首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DuneXpress     
The DuneXpress observatory will characterize interstellar and interplanetary dust in-situ, in order to provide crucial information not achievable with remote sensing astronomical methods. Galactic interstellar dust constitutes the solid phase of matter from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with DuneXpress in Earth orbit will provide a comparison between the composition of the interstellar medium and primitive planetary objects. Hence DuneXpress will provide insights into the physical conditions during planetary system formation. This comparison of interstellar and interplanetary dust addresses directly themes of highest priority in astrophysics and solar system science, which are described in ESA’s Cosmic Vision. The discoveries of interstellar dust in the outer and inner solar system during the last decade suggest an innovative approach to the characterization of cosmic dust. DuneXpress establishes the next logical step beyond NASA’s Stardust mission, with four major advancements in cosmic dust research: (1) analysis of the elemental and isotopic composition of individual interstellar grains passing through the solar system, (2) determination of the size distribution of interstellar dust at 1 AU from 10 − 14 to 10 − 9 g, (3) characterization of the interstellar dust flow through the planetary system, (4) establish the interrelation of interplanetary dust with comets and asteroids. Additionally, in supporting the dust science objectives, DuneXpress will characterize dust charging in the solar wind and in the Earth’s magnetotail. The science payload consists of two dust telescopes of a total of 0.1 m2 sensitive area, three dust cameras totaling 0.4 m2 sensitive area, and a nano-dust detector. The dust telescopes measure high-resolution mass spectra of both positive and negative ions released upon impact of dust particles. The dust cameras employ different detection methods and are optimized for (1) large area impact detection and trajectory analysis of submicron sized and larger dust grains, (2) the determination of physical properties, such as flux, mass, speed, and electrical charge. A nano-dust detector searches for nanometer-sized dust particles in interplanetary space. A plasma monitor supports the dust charge measurements, thereby, providing additional information on the dust particles. About 1,000 grains are expected to be recorded by this payload every year, with 20% of these grains providing elemental composition. During the mission submicron to micron-sized interstellar grains are expected to be recorded in statistically significant numbers. DuneXpress will open a new window to dusty universe that will provide unprecedented information on cosmic dust and on the objects from which it is derived.  相似文献   

2.
The Forbush decrease (Fd) of the Galactic cosmic ray (GCR) intensity and disturbances in the Earth’s magnetic field generally take place simultaneously and are caused by the same phenomenon, namely a coronal mass ejection (CME) or a shock wave created after violent processes in the solar atmosphere. The magnetic cut-off rigidity of the Earth’s magnetic field changes because of the disturbances, leading to additional changes in the GCR intensity observed by neutron monitors and muon telescopes. Therefore, one may expect distortion in the temporal changes in the power-law exponent of the rigidity spectrum calculated from neutron monitor data without correcting for the changes in the cut-off rigidity of the Earth’s magnetic field. We compare temporal changes in the rigidity spectrum of Fds calculated from neutron monitor data corrected and uncorrected for the geomagnetic disturbances. We show some differences in the power-law exponent of the rigidity spectrum of Fds, particularly during large disturbances of the cut-off rigidity of the Earth’s magnetic field. However, the general features of the temporal changes in the rigidity spectrum of Fds remain valid as they were found in our previous study. Namely, at the initial phase of the Fd, the rigidity spectrum is relatively soft and it gradually becomes hard up to the time of the minimum level of the GCR intensity. Then during the recovery phase of the Fd, the rigidity spectrum gradually becomes soft. This confirms that the structural changes of the interplanetary magnetic field turbulence in the range of frequencies of 10?6?–?10?5 Hz are generally responsible for the time variations in the rigidity spectrum we found during the Fds.  相似文献   

