首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of trans-Neptunian satellite systems at the stage of rarefied preplanetesimals (i.e., condensations of dust and/or objects less than 1 m in diameter) is discussed. It is assumed that trans-Neptunian objects (including those with satellites) could form as a result of compression of parental rarefied preplanetesimals. The formulas for calculating the angular momentum of two colliding condensations with respect to their center of mass, which were applied earlier in (Ipatov, 2010) in the comparison of such momenta with the angular momenta of observed satellite systems, are used to estimate the angular momenta of condensations needed to form satellite systems. It is demonstrated that the angular velocities of condensations used in (Nesvorny et al., 2010) as the initial data in the computer simulation of compression of rarefied preplanetesimals and subsequent formation of trans-Neptunian satellite systems may be obtained in collisions of preplanetesimals with their radii comparable to the corresponding Hill radii. For example, these angular velocities are in the range of possible values of angular velocities of a parental rarefied preplanetesimal formed as a result of a merger of two colliding rarefied preplanetesimals that moved in circular heliocentric orbits before a collision. Some rarefied preplanetesimals formed as a result of collision of preplanetesimals in the region of formation of solid small bodies acquire such angular momenta that are sufficient to form satellite systems of small bodies. It is likely that the ratio of the number of rarefied preplanetesimals with such angular momenta to the total number of rarefied preplanetesimals producing classical trans-Neptunian objects with diameters larger than 100 km was 0.45 (the initial fraction of satellite systems among all classical trans-Neptunian objects).  相似文献   

2.
The dynamical interaction of a binary or planetary system and a third body moving on a hyperbolic orbit inclined to the system is discussed in terms of Hill stability for the full three-body problem. The situation arises in binary star disruption and exchange and planetary system exchange or capture. It is found that increasing the inclination of the third body decreases the Hill regions of stability. Increasing the eccentricity of the third body also produces similar effects. These type of changes make exchange or disruption of the component masses more likely as also does increasing the eccentricity of the binary.

The critical distances and Hill stability ranges associated with the possible formation of roughly equal mass trans-Neptunian binaries from three-body interactions are determined for a range of secondary component masses.  相似文献   


3.
Matija ?uk  David Nesvorný 《Icarus》2010,207(2):732-743
About 15% of both near-Earth and main-belt asteroids with diameters below 10 km are now known to be binary. These small asteroid binaries are relatively uniform and typically contain a fast-spinning, flattened primary and a synchronously rotating, elongated secondary that is 20-40% as large (in diameter) as the primary. The principal formation mechanism for these binaries is now thought to be YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effect induced spin-up of the primary followed by mass loss and accretion of the secondary from the released material. It has previously been suggested (?uk, M. [2007]. Astrophys. J. 659, L57-L60) that the present population of small binary asteroids is in a steady state between production through YORP and destruction through binary YORP (BYORP), which should increase or decrease secondary’s orbit, depending on the satellite’s shape. However, BYORP-driven evolution has not been directly modeled until now. Here we construct a simple numerical model of the binary’s orbital as well the secondary’s rotational dynamics which includes BYORP and selected terms representing main solar perturbations. We find that many secondaries should be vulnerable to chaotic rotation even for relatively low-eccentricity mutual orbits. We also find that the precession of the mutual orbit for typical small binary asteroids might be dominated by the perturbations from the prolate and librating secondary, rather than the oblate primary. When we evolve the mutual orbit by BYORP we find that the indirect effects on the binary’s eccentricity (through the coupling between the orbit and the secondary’s spin) dominate over direct ones caused by the BYORP acceleration. In particular, outward evolution causes eccentricity to increase and eventually triggers chaotic rotation of the secondary. We conclude that the most likely outcome will be reestablishing of the synchronous lock with a “flipped” secondary which would then evolve back in. For inward evolution we find an initial decrease of eccentricity and secondary’s librations, to be followed by later increase. We think that it is likely that various forms of dissipation we did not model may damp the secondary’s librations close to the primary, allowing for further inward evolution and a possible merger. We conclude that a merger or a tidal disruption of the secondary are the most likely outcomes of the BYORP evolution. Dissociation into heliocentric pairs by BYORP alone should be very difficult, and satellite loss might be restricted to the minority of systems containing more than one satellite at the time.  相似文献   

