首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The last eruptions of the monogenetic Bakony-Balaton Highland Volcanic Field (western Pannonian Basin, Hungary) produced unusually crystal- and xenolith-rich alkaline basalts which are unique among the alkaline basalts of the Carpathian–Pannonian Region. Similar alkaline basalts are only rarely known in other volcanic fields of the world. These special basaltic magmas fed the eruptions of two closely located volcanic centres: the Bondoró-hegy and the Füzes-tó scoria cone. Their uncommon enrichment in diverse crystals produced unique rock textures and modified original magma compositions (13.1–14.2 wt.% MgO, 459–657 ppm Cr, and 455–564 ppm Ni contents). Detailed mineral-scale textural and chemical analyses revealed that the Bondoró-hegy and Füzes-tó alkaline basaltic magmas have a complex ascent history, and that most of their minerals (~30 vol.% of the rocks) represent foreign crystals derived from different levels of the underlying lithosphere. The most abundant xenocrysts, olivine, orthopyroxene, clinopyroxene, and spinel, were incorporated from different regions and rock types of the subcontinental lithospheric mantle. Megacrysts of clinopyroxene and spinel could have originated from pegmatitic veins/sills which probably represent magmas crystallized near the crust–mantle boundary. Green clinopyroxene xenocrysts could have been derived from lower crustal mafic granulites. Minerals that crystallized in situ from the alkaline basaltic melts (olivine with Cr-spinel inclusions, clinopyroxene, plagioclase, and Fe–Ti oxides) are only represented by microphenocrysts and overgrowths on the foreign crystals. The vast amount of peridotitic (most common) and mafic granulitic materials indicates a highly effective interaction between the ascending magmas and wall rocks at lithospheric mantle and lower crustal levels. However, fragments from the middle and upper crust are absent from the studied basalts, suggesting a change in the style (and possibly rate) of magma ascent in the crust. These xenocryst- and xenolith-rich basalts yield divers tools for estimating magma ascent rate that is important for hazard forecasting in monogenetic volcanic fields. According to the estimated ascent rates, the Bondoró-hegy and Füzes-tó alkaline basaltic magmas could have reached the surface within hours to few days, similarly to the estimates for other eruptive centres in the Pannonian Basin which were fed by “normal” (crystal and xenoliths poor) alkaline basalts.  相似文献   

2.
Twenty-three volcanic rocks from the Setouchi volcanic belt, southwest Japan, were analyzed for Nd and Sr isotopic compositions for the purpose of examining the genetic relationships among the basalt, high-magnesium andesite (HMA) and evolved porphyritic andesite. The andesites have higher87Sr/86Sr (0.70487–0.70537) and lower143Nd/144Nd (0.512509–0.512731) than the basalts, i.e., 0.70408–0.70468 and 0.512691–0.512830, respectively. This result confirms earlier conclusions obtained from petrologic study that the andesites cannot be fractionation products of basaltic magma but that the andesitic and basaltic magmas were generated independently. On the basis of melting experiments for HMA and basalt, it is inferred that there is an isotopically stratified mantle beneath southwest Japan. Evolved porphyritic andesites have essentially identical Sr and Nd isotopic ratios to HMA and can be derived by fractionation of primary andesitic magma. A model to produce orogenic andesite is proposed on petrologic, experimental and isotopic bases.  相似文献   

3.
图们江流域新生代火山岩Sr、Nd同位素初步研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王团华  樊祺诚  孙谦  李霓 《地震地质》2006,28(3):367-380
中国地震局地质研究所; 中国地震局地质研究所 北京  相似文献   