3.
The results of detailed calculations on the production of H2 and He3 nuclei by cosmic ray protons and helium nuclei in interstellar medium are presented. The flux and energy spectra of these nuclei as well as those of cosmic ray H1 and He4 nuclei in the vicinity of the Earth are calculated. For this purpose the source spectra are assumed to be in the form of a power law in total energy per nucleon with an additional velocity dependent term. This spectrum denoted as Fermi Spectrum, is about midway between the power law spectrum in rigidity and in total energy per nucleon. The fluxes are calculated taking into account: (1) energy dependent cross-sections of thirteen nuclear reactions of cosmic ray protons and helium nuclei with interstellar H1 and He4 leading to the production of H2 and He3 nuclei, (2) angular distributions and kinematics of these reactions, (3) ionization loss of the primary and secondary nuclei in interstellar medium, (4) elastic collisions of cosmic ray protons and helium nuclei, (5) distributions of cosmic ray path-lengths in in terstellar space as in gaussian and exponential forms, and (6) interplanetary modulation of cosmic rays from the numerical solution of the complete Fokker-Planck equation describing the diffusion, convection and adiabatic deceleration of cosmic ray nuclei in the solar system. On comparing the calculated values of H2/He4 and He3/(He3+He4) as a function of energy with the observed data of several investigators, it is found that agreement between the calculated values and most of the observed data is obtained on the basis of: (a) source spectrum in the form of Fermi Spectrum, (b) distribution of path-lengths as in the gaussian form with a mean value of 4 g cm–2 of hydrogen or as in exponential form with leakage path length of 4 g cm–2.  相似文献   

4.
Dust filtered from the lower portion of the Camp Century ice core (77°10'N, 61°08'W) has been analyzed for the presence of the cosmic dust indicators iridium and nickel using the neutron activation analysis technique. This study was carried out to test the hypothesis that the climatic change toward the end of the Last Ice Age was triggered by an incursion of nebular material into the Solar System. The analytical results are consistent with this hypothesis. Concentrations of Ir and Ni in the ice were one to two orders of magnitude higher during the latter portion of the Last Ice Age (19,700-14,200 years BP) as compared with current levels. Ir and Ni levels in 6 out of 8 samples suggest a total cosmic dust influx rate of about 0.5?3 times 107 tons/yr to the Earth's surface as compared with about 1?7 x× 105 tons/yr for the current influx. Elemental concentrations in 6 of the 8 dust samples ranged from 6? 96 ppb for Ir and < 60 to 3200 ppm for Ni. It is concluded that a major fraction of this invading dust would have been of submicron size in which case the concentration of light scattering particles would have been sufficient to significantly alter the light transmission properties of the Solar System and substantially affect the Earth's climate. These results mark the first time that cosmic dust deposition rates have been estimated for prehistoric times using the polar ice record.  相似文献   

5.
Basaltic micrometeorites (MMs) derived from HED‐like parent bodies have been found among particles collected from the Antarctic and from Arctic glaciers and are to date the only achondritic particles reported among cosmic dust. The majority of Antarctic basaltic particles are completely melted cosmic spherules with only one unmelted particle recognized from the region. This paper investigates the entry heating of basaltic MMs in order to predict the relative abundances of unmelted to melted basaltic particles and to evaluate how mineralogical differences in precursor materials influence the final products of atmospheric entry collected on the Earth's surface. Thermodynamic modeling is used to simulate the melting behavior of particles with compositions corresponding to eucrites, diogenites, and ordinary chondrites in order to evaluate degree of partial melting and to make a comparison between the behavior of chondritic particles that dominate the terrestrial dust flux and basaltic micrometeroids. The results of 120,000 simulations were compiled to predict relative abundances and indicate that the phase relations of precursor materials are crucial in determining the relative abundances of particle types. Diogenite and ordinary chondrite materials exhibit similar behavior, although diogenite precursors are more likely to form cosmic spherules under similar entry parameters. Eucrite particles, however, are much more likely to melt due to their lower liquidus temperatures and small temperature interval of partial melting. Eucrite MMs, therefore, usually form completely molten cosmic spherules except at particle diameters <100 μm. The low abundance of unmelted basaltic MMs compared with spherules, if statistically valid, is also shown to be inconsistent with a low velocity population (12 km s?1) and is more compatible with higher velocities which may suggest a near‐Earth asteroid source dominates the current dust production of basaltic MMs.  相似文献   