4.
Pluto and the chaotic satellite system of Neptune may have originated from a single encounter of Neptune with a massive solar system body. A series of numerical experiments has been carried out to try to set limits on the circumstances of such an encounter. These experiments show that orbits very much like those of Pluto, Triton, and Nereid can result from a single close encounter of such a body with Neptune. The implied mass range and encounter velocities limit the source of the encountering body to a former trans-Neptunian planet in the 2- to 5-Earth-mass range.  相似文献   

5.
The locations of the fully despun, double synchronous end states of tidal evolution, where the rotation rates of both the primary and secondary components in a binary system synchronize with the mean motion about the center of mass, are derived for spherical components. For a given amount of scaled angular momentum J/J′, the tidal end states are over-plotted on a tidal evolution diagram in terms of mass ratio of the system and the component separation (semimajor axis in units of primary radii). Fully synchronous orbits may not exist for every combination of mass ratio and angular momentum; for example, equal-mass binary systems require J/J′ > 0.44. When fully synchronous orbits exist for prograde systems, tidal evolution naturally expands the orbit to the stable outer synchronous solution. The location of the unstable inner synchronous orbit is typically within two primary radii and often within the radius of the primary itself. With the exception of nearly equal-mass binaries, binary asteroid systems are in the midst of lengthy tidal evolutions, far from their fully synchronous tidal end states. Of those systems with unequal-mass components, few have even reached the stability limit that splits the fully synchronous orbit curves into unstable inner and stable outer solutions.Calculations of material strength based on limiting the tidal evolution time to the age of the Solar System indicate that binary asteroids in the main belt with 100-km-scale primary components are consistent with being made of monolithic or fractured rock as expected for binaries likely formed from sub-catastrophic impacts in the early Solar System. To tidally evolve in their dynamical lifetime, near-Earth binaries with km-scale primaries or smaller created via a spin-up mechanism must be much weaker mechanically than their main-belt counterparts even if formed in the main belt prior to injection into the near-Earth region. Small main-belt binaries, those having primary components less than 10 km in diameter, could bridge the gap between the large main-belt binaries and the near-Earth binaries, as, depending on the age of the systems, small main-belt binaries could either be as strong as the large main-belt binaries or as weak as the near-Earth binaries. The inherent uncertainty in the age of a binary system is the leading source of error in calculation of material properties, capable of affecting the product of rigidity μ and tidal dissipation function Q by orders of magnitude. Several other issues affecting the calculation of μQ are considered, though these typically affect the calculation by no more than a factor of two. We also find indirect evidence within all three groups of binary asteroids that the semimajor axis of the mutual orbit in a binary system may evolve via another mechanism (or mechanisms) in addition to tides with the binary YORP effect being a likely candidate.  相似文献   

6.
We present the results of our numerical simulations of the cyclic brightness modulation in young binary systems with eccentric orbits and low-mass secondary components. We suggest that the binary components accrete matter from the remnants of the protostellar cloud, with the main accretor (according to current models) being the low-mass component. The brightness variations of the primary are attributable to the periodic extinction variations on the line of sight caused by the disk wind from the secondary and by the common envelope produced by this wind. The distribution of matter in the envelope was calculated in the ballistic approximation. When calculating the optical effects produced by the dust component of the disk wind, we adopted the dust-to-gas mass ratio of 1:100 characteristic of the interstellar medium and the optical parameters of the circumstellar dust typical of young stars. Our calculations show that the theoretical light curves for binaries with elliptical orbits exhibit a wider variety of shapes than those for binaries with circular orbits. In this case, the parameters of the photometric minima (their depth, duration, and shape of the light curve) depend not only on the disk-wind parameters and the orbital inclination of the binary to the line of sight, but also on the longitude of the periastron. We investigate the modulation of the scattered radiation from the common envelope with orbital phase in the single-scattering approximation. The modulation amplitude is shown to be at a maximum when the system is seen edge-on and to be also nonzero in binaries seen pole-on. We discuss possible applications of the theory to young stellar objects. In particular, several model light curves have been found to be similar to those of candidate FU Orionis stars (FUORs).  相似文献   