4.
Mount Drum is one of the youngest volcanoes in the subduction-related Wrangell volcanic field (80×200 km) of southcentral Alaska. It lies at the northwest end of a series of large, andesite-dominated shield volcanoes that show a northwesterly progression of age from 26 Ma near the Alaska-Yukon border to about 0.2 Ma at Mount Drum. The volcano was constructed between 750 and 250 ka during at least two cycles of cone building and ring-dome emplacement and was partially destroyed by violent explosive activity probably after 250 ka. Cone lavas range from basaltic andesite to dacite in composition; ring-domes are dacite to rhyolite. The last constructional activity occurred in the vicinity of Snider Peak, on the south flank of the volcano, where extensive dacite flows and a dacite dome erupted at about 250 ka. The climactic explosive eruption, that destroyed the top and a part of the south flank of the volcano, produced more than 7 km3 of proximal hot and cold avalanche deposits and distal mudflows. The Mount Drum rocks have medium-K, calc-alkaline affinities and are generally plagioclase phyric. Silica contents range from 55.8 to 74.0 wt%, with a compositional gap between 66.8 and 72.8 wt%. All the rocks are enriched in alkali elements and depleted in Ta relative to the LREE, typical of volcanic arc rocks, but have higher MgO contents at a given SiO2, than typical orogenic medium-K andesites. Strontium-isotope ratios vary from 0.70292 to 0.70353. The compositional range of Mount Drum lavas is best explained by a combination of diverse parental magmas, magma mixing, and fractionation. The small, but significant, range in 87Sr/86Sr ratios in the basaltic andesites and the wide range of incompatible-element ratios exhibited by the basaltic andesites and andesites suggests the presence of compositionally diverse parent magmas. The lavas show abundant petrographic evidence of magma mixing, such as bimodal phenocryst size, resorbed phenocrysts, reaction rims, and disequilibrium mineral assemblages. In addition, some dacites and andesites contain Mg and Ni-rich olivines and/or have high MgO, Cr, Ni, Co, and Sc contents that are not in equilibrium with the host rock and indicate mixing between basalt or cumulate material and more evolved magmas. Incompatible element variations suggest that fractionation is responsible for some of the compositional range between basaltic andesite and dacite, but the rhyolites have K, Ba, Th, and Rb contents that are too low for the magmas to be generated by fractionation of the intermediate rocks. Limited Sr-isotope data support the possibility that the rhyolites may be partial melts of underlying volcanic rocks. Received March 13, 1993/Accepted September 10, 1993  相似文献   

5.
长白山火山的历史与演化   总被引:3,自引:0,他引:3  
长白山火山跨越中朝两国,在我国境内包括天池火山、望天鹅火山、图们江火山和龙岗火山,火山活动从上新世持续到近代,是我国最大的第四纪火山分布区。长白山火山的母岩浆是钾质粗面玄武岩,将长白山火山岩区称钾质粗面玄武岩省,岩浆结晶分异作用和混合作用主导了岩浆演化过程。天池火山之下地壳岩浆房和地幔岩浆房具双动式喷发特点,一方面来自地幔的钾质粗厨玄武岩浆直接喷出地表;另一方面钾质粗面玄武岩浆持续补给地壳岩浆房,发生岩浆分离结晶作用和混合作用,导致双峰式火山岩分布特征和触发千年大喷发。西太平洋板块俯冲-东北亚大陆弧后引张是长白山火山活动的动力学机制。  相似文献   

6.
Batur is an active stratovolcano on the island of Bali, Indonesia, with a large, well-formed caldera whose formation is correlated with the eruption about 23,700 years ago of a thick ignimbrite sheet. Our study of the volcanic stratigraphy and geochemistry of Batur shows the formation of the caldera was signalled by a change in the composition of the erupting material from basaltic and andesitic to dacitic. The dacitic rocks are glassy, possess equilibrium phenocryst assemblages, and display compositional characteristics consistent with an origin by crystal-liquid fractionation from more mafic parent magmas in a shallow chamber, possibly at 1.5 km depth and 1000–1070°C.However, although separated by a gap of 6 wt.% SiO2, the dacitic rocks are clearly related in their minor- and trace-element geochemistry to those basalts and basaltic andesites erupted after the caldera was formed rather than to the andesites erupted immediately before the dacites first appeared. We infer from this and published experimental modelling of the possible crystallization behaviour of basaltic magma chambers that a magmatic cycle involving caldera formation began independently of the previous activity of Batur by formation of a new, closed-system magma chamber beneath the volcano. Fractional crystallization, possibly at the walls of the chamber, led to the early production of derivative siliceous magmas and, consequently, to caldera formation, while most of the magma retained its original composition. The postcaldera Batur basalts represent the largely undifferentiated core liquids of this chamber.This model contrasts with the traditional evolutionary model for stratovolcano calderas but may be applicable to the origins of calderas similar to that of Batur, particularly those in volcanic island arcs.  相似文献   