6.
We used numerical simulations to model the orbital evolution of interplanetary dust particles (IDPs) evolving inward past Earth’s orbit under the influence of radiation pressure, Poynting–Robertson light drag (PR drag), solar wind drag, and gravitational perturbations from the planets. A series of β values (where β is the ratio of the force from radiation pressure to that of central gravity) were used ranging from 0.0025 up to 0.02. Assuming a composition consistent with astronomical silicate and a particle density of 2.5 g cm−3 these β values correspond to dust particle diameters ranging from 200 μm down to 25 μm. As the dust particle orbits decay past 1 AU between 4% (for β = 0.02, or 25 μm) and 40% (for β = 0.0025, or 200 μm) of the population became trapped in 1:1 co-orbital resonance with Earth. In addition to traditional horseshoe type co-orbitals, we found about a quarter of the co-orbital IDPs became trapped as so-called quasi-satellites. Quasi-satellite IDPs always remain relatively near to Earth (within 0.1–0.3 AU, or 10–30 Hill radii, RH) and undergo two close-encounters with Earth each year. While resonant perturbations from Earth halt the decay in semi-major axis of quasi-satellite IDPs their orbital eccentricities continue to decrease under the influence of PR drag and solar wind drag, forcing the IDPs onto more Earth-like orbits. This has dramatic consequences for the relative velocity and distance of closest approach between Earth and the quasi-satellite IDPs. After 104–105 years in the quasi-satellite resonance dust particles are typically less than 10RH from Earth and consistently coming within about 3RH. In the late stages of evolution, as the dust particles are escaping the 1:1 resonance, quasi-satellite IDPs can have deep close-encounters with Earth significantly below RH. Removing the effects of Earth’s gravitational acceleration reveals that encounter velocities (i.e., velocities “at infinity”) between quasi-satellite IDPs and Earth during these close-encounters are just a few hundred meters per second or slower, well below the average values of 2–4 km s−1 for non-resonant Earth-crossing IDPs with similar initial orbits. These low encounter velocities lead to a factor of 10–100 increase in Earth’s gravitationally enhanced impact cross-section (σgrav) for quasi-satellite IDPs compared to similar non-resonant IDPs. The enhancement in σgrav between quasi-satellite IDPs and cometary Earth-crossing IDPs is even more pronounced, favoring accretion of quasi-satellite dust particles by a factor of 100–3000 over the cometary IDPs. This suggests that quasi-satellite dust particles may dominate the flux of large (25–200 μm) IDPs entering Earth’s atmosphere. Furthermore, because quasi-satellite trapping is known to be directly correlated with the host planet’s orbital eccentricity the accretion of quasi-satellite dust likely ebbs and flows on 105 year time scales synchronized with Earth’s orbital evolution.  相似文献   

7.
A short overview of the studies of the authors and their colleagues performed over many years, which resulted in the discovery of traces of cometary matter in the peat at the epicenter of the Tunguska catastrophe in 1908, is given here. In the epicenter of the Tunguska cosmic body (TCB) explosion, the shifts in the isotopic composition of hydrogen and carbon relative to their values for the upper and lower layers of the same column were found in the catastrophic layers of peat grown up in 1908. These shifts cannot be attributed to any known terrestrial processes: the conservation of mineral and organic dust in peat, peat humification, the emission of hydrocarbon gases from the Earth, climate changes, and other physical and chemical processes. In the catastrophic layers of the control peat columns, the isotopic shifts are absent. The isotopic data agree well with the increased concentration of iridium and other platinum-group elements in the same peat layers, which is a reliable indicator of the presence of cosmic material in terrestrial objects. The cosmogenic character of the isotopic effects is confirmed by the presence of “dead” carbon (not containing radioactive 14C) in the catastrophic layers. To provide the shifts observed in the isotopic composition of carbon, cosmic carbon preserved in peat should be isotopically superheavy—from +50‰ to +60‰ according to calculations. Such isotopically heavy carbon is absent both on the Earth and in ordinary meteorites. It occurs only in individual mineral phases of CI carbonaceous chondrites, close to cometary dust in chemical composition, ratios of the content of iridium and other platinoids and rear-earth elements also points to the cometary nature of the TCB. In the near-catastrophic peat layers, the anomalous increase of the concentration of many volatiles was detected, which also suggests that the TCB was a cometary core. The studies of the content and the isotopic composition of nitrogen in the peat revealed traces of heavy acid rains induced by the flyby and explosion of the TCB.  相似文献   

