that connate water of sedimentary rocks could have participated in hydrothermal metasomatic processes.  相似文献   

20.
Samples of magnetite ores of different parageneses and mineral compositions from the Goroblagodatskoe skarn-magnetite deposit were studied by physical and mineralogo-petrographic methods. Electrical-resistance curves were obtained for an ore containing 80–90% magnetite for the temperature range 20–800 ºC. Three groups of samples were recognized according to the pattern of temperature curves and electrical resistance: sulfide-free, sulfide-containing (pyrrhotite), and variolitic ores. The parameters of high-temperature conductivity (activation energy E0 and coefficient of electrical resistance logR0) have been determined. A linear relationship between E0 and logR0 (logR0= abE0) has been established for magnetite ores of all mineral types. The coefficient a varies from 1.92 to 4.80 depending on the type and mineral composition of magnetite ores. The coefficient b is nearly constant for all studied samples, 6.65. The figurative points of the samples in the E0–logR0 coordinates lie in the field bounded by the straight lines logR0= 4.80 – 6.65E0 and logR0= 1.92 – 6.65E0. The samples of magnetite ores of the skarn and hydrosilicate paragenesis with visible pyrrhotite inclusions and samples of variolitic ores form an individual group in the above field. Within the group, the ores are also subdivided into garnet-magnetite (skarn paragenesis), epidote-chlorite-magnetite (hydrosilicate paragenesis), pyroxene-magnetite, and orthoclase-magnetite (variolitic ores).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号