7.
Llaima is one of the most active volcanoes of the Chilean volcanic front with recent explosive eruptions in 2008 and 2009. Understanding how the volcano evolved to its present state is essential for predictions of its future behavior. The post-glacial succession of explosive volcanic eruptions of Llaima stratovolcano started with two caldera-forming eruptions at ~16 and ~15 ka, that emplaced two large-volume basaltic-andesitic ignimbrites (unit I). These are overlain by a series of fall deposits (unit II) changing from basaltic-andesitic to dacitic compositions with time. The prominent compositionally zoned, dacitic to andesitic Llaima pumice (unit III) was formed by a large Plinian eruption at ~10 ka that produced andesitic surge deposits (unit IV) in its terminal phase. The following unit V represents a time interval of ~8,000 years during which at least 30 basaltic to andesitic ash and lapilli fall deposits with intercalated volcaniclastic sediments and paleosols were emplaced. Bulk rock, mineral, and glass chemical data constrain stratigraphic changes in magma compositions and pre-eruptive conditions that we interpret in terms of four distinct evolutionary phases. Phase 1 (=unit I) magmas have lower large ion lithophile (LIL)/high field strength (HFS) element ratios compared to younger magmas and thus originated from a mantle source less affected by slab-derived fluids. They differentiated in a reservoir at mid-crustal level. During the post-caldera phase 2 (=units II–IV), relatively long residence times between eruptions allowed for increasingly differentiated magmas to form in a reservoir in the middle crust. Fractional crystallization led to volatile enrichment and oversaturation and is the driving force for the large Plinian eruption of the most evolved (unit III) dacite at Llaima, although replenishment by hot andesite probably triggered the eruption. During the subsequent phase 3 (=unit V >3 ka), frequent mafic replenishments at mid-crustal storage levels favored shorter residence times limiting erupted magma compositions to water-undersaturated basaltic andesites and andesites. At around 3 ka, the magma storage level for phase 4 (=unit V <3 ka to present) shifted to the uppermost crust where the hot magmas partly assimilated the granitic country rock. Although water contents of these basaltic andesites were low, the low-pressure storage facilitated water saturation before eruption. The change in magma storage level at 3 ka was responsible for the dramatic increase in eruption frequency compared to the older Llaima history. We suggest that the change from middle to upper crust magma storage is caused by a change in the stress regime below Llaima from transpression to tension.  相似文献   

8.
The “Colli Albani” composite volcano is made up of strongly silica-undersaturated leucite-bearing rocks. Magmas were erupted during three main periods, but a complex plumbing system dominated by regional tectonics channelled magmas into different reservoirs. The most alkali-rich magmas, restricted to the caldera-forming period (pre-caldera), are extremely enriched in incompatible trace elements and display more radiogenic Sr (87Sr/86Sr?=?0.71057–0.71067), with slightly less radiogenic Pb with respect to those of the post-caldera period. Post-caldera volcanic activity was concentrated in three different volcanic environments: external to the caldera, along the caldera edge and within the caldera. The post-caldera magmas produced melilite- to leucitite-bearing, plagioclase-free leucitites. In contrast to the pre-caldera lavas, they are characterised by lower incompatible trace element abundances and less radiogenic Sr (87Sr/86Sr?=?0.71006–0.71039). Magmas evolved through crystal fractionation plus minor crustal assimilation in a large magma chamber during the pre-caldera period. The multiple caldera collapses dissected and partially obliterated the early magma chamber. During the post-caldera stage, magmas were channelled through several pathways and multiple shallow-level magma reservoirs were established. A lithospheric mantle wedge previously depleted in the basaltic component and subsequently enriched by metasomatic slab-derived component is suggested as the mantle source of Colli Albani parental magmas. Two different parental magmas are recognised for the pre- and post-caldera stages. The differences may be related to the interplay between smaller degrees of melting for the pre-caldera magmas and more carbonate-rich recycled subducted lithologies in the post-caldera magmas.  相似文献   