8.
Abstract— Helium and neon isotope ratios were determined for 16 interplanetary dust particles (IDPs) collected in the stratosphere. The concentration of helium observed varied greatly from particle to particle, with the highest values approaching those found for lunar surface fines and some gas-rich meteorites. With the exception of one particle, for which the 3He/4He was (1.45 ± 0.05) × 10?3, the remainder of the particles had ratios falling between 1.4 and 3.1 × 10?4, with an average of (2.4 ± 0.3) × 10?4, substantially less than is associated with the solar wind or observed in average lunar fines or in lunar fines having sizes comparable to those of the IDPs studied. The average 20Ne/22Ne found was 12.0 ± 0.5. Only three reasonably reliable 21Ne/22Ne ratios could be determined, and for these the average was 0.035 ± 0.006. The isotopic ratios appear to preclude the presence of any appreciable amount of cosmic ray-produced spallogenic products. The high 4He concentrations observed for some of the particles, approaching those observed for lunar surface grains, suggest they were not heated to high temperatures and degassed as they descended in the earth's atmosphere. From Flynn's study of the dynamics of IDPs entering the earth's atmosphere this could mean they entered the atmosphere at relatively low velocities, and hence may be primarily of asteroidal rather than cometary origin.  相似文献   

9.
The approximate composition of the Tunguska meteorite remnants obtained by averaging the results of several measurements is presented. It is pointed out that the matter of the cosmic-body remnants was enriched with alkaline and alkaline-earth elements. The composition of the meteorite matter was extremely heterogeneous. The upper limit of the density of the Tunguska cosmic body has been estimated at 2.8 g/cm3. It is suggested that, due to interaction with the Earth’s atmosphere, the cosmic body disintegrated into fragments from 10?7 to 10?3 m in size, with the majority of the matter being ejected to the upper atmospheric layers. Calculations of the rate and the time of the sedimentation of particles in the atmosphere have shown that the change in atmosphere transparency is controlled by particles larger than 10?5 m in radius.  相似文献   

10.
The Stardust mission returned two types of unprecedented extraterrestrial samples: the first samples of material from a known solar system body beyond the moon, the comet 81P/Wild2, and the first samples of contemporary interstellar dust. Both sets of samples were captured in aerogel and aluminum foil collectors and returned to Earth in January 2006. While the analysis of particles from comet Wild 2 yielded exciting new results, the search for and analysis of collected interstellar particles is more demanding and is ongoing.Novel dust instrumentation will tremendously improve future dust collection in interplanetary space: an Active Cosmic Dust Collector is a combination of an in-situ dust trajectory sensor (DTS) together with a dust collector consisting of aerogel and/or other collector materials, e.g. such as those used by the Stardust mission. Dust particles’ trajectories are determined by the measurement of induced electrical signals when charged particles fly through a position sensitive electrode system. The recorded waveforms enable the reconstruction of the velocity vector with high precision.The DTS described here was subject to performance tests at the Heidelberg dust accelerator at the same time as the recording of impact signals from potential collector materials. The tests with dust particles in the speed range from 3 to 40 km/s demonstrate that trajectories can be measured with accuracies of ~1° in direction and ~1% in speed. The sensitivity of the DTS electronics is of the order of 10?16 C and thus the trajectory of cosmic dust particles as small as 0.4 μm size can be measured. The impact position on the collector can be determined with better than 1 mm precision, which will ease immensely the task of locating sub-micron-sized particles on the collector. Statistically significant numbers of trajectories of interplanetary and interstellar dust particles can thus be collected in interplanetary space and their compositions correlated with their trajectories.  相似文献   