7.
We consider four bodies in space with same masses forming two binaries, each one symmetric with respect to a fixed axis and moving under Newtonian gravitation in opposite directions about this axis. It is given a direct proof that all singularities of this model are due to collisions, and it is proved that the singularities due to simultaneous double collisions are regularizable. The set of equilibrium points on the total collision manifold is studied as well as the possible connections among them. We show that the set of initial conditions on a given energy surface going to quadruple collision is a union of twenty submanifolds: twelve of them have dimension 2 and the others have dimension 3. Similarly for ejection orbits from quadruple collision. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Sixteen new eclipsing binaries have been discovered by the MOST satellite among guide stars used to point its telescope in various fields. Several previously known eclipsing binaries were also observed by MOST with unprecedented quality. Among the objects we discuss in more detail are short‐period eclipsing binaries with eccentric orbits in young open clusters: V578 Mon in NGC 2244 and HD 47934 in NGC 2264. Long nearly‐continuous photometric runs made it possible to discover three long‐period eclipsing binaries with orbits seen almost edge‐on: HD 45972 with P = 28.1 days and two systems (GSC 154 1247 and GSC 2141 526) with P > 25 days. The high precision of the satellite data led to discoveries of binaries with very shallow eclipses (e.g., HD 46180 with A = 0.016 mag, and HD 47934 with A = 0.025 mag). Ground‐based spectroscopy to support the space‐based photometry was used to refine the models of several of the systems (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present numerical simulations of near-Earth asteroid (NEA) tidal disruption resulting in bound, mutually orbiting systems. Using a rubble pile model we have constrained the relative likelihoods for possible physical and dynamical properties of the binaries created. Overall 110,500 simulations were run, with each body consisting of ∼1000 particles. The encounter parameters of close approach distance and velocity were varied, as were the bodies' spin, elongation and spin axis direction. The binary production rate increases for closer encounters, at lower speeds, for more elongated bodies, and for bodies with greater spin. The semimajor axes for resultant binaries are peaked between 5 to 20 primary radii, and there is an overall trend for high eccentricity, with 97% of binaries having e > 0.1. The secondary-to-primary size ratios of the simulated binaries are peaked between 0.1 and 0.2, similar to trends among observed asteroid binaries. The spin rates of the primary bodies are narrowly distributed between 3.5- and 6-h periods, whereas the secondaries' periods are more evenly distributed and can exceed 15-h periods. The spin axes of the primary bodies are very closely aligned with the angular momenta of the binary orbits, whereas the secondary spin axes are nearly random. The shapes of the primaries show a large distribution of axis ratios, where those with low elongation (ratio of long and short axis) are both oblate and prolate, and nearly all with large elongation are prolate. This work presents results that suggest tidal disruption of gravitational aggregates can make binaries physically similar to those currently observed in the NEA population. As well, tidal disruption may create an equal number of binaries with qualities different from those observed, mostly binaries with large separation and with elongated primaries.  相似文献   