9.
Magma mixing and magma plumbing systems in island arcs   总被引:3,自引:0,他引:3  
Petrographic features of mixed rocks in island arcs, especially those originating by the mixing of magmas with a large compositional and temperature difference, such as basalt and dacite, suggest that the whole mixing process from their first contact to the final cooling (= eruption) has occurred continuously and in a relatively short time period. This period is probably less than several months, considerably shorter than the whole volcanic history. There may also be a prolonged quiescent interval, lasting longer than several days, between the magmas' contact and the mechanical mixing. This interval will allow the basic magma to cool and produce a semi-solidified boundary which is later disrupted by flow movements to produce basic inclusions.Mixing of magmas of contrasting chemical composition need not be the inevitable consequence of the contact of the magmas. It is, however, made more probable by forced convection caused by motive force such as the injection of a basic magma into an acidic magma chamber. A short interval between their initial contact and the final eruption requires that the acid magma chamber has a small volume, of the same order or less than that the introduced basic magma.The volcanic activity of Myoko volcano, central Japan, of the last 100,000 years shows alternate eruptions of hybrid andesite by mixing of basaltic and dacitic magmas, and non-mixed basalt to basaltic andesite. There was a repose period of 20,000 to 30,000 years between eruptions. The acidic chamber, eventually producing the mixed andesite activity, is formed during the repose period by the « in situ » solidification of the original basic magma against its wall. The volume of the chamber is very small, probably about 10–2 km3. Basaltic magma with constant chemical composition is supplied to the shallow chamber from another deep seated basaltic chamber. The volume of the shallow magma chamber may be critical to the characteristics of volcanic activity and its products.  相似文献   

10.
Calc-alkalic chemical trends characteristic of arc volcanic rocks mainly result from three mechanisms which act additively: (1) fractional crystallization involving separation of titanomagnetite; (2) selective concentration of plagioclase phenocrysts and selective depletion of titanomagnetite phenocryst compared with the actually fractionated proportion; and (3) mixing of magmas on continuous fractionation trends. The association of calc-alkalic and tholeiitic trends in a single composite volcano may not represent different fractional crystallization processes or different chemistries of primary magmas, but the calc-alkalic chemical trend can be considered as a mixing trend resulting from mixing of various magmas on associated tholeiitic chemical trends. Chemical variations of most arc volcanic rocks, including calc-alkalic ones, can accordingly be essentially accounted for by the low-pressure fractional crystallization of phenocrystic phases from primary basaltic magmas.Crystallization sequences of arc magmas which are strongly dependent on water content in magmas are deduced from the phenocryst assemblages. The crystallization sequence changes laterally across-arc, suggesting increasing water contents in magmas toward the back-arc side, as is also seen for other incompatible elements such as K and Rb. Systematic differences in the characteristic crystallization sequence are also observed among arcs, roughly correlating with the crustal thickness. Water content in magma, like other incompatible elements, tends to increase with increasing crustal thickness. The variation of incompatible elements including water roughly represents that of the degree of partial melting of the upper mantle, which is broadly controlled by the crustal thickness.The variation of water content indicates that arc magmas are not saturated with water during differentiation to late differentiates such as dacite or rhyolite. This strongly constrains the maximum water contents in primary basaltic magma, at most 2.5 wt.%. This value suggests that magma generation beneath arcs is dependent on dry solidus of peridotite. Diapiric uprise of the hot deeper mantle and associated adiabatic decompression would be necessary for mantle peridotite to attain the temperature as high as dry solidus. Diapirs that begin to rise from the subduction zone may stop at or near the crust-mantle boundary because of the surrounding density change, and their degree of partial melting is roughly controlled by their stopped depth assuming their similar temperature. Across-arc variation is also explained by the stopped depth of diapirs, but is not controlled by crustal thickness.  相似文献   

