首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arjuna‐type orbits are characterized by being Earth‐like, having both low‐eccentricity and low‐inclination. Objects following these trajectories experience repeated trappings in the 1:1 commensurability with the Earth and can become temporary Trojans, horseshoe librators, quasi‐satellites, and even transient natural satellites. Here, we review what we know about this peculiar dynamical group and use a Monte Carlo simulation to characterize geometrically the Arjuna orbital domain, studying its visibility both from the ground and with the European Space Agency Gaia spacecraft. The visibility analysis from the ground together with the discovery circumstances of known objects are used as proxies to estimate the current size of this population. The impact cross‐section of the Earth for minor bodies in this resonant group is also investigated. We find that, for ground‐based observations, the solar elongation at perigee of nearly half of these objects is less than 90°. They are best observed by space‐borne telescopes, but Gaia is not going to improve significantly the current discovery rate for members of this class. Our results suggest that the size of this population may have been underestimated by current models. On the other hand, their intrinsically low encounter velocities with the Earth induce a 10–1000‐fold increase in the impact cross‐section with respect to what is typical for objects in the Apollo or Aten asteroid populations. We estimate that their probability of capture as transient natural satellites of our planet is about 8 %. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We present results from long-term numerical integrations of hypothetical Jupiter-family comets (JFCs) over time-scales in excess of the estimated cometary active lifetime. During inactive periods these bodies could be considered as 'cometary' near-Earth objects (NEOs) or 'cometary asteroids'. The contribution of cometary asteroids to the NEO population has important implications not only for understanding the origin of inner Solar system bodies but also for a correct assessment of the impact hazard presented to the Earth by small bodies throughout the Solar system. We investigate the transfer probabilities on to 'decoupled' subJovian orbits by both gravitational and non-gravitational mechanisms, and estimate the overall inactive cometary contribution to the NEO population. Considering gravitational mechanisms alone, more than 90 per cent of decoupled NEOs are likely to have their origin in the main asteroid belt. When non-gravitational forces are included, in a simple model, the rate of production of decoupled NEOs from JFC orbits becomes comparable to the estimated injection rate of fragments from the main belt. The Jupiter-family (non-decoupled) cometary asteroid population is estimated to be of the order of a few hundred to a few thousand bodies, depending on the assumed cometary active lifetime and the adopted source region.  相似文献   

3.
Gianluca Masi 《Icarus》2003,163(2):389-397
The likely existence of bodies orbiting the Sun with aphelia Q < 0.983 AU has been suggested by numerical simulations of the dynamical evolution of the near-Earth objects (NEOs) population. For obvious reasons, these hypothetical minor bodies are called inner-Earth objects (IEOs). While much progresses has been made in learning more about the Amor, Apollo, and Aten population from surveys optimized for their discovery, no large, systematic, and similar observation projects devoted to the search of IEOs have been started. For their own orbital nature, IEOs can be observed only at small solar elongations (<90°), corresponding to regions of the sky currently neglected by the modern, ongoing surveys. This paper discusses a possible ground-based approach to look for IEOs, providing some useful tricks and the results of simulated surveys devoted to their discovery. It will be shown that such a search promises interesting results, the setup of a dedicated project being highly recommended.  相似文献   

4.
The near-Earth objects and their potential threat to our planet   总被引:1,自引:0,他引:1  
The near-Earth object (NEO) population includes both asteroids (NEAs) and comet nuclei (NECs) whose orbits have perihelion distances q<1.3 AU and which can approach or cross that of the Earth. A NEA is defined as a “potentially hazardous asteroid” (PHA) for Earth when its minimum orbit intersection distance (MOID) comes inside 0.05 AU and it has an absolute magnitude H<22 mag (i.e. mean diameter > 140 m). These are big enough to cause, in the case of impact with Earth, destructive effects on a regional scale. Smaller objects can still produce major damage on a local scale, while the largest NEOs could endanger the survival of living species. Therefore, several national and international observational efforts have been started (i) to detect undiscovered NEOs and especially PHAs, (ii) to determine and continuously monitor their orbital properties and hence their impact probability, and (iii) to investigate their physical nature. Further ongoing activities concern the analysis of possible techniques to mitigate the risk of a NEO impact, when an object is confirmed to be on an Earth colliding trajectory. Depending on the timeframe available before the collision, as well as on the object’s physical properties, various methods to deflect a NEO have been proposed and are currently under study from groups of experts on behalf of international organizations and space agencies. This paper will review our current understanding of the NEO population, the scientific aspects and the ongoing space- and ground-based activities to foresee close encounters and to mitigate the effects of possible impacts.  相似文献   