10.
The dynamics of the wind–wind collision in massive stellar binaries are investigated using 3D hydrodynamical models which incorporate gravity, the driving of the winds, the orbital motion of the stars and radiative cooling of the shocked plasma. In this first paper, we restrict our study to main-sequence O+O binaries. The nature of the wind–wind collision region is highly dependent on the degree of cooling of the shocked plasma, and the ratio of the flow time-scale of the shocked plasma to the orbital time-scale. The pre-shock wind speeds are lower in close systems as the winds collide prior to their acceleration to terminal speeds. Radiative inhibition may also reduce the pre-shock wind speeds. Together, these effects can lead to rapid cooling of the post-shock gas. Radiative inhibition is less important in wider systems, where the winds are accelerated to higher speeds before they collide, and the resulting collision region can be largely adiabatic. In systems with eccentric orbits, cold gas formed during periastron passage can persist even at apastron, before being ablated and mixed into its surroundings and/or accelerated out of the system.  相似文献   

11.
We investigate a new theory of the origin of the irregular satellites of the giant planets: capture of one member of a ∼100-km binary asteroid after tidal disruption. The energy loss from disruption is sufficient for capture, but it cannot deliver the bodies directly to the observed orbits of the irregular satellites. Instead, the long-lived capture orbits subsequently evolve inward due to interactions with a tenuous circumplanetary gas disk.We focus on the capture by Jupiter, which, due to its large mass, provides a stringent test of our model. We investigate the possible fates of disrupted bodies, the differences between prograde and retrograde captures, and the effects of Callisto on captured objects. We make an impulse approximation and discuss how it allows us to generalize capture results from equal-mass binaries to binaries with arbitrary mass ratios.We find that at Jupiter, binaries offer an increase of a factor of ∼10 in the capture rate of 100-km objects as compared to single bodies, for objects separated by tens of radii that approach the planet on relatively low-energy trajectories. These bodies are at risk of collision with Callisto, but may be preserved by gas drag if their pericenters are raised quickly enough. We conclude that our mechanism is as capable of producing large irregular satellites as previous suggestions, and it avoids several problems faced by alternative models.  相似文献   

12.
The main topic of this paper is to investigate the exchange of mass and angular momentum between a satellite or planetary system and its primary, and the effects of this exchange to axial rotations and satellite orbits. Various applications on the calculation of axial rotations, present and past satellite masses and orbits and other implications of the theory are presented.  相似文献   

13.
In the present study an investigation of the collision orbits of natural satellites of the Moon (considered to be of finite dimensions) is developed, and the tendency of natural satellites of the Moon to collide on the visible or the far side of the Moon is studied. The collision course of the satellite is studied up to its impact on the lunar surface for perturbations of its initial orbit arbitrarily induced, for example, by the explosion of a meteorite. Several initial conditions regarding the position of the satellite to collide with the Moon on its near (visible) or far (invisible) side is examined in connection to the initial conditions and the direction of the motion of the satellite. The distribution of the lunar craters-originating impact of lunar satellites or celestial bodies which followed a course around the Moon and lost their stability - is examined. First, we consider the planar motion of the natural satellite and its collision on the Moon's surface without the presence of the Earth and Sun. The initial velocities of the satellite are determined in such a way so its impact on the lunar surface takes place on the visible side of the Moon. Then, we continue imparting these velocities to the satellite, but now in the presence of the Earth and Sun; and study the forementioned impacts of the satellites but now in the Earth-Moon-Satellite system influenced also by the Sun. The initial distances of the satellite are taken as the distances which have been used to compute periodic orbits in the planar restricted three-body problem (cf. Gousidou-Koutita, 1980) and its direction takes different angles with the x-axis (Earth-Moon axis). Finally, we summarise the tendency of the satellite's impact on the visible or invisible side of the Moon.  相似文献   

14.
We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high-e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect, “rubble pile” asteroid geophysics, and gravitational interactions. The YORP effect torques a “rubble pile” asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thus creating a chaotic ternary system. The initially chaotic binary can be stabilized to create a synchronous binary by components of the fissioned secondary asteroid impacting the primary asteroid, solar gravitational perturbations, and mutual body tides. These results emphasize the importance of the initial component size distribution and configuration within the parent asteroid. NEAs may go through multiple binary cycles and many YORP-induced rotational fissions during their approximately 10 Myr lifetime in the inner Solar System. Rotational fission and the ensuing dynamics are responsible for all NEA systems including the most commonly observed synchronous binaries.  相似文献   