11.
During the 2001 eruptive episode three different magmas were erupted on the southern flank of Mount Etna volcano from distinct vent systems. Major and minor element chemistry of rocks and minerals shows that mixing occurred, and that the mixed magma was erupted during the last eruptive phases.The space–time integrated analysis of the eruption, supported by geophysical data, together with major and trace element bulk chemistry (XRF, ICP-MS) and major and trace mineral chemistry (EPMA, LAM ICP-MS), support the following model: 1) trachybasaltic magma rises through a NNW–SSE trending structure, connected to the main open conduit system; 2) ascent of an amphibole-bearing trachybasaltic magma from a 6 km deep eccentric reservoir through newly open N–S trending fractures; 3) just a few days following the eruption onset the two tectonic systems intersect at the Laghetto area; 4) at the Laghetto vent a mixed magma is erupted.Mixing occurred between the amphibole-bearing trachybasaltic magma and an inferred deep more basic end-member. The most relevant aspect in the eruptive dynamics is that the eruption of the mixed magma at the Laghetto vent was highly explosive due to volatile content in the magma. The gas phase formed, mainly because of the decreased volatile solubility due to rapid fractures opening and increased T, related to mixing, and partially because of the amphibole breakdown.  相似文献   

12.
Abstract The Hakkoda‐Towada caldera cluster (HTCC) is a typical Late Cenozoic caldera cluster located in the northern part of the Northeast Japan Arc. The HTCC consists of five caldera volcanoes, active between 3.5 Ma and present time. The felsic magmas can be classified into high‐K (HK‐) type and medium‐ to low‐K (MLK‐) type based on their whole‐rock chemistry. The HK‐type magmas are characterized by higher K2O and Rb contents and higher 87Sr/86Sr ratios than MLK‐type magmas. Both magmas cannot be derived from fractional crystallization of any basaltic magma in the HTCC. Assimilation‐fractional crystallization model calculations show that crustal assimilation is necessary for producing the felsic magmas, and HK‐type magmas are produced by higher degree of crustal assimilation with fractional crystallization than MLK‐type magmas. Although MLK‐type magmas were erupted throughout HTCC activity, HK‐type magmas were erupted only during the initial stage. The temporal variations of magma types suggest the large contribution of crustal components in the initial stage. A major volcanic hiatus of 3 my before the HTCC activity suggests a relatively cold crust in the initial stage. The cold crust probably promoted crustal assimilation and fractional crystallization, and caused the initial generation of HK‐type magmas. Subsequently, the repeated supply of mantle‐derived magmas raised temperature in the crust and formed relatively stable magma pathways. Such a later system produced MLK‐type magmas with lesser crustal components. The MLK‐type magmas are common and HK‐type magmas are exceptional during the Pliocene–Quaternary volcanism in the Northeast Japan Arc. This fact suggests that exceptional conditions are necessary for the production of HK‐type magmas. A relatively cold crust caused by a long volcanic hiatus (several million years) is considered as one of the probable conditions. Intensive crustal assimilation and fractional crystallization promoted by the cold crust may be necessary for the generation of highly evolved HK‐type felsic magmas.  相似文献   