11.
Abstract— Noble gas data from Martian meteorites have provided key constraints about their origin and evolution, and their parent body. These meteorites have witnessed varying shock metamorphic overprinting (at least 5 to 14 GPa for the nakhlites and up to 45–55 GPa (e.g., the lherzolitic shergottite Allan Hills [ALH] A77005), solar heating, cosmic‐ray exposure, and weathering both on Mars and Earth. Influences on the helium budgets of Martian meteorites were evaluated by using a new data set and literature data. Concentrations of 3He, 4He, U, and Th are measured and shock pressures for same sample aliquots of 13 Martian meteorites were determined to asses a possible relationship between shock pressure and helium concentration. Partitioning of 4He into cosmogenic and radiogenic components was performed using the lowest 4He/3He ratio we measured on mineral separates (4He/3He = 4.1, pyroxene of ALHA77005). Our study revealed significant losses of radiogenic 4He. Systematics of cosmogenic 3He and neon led to the conclusion that solar radiation heating during transfer from Mars to Earth and terrestrial weathering can be ruled out as major causes of the observed losses of radiogenic helium in bulk meteorites. For bulk rock we observed a correlation of shock pressure and radiogenic 4He loss, ranging between ?20% for Chassigny and other moderately shocked Martian meteorites up to total loss for meteorites shocked above 40 GPa. A steep increase of loss occurs around 30 GPa, the pressure at which plagioclase transforms to maskelynite. This correlation suggests significant 4He loss induced by shock metamorphism. Noble gas loss in rocks is seen as diffusion due to (1) the temperature increase during shock loading (shock temperature) and (2) the remaining waste heat after adiabatic unloading (post shock temperature). Modeling of 4He diffusion in the main U, Th carrier phase apatite showed that post‐shock temperatures of ?300 °C are necessary to explain observed losses. This temperature corresponds to the post‐shock temperature calculated for bulk rocks shocked at about 40 GPa. From our investigation, data survey, and modeling, we conclude that the shock event during launch of the meteorites is the principal cause for 4He loss.  相似文献   

12.
It is shown that the velocity term, occurring in the expression for the rate of energy gain by the Fermi mechanism of acceleration, is to be taken into account in case of acceleration of non-relativistic particles. A spectral form of accelerated particles is derived on this basis and is called the ‘Fermi Spectrum’. At non-relativistic energies this spectral form is significantly different from the currently used forms of power law in total energy per nucleon and in rigidity, and lies about midway between them. It is shown that using this form of source spectrum of cosmic ray nuclei, satisfactory agreement can be obtained between the calculated values and the observed ones of the ratios of H2/He4 and He3/He4, and the energy spectra of protons and helium nuclei near the Earth.  相似文献   

13.
Belheouane  S.  Zaslavsky  A.  Meyer-Vernet  N.  Issautier  K.  Mann  I.  Maksimovic  M. 《Solar physics》2012,281(1):501-506

Most in situ measurements of cosmic dust have been carried out with dedicated dust instruments. However, dust particles can also be detected with radio and plasma wave instruments. The high velocity impact of a dust particle generates a small crater on the spacecraft, and the dust particle and the crater material are vaporised and partly ionised. The resulting electric charge can be detected with plasma instruments designed to measure electric waves. Since 2007 the STEREO/WAVES instrument has recorded a large number of events due to dust impacts. Here we will concentrate on the study of those impacts produced by dust grains originating from the local interstellar cloud. We present these fluxes during five years of the STEREO mission. Based on model calculations, we determine the direction of arrival of interstellar dust. We find that the interstellar dust direction of arrival is ~260°, in agreement with previous studies.