5.
We investigate several parts of the process of migration of small bodies to the Earth from the asteroid and transneptunian belts. The obtained characteristic times up to collisions of near-Earth objects with the Earth are less than those obtained by other scientists.  相似文献   

6.
We investigate several parts of the process of migration of small bodies to the Earth from the asteroid and transneptunian belts. The obtained characteristic times up to collisions of near-Earth objects with the Earth are less than those obtained by other scientists.  相似文献   

7.
Among 11 673 of near-Earth objects (NEOs), 52 asteroids are identified, which, together with the Eccentrids meteor system, comprise a single population of small bodies of the Solar System with the smallest orbits of high eccentricity. Some features of this unique system of bodies are discussed in this paper. The distribution of perihelion longitudes is studied for the given group of asteroids and compared to that of the Aten asteroids, which are the most similar to the Eccentrids. The dependence is obtained of the character of perihelion longitude distribution on the eccentricities of the NEO orbits. Eight asteroid stream of the Eccentrids are found. The Eccentrids asteroids approaching the Earth’s orbit along its whole length in their aphelia can pose a certain hazard for the Earth.  相似文献   

8.
Space debris—man-made non-functional objects of all sizes in near-Earth space—has been recognized as an increasing threat for current and future space operations. The debris population in near-Earth space has therefore been extensively studied during the last decade. Information on objects at altitudes higher than about 2,000 km is, however, still comparatively sparse. Debris in this region is best detected by surveys utilizing optical telescopes. Moreover, the instruments and the applied observation techniques, as well as the processing methods, have many similarities with those used in optical surveys for ‘astronomical’ objects like near-Earth objects (NEOs). The present article gives a general introduction to the problem of space debris, presents the used observation and processing techniques emphasizing the similarities and differences compared to optical surveys for NEOs, and reviews the results from optical surveys for space debris in high-altitude Earth orbits. Predictions on the influence of space debris on the future of space research and space astronomy in particular are reported as well.  相似文献   

9.
We obtain the size and orbital distributions of near-Earth asteroids (NEAs) that are expected to be in the 1 : 1 mean motion resonance with the Earth in a steady state scenario. We predict that the number of such objects with absolute magnitudes H<18 and H<22 is 0.65±0.12 and 16.3±3.0, respectively. We also map the distribution in the sky of these Earth coorbital NEAs and conclude that these objects are not easily observed as they are distributed over a large sky area and spend most of their time away from opposition where most of them are too faint to be detected.  相似文献   

10.
We present a brief review of polarimetric measurements of solar system objects, both linear and circular, obtained with the FORS1 instrument at the Very Large Telescope VLT over the past years. A number of first and new results have been obtained by using this unique observing mode at an 8 m class telescope, among them polarimetry of faint planetary bodies like near-Earth asteroids, Kuiper Belt objects and cometary nuclei, spectropolarimetry of cometary coma material and of the Earthshine of the Moon (in order to verify that life exists on Earth!). We outline the science cases for planetary polarimetry at a future Extremely Large Telescope ELT and provide high level requirements for polarimetric equipment to be used at the ELTs for the study of the science cases described.  相似文献   

11.
This paper analyzes the distribution of the orbits of near-Earth minor bodies from the data on more than 7500 objects. The distribution of large near-Earth objects (NEOs) with absolute magnitudes of H < 18 is generally consistent with the earlier predictions (Bottke et al., 2002; Stuart, 2003), although we have revealed a previously undetected maximum in the distribution of perihelion distances q near q = 0.5 AU. The study of the orbital distribution for the entire sample of all detected objects has found new significant features. In particular, the distribution of perihelion longitudes seriously deviates from a homogeneous pattern; its variations are roughly 40% of its mean value. These deviations cannot be stochastic, which is confirmed by the Kolmogorov-Smirnov test with a more than 0.9999 probability. These features can be explained by the dynamic behavior of the minor bodies related to secular resonances with Jupiter. For the objects with H < 18, the variations in the perihelion longitude distribution are not so apparent. By extrapolating the orbital characteristics of the NEOs with H < 18, we have obtained longitudinal, latitudinal, and radial distributions of potentially hazardous objects in a heliocentric ecliptic coordinate frame. The differences in the orbital distributions of objects of different size appear not to be a consequence of observational selection, but could indicate different sources of the NEOs.  相似文献   