13.
The possibility of magma formation due to the release of stresses in the Crust and Upper Mantle of the Earth is examined for both tensile and compressive failure. The correlation of volcanic activity with shallow and intermediate focus earthquakes is examined in the light of new experimental data on the strength of rocks, and recent theories of the thermal history of the Earth. It is found that in association with earthquakes, granitic magmas may be generated between depths of approximately 15 and 50 kilometers; basaltic magmas between 50 and 100 kilometers; while duntic magmas are unlikely to be generated in this manner.  相似文献   

14.
Lava flows spanning the eruptive record of Graciosa Island (Azores archipelago) and a gabbro xenolith were dated by 40Ar/39Ar in order to constrain the Pleistocene and Holocene volcanic evolution of the island. The results range from 1.05 Ma to 3.9 ka, whereas prior published K–Ar and 14C ages range from 620 to 2 ka. The formation of the Serra das Fontes shield volcano started at minimum 1.05 Ma, and the magmatic system was active for ca. 600 ky, as suggested by the formation of the gabbro xenolith by magmatic differentiation. Evolved magmas making up the Serra das Fontes–Serra Branca composite volcano were generated at ca. 450 ka. After a period of ca. 110 ky of volcanic inactivity and erosion of volcanic edifices, volcanism was reactivated with the formation of the Vitória Unit NW platform. Later, the development of the Vulcão Central Unit started with the formation of monogenetic cones located to the south of the Serra das Fontes–Serra Branca–Vitória Unit. This volcanism became progressively more evolved and was concentrated in a main eruptive center, forming the Vulcão Central stratovolcano with an age older than 50 ka. The caldera related to this stratovolcano is older than 47 ka and was followed by effusion of basaltic magmas into the caldera, resulting in the formation of a lava lake, which ultimately spilled over the caldera rim at ca. 11 ka. The most recent eruptions on Graciosa formed two small pyroclastic cones within the caldera and the Pico do Timão cone within the Vitória Unit at ca 3.9 ka.  相似文献   

15.
Nisyros island is a calc-alkaline volcano, built up during the last 100 ka. The first cycle of its subaerial history includes the cone-building activity with three phases, each characterized by a similar sequence: (1) effusive and explosive activity fed by basaltic andesitic and andesitic magmas; and (2) effusive andextrusive activity fed by dacitic and rhyolitic magmas. The second eruptive cycle includes the caldera-forming explosive activity with two phases, each consisting of the sequence: (1) rhyolitic phreatomagmatic eruptions triggering a central caldera collapse; and (2) extrusion of dacitic-rhyolitic domes and lava flows. The rocks of this cycle are characteized by the presence of mafic enclaves with different petrographic and chemical features which testify to mixing-mingling processes between variously evolved magmas. Jumps in the degree of evolution are present in the stratigraphic series, accompanied by changes in the porphyritic index. This index ranges from 60% to about 5% and correlates with several teochemical parameters, including a negative correlation with Sr isotope ratios (0.703384–0.705120). The latter increase from basaltic andesites to intermediate rocks, but then slightly decrease in the most evolved volcanic rocks. The petrographic, geochemical and isotopic characteristics can be largely explained by processes occurring in a convecting, crystallizing and assimilating magma chamber, where crystal sorting, retention, resorption and accumulation take place. A group of crystal-rich basaltic andesites with high Sr and compatible element contents and low incompatible elements and Sr isotope ratios probably resulted from the accumulation of plagioclase and pyroxene in an andesitic liquid. Re-entrainment of plagioclase crystals in the crystallizing magma may have been responsible for the lower 87Sr/86Sr in the most evolved rocks. The gaps in the degree of evolution with time are interpreted as due to liquid segregation from a crystal mush once critical crystallinity was reached. At that stage convection halted, and a less dense, less porphyritic, more evolved magma separated from a denser crystal-rich magma portion. The differences in incompatible element enrichment of pre-and post-caldera dacites and the chemical variation in the post-caldera dome sequence are the result of hybridization of post-caldera dome magmas with more mafic magmas, as represented by the enclave compositions. The occurrence of the quenched, more mafic magmas in the two post-caldera units suggests that renewed intrusion of mafic magma took place after each collapse event.  相似文献   