15.
本文介绍了ROSAT卫星对活动双星的观测及其观测性质,并比较活动双星的冕活动与同光谱带单层的不同,探讨次星的存在和质量转移对双量活动性的影响。  相似文献   

16.
The discovery of binaries among the population of transneptunian objects isa landmark advance in the study of this remote region of the solar system.Determination of binary orbits will enable direct determination of systemmasses, fundamental for determination of density, internal structure, and bulkcomposition. The mere existence of binaries with the observed separations andapparent masses constrains models of planetary formation.  相似文献   

17.
The number of confirmed and suspected close T Tauri binaries (period days) is increasing. We discuss some systems with enhanced emission line activity and periodic line profile changes. Non-axisymmetric flows of plasma in the region between the circumbinary disk and the stars can be generated through the influence of the secondary component. Such enhanced activity is found around binaries with eccentric as well as circular orbits. We discuss our observations of the T Tauri stars RW Aurigae A and RU Lupi, which may host very close brown dwarf companions. Model simulations indicate that non-axisymmetric flows are generated around close binaries with circumbinary disks, also in systems with circular orbits.  相似文献   

18.
In the general three-body problem, in a rotating frame of reference, a symmetric periodic solution with a binary collision is determined by the abscissa of one body and the energy of the system. For different values of the masses of the three bodies, the symmetric periodic collision orbits form a two-parametric family. In the case of equal masses of the two bodies and small mass of the third body, we found several symmetric periodic collision orbits similar to the corresponding orbits in the restricted three-body problem. Starting with one symmetric periodic collision orbit we obtained two families of such orbits. Also starting with one collision orbit in the Sun-Jupiter-Saturn system we obtained, for a constant value of the mass ratio of two bodies, a family of symmetric periodic collision orbits.  相似文献   

19.
J.-M. Petit  O. Mousis 《Icarus》2004,168(2):409-419
Given the large orbital separation and high satellite-to-primary mass ratio of all known Kuiper Belt Object (KBO) binaries, it is important to reassess their stability as bound pairs with respect to several disruptive mechanisms. Beside the classical shattering and dispersing of the secondary due to a high-velocity impact, we consider the possibility that the secondary is kicked off its orbit by a direct collision of a small impactor, or that it is gravitationally perturbed due to the close approach of a somewhat larger TNO. Depending on the values for the size/mass/separation of the binaries that we used, 2 or 3 of the 9 pairs can be dispersed in a timescale shorter than the age of the Solar System in the current rarefied environment. A contemporary formation scenario could explain why we still observe these binaries, but no convincing mechanism has been proposed to date. The primordial formation scenarios, which seem to be the only viable ones, must be revised to increase the formation efficiency in order to account for this high dispersal rate. For the reference current KBO population, objects like the large-separation KBO binaries 1998 WW31 or 2001 QW322 must have been initially an order of magnitude more numerous. If the KBO binaries are indeed primordial, then we show that the mass depletion of the Kuiper belt cannot result from collisional grinding, but must rather be due to dynamical ejection.  相似文献   

20.
We study the multiple periodic orbits of Hill’s problem with oblate secondary. In particular, the network of families of double and triple symmetric periodic orbits is determined numerically for an arbitrary value of the oblateness coefficient of the secondary. The stability of the families is computed and critical orbits are determined. Attention is paid to the critical orbits at which families of non-symmetric periodic orbits bifurcate from the families of symmetric periodic orbits. Six such bifurcations are found, one for double-periodic and five for triple-periodic orbits. Critical orbits at which families of sub-multiple symmetric periodic orbits bifurcate are also discussed. Finally, we present the full network of families of multiple periodic orbits (up to multiplicity 12) together with the parts of the space of initial conditions corresponding to escape and collision orbits, obtaining a global view of the orbital behavior of this model problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号