  相似文献   

14.
Shailendra Kumar 《Icarus》1976,28(4):579-591
Measurements made during the Mariner 10 flybys of Mercury have shown that this planet has a tenuous atmosphere, somewhat similar to that of the Moon, which consists of at least helium and can be classified as an exosphere. The amount of helium observed can be supplied by either the accretion of only a fraction of the solar wind He2+ diffusing across the magnetopause, or from outgassing of radiogenic helium from the planetary crust. The role of solar wind in the maintenance and depletion of Mercury's atmosphere is discussed in view of the density upper limits established from Mariner 10. The argon supply rate on Mercury is probably not more than that on the Earth, but it is difficult to say whether Mercury is deficient in potassium or not on the basis of the present data. The global outgassing of CO2 and H2O from the planet interior is estimated to be at least four orders of magnitude smaller than for Earth which indicates that either Mercury is deficient in volatiles or that this planet is very inactive.  相似文献   

15.
Our numerical analyses of the velocity and spatial distributions of pickup interstellar helium ions in the region of the solar gravitational cone in the ecliptic plane at a distance of 1 AU show that the ion density maximum must be displaced relative to the neutral helium cone axis in the direction of the Earth’s revolution around the Sun. The solar wind parameters in the numerical model correspond to their observed values during the crossing of the helium cone by the ACE spacecraft in 1998. At these parameters, the calculated angular displacement is 5°. The absence of a similar displacement in the ACE measurements is shown to stem from the fact that the spectrometer onboard ACE records and identifies only a fraction of the pickup helium ions with fairly high magnitudes and certain directions of the velocities.  相似文献   

16.
Radosław Rek 《Solar physics》2010,261(2):337-351
The Maunder Minimum was the time during the second part of the 17th century, nominally from 1645 to 1717 AD, when unusually low numbers of sunspots were observed. On the basis of numerous recorded observations of auroras in the early 18th century, the end of the Minimum could be regarded as around 1700, but details of sunspot observations by Jan Heweliusz (Heweliusz, Machina Coelestis, 1679), John Flamsteed and Philippe de La Hire in 1684 allow us to interpret the Maunder Minimum as the period without a significant cessation of activity. This Minimum was also recognized in 14C data from trees which grew during the second part of 17th century. The variation in the production rate of radioactive carbon isotope 14C is due to modulation of the cosmic ray flux producing it by the changing level of solar activity and solar magnetic flux. Stronger magnetic fields in the solar wind make it more difficult for cosmic rays to reach the Earth, causing a drop in the production rate of 14C. However, more detailed analyses of 14C data indicate that the highest isotope abundances do not occur at the time of sunspot minima, as would be expected on the basis of modulation of the cosmic ray flux by the solar magnetic field, but two years after the sunspot number maximum. This time difference (or phase delay) can be accounted for if in fact there are both solar and non-solar cosmic ray contributions. Solar flares could also contribute high-energy particles and produce 14C and are generally not most frequent at the time of the highest sunspot numbers in the cycle.  相似文献   

17.
Numerical solutions of the cosmic-ray equation of transport within the solar cavity and including the effects of diffusion, convection, and energy losses due to adiabatic deceleration, have been used to reproduce the modulation of galactic electrons, protons and helium nuclei observed during the period 1965–1970. Kinetic energies between 10 and 104 MeV/nucleon are considered. Computed and observed spectra (where data is available) are given for the years 1965, 1968, 1969 and 1970 together with the diffusion coefficients. These diffusion coefficients are assumed to be of separable form in rigidity and radial dependence, and are consistent with the available magneticfield power spectra. The force-field solutions are given for these diffusion coefficients and galactic spectra and compared with the numerical solutions. For each of the above years we have (i) determined the radial density gradients near Earth; (ii) found the mean energy losses suffered by galactic particles as they diffuse to the vicinity of the Earth's orbit; (iii) shown quantitatively the exclusion of low-energy galactic protons and helium nuclei from near Earth by convective effects; and (iv), for nuclei of a given energy near Earth, obtained their distribution in energy before entering the solar cavity. It is shown that the energy losses and convection lead to near-Earth nuclei spectra at kinetic energies ≤100 MeV/nucleon in which the differential intensity is proportional to the kinetic energy with little dependence on the form of the galactic spectrum. This dependence is in agreement with the observed spectra of all species of atomic nuclei and we argue that this provides strong observational evidence for the presence of energy losses in the propagation process; and for the exclusion of low energy galactic nuclei from near Earth.  相似文献   