16.
This study includes a compilation of about one hundred estimates of volumetric rates of magma emplacement and volcanic output that are average rates for durations of igneous activity greater than 300 yrs. These data indicate that the rate of volcanic output is about 10−1 km3 yr−1 in regions that are the most active magmatically. Factors that correlate with rates of magma emplacement and volcanic output are: magma composition, crustal thickness, tectonic setting, and regional stress. Of the ninety rates of magma emplacement and volcanic output that were studied, the highest for basaltic magmas are greater than the highest for silicic magmas, regardless of the volumes erupted or areal extent of magmatism. Rates of volcanic output for oceanic areas tend to be greater than rates in continental areas, perhaps because of thinner crust, a predominance of basaltic magma, and higher rates of magma generation. Ratios of intrusive to extrusive volumes are typically about 5 to 1 for oceanic localities and 10 to 1 for continental localities. This difference apparently reflects dissimilar rates of magma ascent related to different crustal thicknesses and magma compositions. The total rate of magma emplacement and volcanic output for the Earth, averaged over the last 180 m.y., is between about 26 and 34 km3 yr−1. About 75% of this total is contributed by ocean-ridge magmatism. Oceanic intraplate magmatism contributes about 5%. Igneous activity in subduction zones, about half of which is continental, adds about 20%. Intracontinental magmatism, more than 95% of which is flood and plains basalts, provides less than 5% of the total global rate of magma emplacement and volcanic output.  相似文献   

17.
Field investigation and lab analysis on samples were carried out for Quaternary volcanoes, including Xiaoshan volcano, Dashan volcano and Bianzhuang hidden volcano, in Haixing area, east of North China. Results show that Xiaoshan volcano with the eruptive material of volcanic scoria, crystal fragments and volcanic ash is a maar volcano, the eruptive pattern is pheatomagmatic eruption, and the influence scope is near the crater. Dashan volcano exploded in the early stage, and then the magma intruded, forming the volcanic neck. The eruption strength and scale are limited, and the eruptive materials are scoria, volcanic agglomerate and dense lava neck. The volcanic rocks in Bianzhuang are porosity and dense volcanic rocks and volcanic breccia, reflecting the pattern of weak explosive eruption and lava flow, and the K-Ar age dating on volcanic rocks indicates that the eruption happened in early Pleistocene. Xiaoshan volcanic scoria and Bianzhuang hidden volcanic rocks are mainly basaltic, Dashan volcanic rocks with lower SiO2 content are nephelinite in composition. Their oxide contents have no linear relationship, indicating that there is no magma evolution relationship between these magmas from the three places. Three volcanic rocks all have enrichment of light rare earth. The Bianzhuang volcanic rocks are rich in large ion lithophile elements, and have no high field strength elements Zr and Hf, Ti losses. The volcanic materials from Xiaoshan and Dashan are intensively rich in Th, U, Nb and Ta, and significantly poor in K and Ti. Although the magmas from these three places in Haixing area may all come from asthenosphere, the volcanic materials have different petrological and geochemical features, and relatively independent volcanic structures, therefore, they experienced different magma processes.  相似文献   

18.
We proposed a geological and petrologic model for the generation of the Belogolovskii Late Pliocene to Early Pleistocene volcanic massif. We identified two petrochemical series of rocks with varying alkalinities, viz., normal and moderate. The evolution of volcanic products and the mineralogic composition of rocks of varying alkalinities provide evidence that the sources of parent magmas are spatially independent and reside at different depths. Crystallization differentiation is the leading process that is responsible for the generation of the initial melts that give rise to the range of rocks within a series. The evolution of the alkaline basaltic magma occurred stepwise, producing autonomous daughter melts with the following compositions: trachybasalt-trachyandesite-trachyte-trachyrhyolite and comendite. These melts were localized in inter-mediate magma chambers at different depths.  相似文献   