12.
The problem of detecting dangerous (in the sense of a collision with the Earth) celestial bodies of natural origin and the modern concept of building a system of detection of such bodies are discussed. The concept includes two items: remote detection of large (>50 m) hazardous objects providing warning time of several tens of days, which is sufficient to allow the active counteraction and detection of hazardous bodies larger than 10 m in near-Earth space providing warning time of few hours, which is sufficient to issue a warning and to carry out mitigation activities. Some examples of this approach and prospects of the international cooperation are discussed.  相似文献   

13.
M. Lazzarin  S. Marchi  M. Di Martino 《Icarus》2004,169(2):373-384
Near-Earth objects (NEOs) represent one of the most intriguing populations of Solar System bodies. These objects appear heterogeneous in all aspects of their physical properties, like shapes, sizes, spin rates, compositions etc. Moreover, as these objects represent also a real threat to the Earth, a good knowledge of their properties and composition is the necessary first step to evaluate mitigation techniques and to understand their origin and evolution. In the last few years we have started a long-term spectroscopic investigation in the visible and near-infrared (NIR) region of near-Earth objects. The observations have been performed with the 3.5 m NTT of the European Southern Observatory of La Silla (Chile). The data presented here are a set of 24 spectra, 14 of which are both visible and NIR. We discuss the taxonomic classification of the observed NEOs, resulting in 13 S-type objects, 1 Q-type, 2 K-types, 3 C-types, 5 Xe-types (two of these, (3103) Eger and (4660) Nereus, are already known as E-types). Moreover, we discuss their links with meteorites and the possible influences of space weathering.  相似文献   

14.
Thermal observations of large asteroids at millimeter wavelengths have revealed high amplitude rotational lightcurves. Such lightcurves are important constraints on thermophysical models of asteroids, and provide unique insight into the nature of their surface and subsurface composition. A better understanding of asteroid surfaces provides insight into the composition, physical structures, and processing history of these surviving remnants from the formation of our solar system. In addition, detailed observations of the larger asteroids, accompanied by thermophysical models with appropriate temporal and spatial resolution, promise to decrease uncertainties in their flux predictions. Of particular interest are the near-Earth objects, which can be observed at large phase angles, permitting better assessment of the thermal response of their unilluminated surfaces. The high sensitivity of ALMA will enable us to detect many small bodies in all the major groups, to obtain lightcurves for a large sample of main-belt and near-Earth objects, to resolve the surfaces of some large objects, and to separate the emission from primary and secondary objects in binary pairs. In addition to the science goals of asteroid studies, these bodies may also prove useful operationally because those with known shapes and well-characterized lightcurves could be employed for flux calibration by ALMA and other high frequency instruments.  相似文献   

15.
We investigate the flux of main-belt asteroid fragments into resonant orbits converting them into near-Earth asteroids (NEAs), and the variability of this flux due to chance interasteroidal collisions. A numerical model is used, based on collisional physics consistent with the results of laboratory impact experiments. The assumed main-belt asteroid size distribution is derived from that of known asteroids extrapolated down to sizes of ≈ 40 cm, modified in such a way to yield a quasi-stationary fragment production rate over times ≈ 100 Myr. The results show that the asteroid belt can supply a few hundred km-sized NEAs per year, well enough to sustain the current population of such bodies. On the other hand, if our collisional physics is correct, the number of existing 10-km objects implies that these objects either have very long-lived orbits, or must come from a different source (i.e., comets). Our model predicts that the fragments supplied from the asteroid belt have initially a power-law size distribution somewhat steeper than the observed one, suggesting preferential removal of small objects. The component of the NEA population with dynamical lifetimes shorter than or of the order of 1 Myr can vary by a factor reaching up to a few tens, due to single large-scale collisions in the main belt; these fluctuations are enhanced for smaller bodies and faster evolutionary time scales. As a consequence, the Earth's cratering rate can also change by about an order of magnitude over the 0.1 to 1 Myr time scales. Despite these sporadic spikes, when averaged over times of 10 Myr or longer the fluctuations are unlikely to exceed a factor two.  相似文献   