18.
The dynamics of energetic radiation, i.e., particles of radiation belts and galactic and solar cosmic rays in Earth’s environment during solar and geomagnetic disturbances, is analyzed in a review based on the CORONAS-F experimental data.  相似文献   

19.
Laboratory simulations using the Arizona State University Vortex Generator (ASUVG) were run to simulate sediment flux in dust devils in terrestrial ambient and Mars-analog conditions. The objective of this study was to measure vortex sediment flux in the laboratory to yield estimations of natural dust devils on Earth and Mars, where all parameters may not be measured. These tests used particles ranging from 2 to 2000 μm in diameter and 1300 to 4800 kg m−3 in density, and the results were compared with data from natural dust devils on Earth and Mars. Typically, the cores of dust devils (regardless of planetary environment) have a pressure decrease of ∼0.1-1.5% of ambient atmospheric pressure, which enhances the lifting of particles from the surface. Core pressure decreases in our experiments ranged from ∼0.01% to 5.00% of ambient pressure (10 mbar Mars cases and 1000 mbar for Earth cases) corresponding to a few tenths of a millibar for Mars cases and a few millibars for Earth cases. Sediment flux experiments were run at vortex tangential wind velocities of 1-45 m s−1, which typically correspond to ∼30-70% above vortex threshold values for the test particle sizes and densities. Sediment flux was determined by time-averaged measurements of mass loss for a given vortex size. Sediment fluxes of ∼10−6-100 kg m−2 s−1 were obtained, similar to estimates and measurements for fluxes in dust devils on Earth and Mars. Sediment flux is closely related to the vortex intensity, which depends on the strength of the pressure decrease in the core (ΔP). This study found vortex size is less important for lifting materials because many different diameters can have the same ΔP. This finding is critical in scaling the laboratory results to natural dust devils that can be several orders of magnitude larger than the laboratory counterparts.  相似文献   

20.
Two 9400-year long 10Be data records from the Arctic and Antarctic and a 14C record of equal length were used to investigate the periodicities in the cosmic radiation incident on Earth throughout the past 9400 years. Fifteen significant periodicities between 40 and 2320 years are observed in the 10Be and 14C records, there being close agreement between the periodicities in each record. We found that the periodic variations in the galactic cosmic radiation are the primary cause for periods <?250 years, with minor contributions of terrestrial origin possible >?250 years. The spectral line for the Gleissberg (87-year) periodicity is narrow, indicating a stability of ≈?0.5 %. The 9400-year record contains 26 Grand Minima (GM) similar to the Maunder Minimum, most of which occurred as sequences of 2?–?7 GM with intervals of 800?–?1200 years in between, in which there were no GM. The intervals between the GM sequences are characterised by high values of the modulation function. Periodicities <?150 years are observed in both the GM intervals and the intervals in between. The longer-period variations such as the de Vries (208-year) cycle have high amplitudes during the GM sequences and are undetectable in between. There are three harmonically related pairs of periodicities (65 and 130 years), (75 and 150 years), and (104 and 208 years). The long periodicities at 350, 510, and 708 years closely approximate 4, 6, and 8 times the Gleissberg period (87 years). The well-established properties of cosmic-ray modulation theory and the known dependence of the heliospheric magnetic field on the solar magnetic fields lead us to speculate that the periodicities evident in the paleo-cosmic-ray record are also present in the solar magnetic fields and in the solar dynamo. The stable, narrow natures of the Gleissberg and other periodicities suggest that there is a strong “frequency control” in the solar dynamo, in strong contrast to the variable nature (8?–?15 years) of the Schwabe (11-year) solar cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号