19.
Calc-alkaline intermediate rocks are spatially and temporally associated with high-Mg andesites (HMAs, Mg#>60) in Middle Miocene Setouchi volcanic belt. The calc-alkaline rocks are characterized by higher Mg# (strongly calc-alkaline trend) than ordinary calc-alkaline rocks at equivalent silica contents. Phenocrysts in the intermediate rocks have petrographical features such as: (1) coexisting reversely and normally zoned orthopyroxene phenocrysts in single rock; (2) sieve type plagioclase in which cores are mantled by higher An%, melt inclusion-rich zone; and (3) reversely zoned amphibole phenocrysts with opacite cores. In addition, mingling textures and magmatic inclusions were observed in some rocks. These petrographic features and the mineral chemistry indicate that magma mixing was the most important process in producing the strongly calc-alkaline rocks. The core composition of normally zoned orthopyroxene phenocrysts and the mantle composition of reversely zoned orthopyroxene phenocrysts have relatively high Mg# (85–90) in maximum. Although basaltic and high-Mg andesitic magmas are candidate as possible mafic end-member magmas, basaltic magma is excluded in terms of phenocryst assemblage and bulk composition. HMA magmas are suitable mafic end-member magmas that precipitated high Mg# (90) orthopyroxene, whereas andesitic to dacitic magma are suitable felsic end-members. In contrast, it is difficult to produce the strongly calc-alkaline trend through fractional crystallization from a HMA magma, because it would require removal of plagioclase together with mafic minerals from the early stage of crystallization, whereas the precipitation of plagiolase is suppressed due to the high water content of HMA magmas. These results imply that Archean Mg#-rich TTGs (>45–55), which are an analog of the strongly calc-alkaline rocks in terms of chemistry and magma genesis, can be derived from magma mixing in which a HMA magma is the mafic end-member magma, rather than by fractional crystallization from a HMA magma.  相似文献   

20.
The Iliniza Volcanic Complex (IVC) is a poorly known volcanic complex located 60 km SSW of Quito in the Western Cordillera of Ecuador. It comprises twin peaks, North Iliniza and South Iliniza, and two satellite domes, Pilongo and Tishigcuchi. The study of the IVC was undertaken in order to better constrain the role of adakitic magmas in the Ecuadorian arc evolution. The presence of volcanic rocks with an adakitic imprint or even pristine adakites in the Ecuadorian volcanic arc is known since the late 1990s. Adakitic magmas are produced by the partial melting of a basaltic source leaving a garnet rich residue. This process can be related to the melting of an overthickened crust or a subducting oceanic crust. For the last case a special geodynamic context is required, like the subduction of a young lithosphere or when the subduction angle is not very steep; both cases are possible in Ecuador. The products of the IVC, made up of medium-K basaltic andesites, andesites and dacites, have been divided in different geochemical series whose origin requires various interactions between the different magma sources involved in this subduction zone. North Iliniza is a classic calc-alkaline series that we interpret as resulting from the partial melting of the mantle wedge. For South Iliniza, a simple evolution with fractional crystallization of amphibole, plagioclase, clinopyroxene, magnetite, apatite and zircon from a parental magma, being itself the product of the mixing of 36% adakitic and 64% calc-alkaline magma, has been quantified. For the Santa Rosa rhyolites, a slab melting origin with little mantle interactions during the ascent of magmas has been established. The Pilongo series magma is the product of a moderate to high degree (26%) of partial melting of the subducting oceanic crust, which reached the surface without interaction with the mantle wedge. The Tishigcuchi series shows two stages of evolution: (1) metasomatism of the mantle wedge peridotite by slab melts, and (2) partial melting (10%) of this metasomatized source. Therefore, the relative ages of the edifices show a geochemical evolution from calc-alkaline to adakitic magmas, as is observed for several volcanoes of the Ecuadorian arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号