16.
Recent work on the gravitational focusing of meteoroid streams and their threat to satellites and astronauts in the near-Earth environment has concentrated on Earth acting as the gravitational attractor, totally ignoring the Moon. Though the Moon is twelve-thousandths the mass of the Earth, it too can focus meteors, albeit at a much greater distance downstream from its orbital position in space. At the Earth–Moon distance during particular phases of the Moon, slower speed meteoroid streams with very compact radiant diameters can show meteoroid flux enhancements in Earth’s immediate neighborhood. When the right geometric alignment occurs, this arises as a narrowed beam of particles of approximately 1,000 km width. For a narrow radiant of one-tenth degree diameter there is a 10-fold increase in the level of flux passing through the near-Earth environment. Meteoroid streams with more typical radiant sizes of 1° show at most two times enhancement. For sporadic sources, the enhancement is found to be insignificant due to the wide angular spread of the diffuse radiant and thus may be considered of little importance.  相似文献   

17.
18.
The Heliospheric Imagers Onboard the STEREO Mission   总被引:1,自引:0,他引:1  
Mounted on the sides of two widely separated spacecraft, the two Heliospheric Imager (HI) instruments onboard NASA’s STEREO mission view, for the first time, the space between the Sun and Earth. These instruments are wide-angle visible-light imagers that incorporate sufficient baffling to eliminate scattered light to the extent that the passage of solar coronal mass ejections (CMEs) through the heliosphere can be detected. Each HI instrument comprises two cameras, HI-1 and HI-2, which have 20° and 70° fields of view and are off-pointed from the Sun direction by 14.0° and 53.7°, respectively, with their optical axes aligned in the ecliptic plane. This arrangement provides coverage over solar elongation angles from 4.0° to 88.7° at the viewpoints of the two spacecraft, thereby allowing the observation of Earth-directed CMEs along the Sun?–?Earth line to the vicinity of the Earth and beyond. Given the two separated platforms, this also presents the first opportunity to view the structure and evolution of CMEs in three dimensions. The STEREO spacecraft were launched from Cape Canaveral Air Force Base in late October 2006, and the HI instruments have been performing scientific observations since early 2007. The design, development, manufacture, and calibration of these unique instruments are reviewed in this paper. Mission operations, including the initial commissioning phase and the science operations phase, are described. Data processing and analysis procedures are briefly discussed, and ground-test results and in-orbit observations are used to demonstrate that the performance of the instruments meets the original scientific requirements.  相似文献   

19.
As follows from dynamical studies, in the course of evolution, most near-Earth objects reach orbits with small perihelion distances. Changes of the asteroids in the vicinity of the Sun should play a key role in forming the physical properties, size distribution, and dynamical features of the near-Earth objects. Only seven of the discovered asteroids are currently moving along orbits with perihelion distances q < 0.1 AU. However, due to the Kozai–Lidov secular perturbations, the asteroids, having recently passed near the Sun, could by now have moved to orbits farther from the Sun. In this study, we found asteroids that have been recently orbiting with perihelion distances q < 0.1 AU. Asteroids may be on such orbits for hundreds to tens of thousands of years. To carry out astrophysical observations of such objects is a high priority.  相似文献   

20.
We simulate the formation of the Oort cloud (OC) till the age of 2 Gyr starting from an initial disc of planetesimals made by 10 038 test particles. The results on the outer part of the distant comet reservoir are reported by Neslu?an et al. (this issue). Here we deal with the evolution of the population and structure at 2 Gyr of the complementary inner part of the Oort cloud. The dynamical evolution of the massless test particles was followed via the numerical integration of their orbits. We considered the perturbations produced by four giant planets assuming they have their current orbits and masses, as well as the perturbations caused by the Galactic tide and passing stars. The efficiency of the formation of inner OC is found to be very low: only about 1.1% of all considered particles ended in this part of the OC. At 2 Gyr, the dynamics of the inner cloud is mainly governed by the dominant z-term of the Galactic tide. The number density of the bodies is proportional to the heliocentric distance, r, as r ?3.53. The directional distribution of orbits is still strongly inhomogeneous. There are large empty regions in the space angles around the Galactic Equator points with the galactic longitude 90 and 270° (non-rotating frame), or there are only few bodies having the ecliptical latitude higher than +60° or lower than 60°. A strong concentration of objects at the Ecliptic is apparent up to ≈1,000 AU, with a possible—but still not proved—extension to ≈1,500 AU. Beyond r ≈ 6,000 AU, bodies directly above and below the Sun, with respect to the Ecliptic, are absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号