首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a gravitationally bound and stable cluster of galaxies the amount and distribution of matter determine both the velocity dispersion of the members and the type of evolution of the system. The use of the first of these physical connections — the application of virial theorem — led to the idea of missing mass in clusters, that of the second one seems to support this idea by an independent “rediscovery” and “redistribution” of missing mass. On the basis of this “evolutionary approach” to the missing mass problem — that is free from the uncertainties of measuring and interpreting red shifts — evidences are obtained for the existence of large amounts of discretely distributed dark circumgalactic or intragalactic matter in rich clusters of galaxies.  相似文献   

2.
At the faint end of the deepest X-ray surveys, a population of X-ray luminous galaxies is seen. In this paper, we present the results of a cross-correlation between the residual, unresolved X-ray photons in a very deep X-ray survey and the positions of faint galaxies, in order to examine the importance of these objects at even fainter flux levels. We measure a significant correlation on all angular scales up to ∼1 arcmin. This signal could account for a significant fraction of the unresolved X‐ray background, approximately 35 per cent if the clustering is similar to optically selected galaxies. However, the angular form of the correlation is seen to be qualitatively similar to that expected for clusters of galaxies and the X-ray emission could be associated with hot gas in clusters or with QSOs within galaxy clusters rather than emission from individual faint galaxies. The relative contribution from each of these possibilities cannot be determined with the current data.  相似文献   

3.
A correlation analysis is made of the spatial distribution of galaxies in the Coma, Bridge, and A1367 clusters, which form the Coma supercluster. The scale of the clustering of galaxies and the variation in their density distribution with the main parameters of the galaxies– luminosity, morphological type, and observed H I deficiency in the 21 cm line– are evaluated. The mass-to-luminosity ratios are computed for the spiral galaxies in the Coma, Bridge, and A1367 clusters. It is suggested that a larger fraction of hypothetical dark matter may be concentrated in the spiral galaxies which predominantly populate the subclusters previously identified by us within these clusters than in the spiral galaxies observed in the peripheral regions of the clusters.  相似文献   

4.
The age, mass, and size distributions of star clusters in nearby star-forming galaxies provide important clues to the formation and evolution of cluster systems. In particular, the similarities and differences between these cluster distributions in very different environments can help to disentangle formation and disruption processes. We present the age and mass distributions for clusters younger than ≈1 Gyr in the Magellanic Clouds, which are typical, star-forming irregular galaxies, and compare the results with the more “extreme” environment found in the merging Antennae galaxies. In addition, we describe some new results on the interpretation of ancient globular cluster systems, and present an emerging picture for the life cycle of star clusters.  相似文献   

5.
With the advent of the new generation wide-field cameras it became possible to survey in an unbiased mode galaxies spanning a variety of local densities, from the core of rich clusters, to compact and loose groups, down to filaments and voids. The sensitivity reached by these instruments allowed to extend the observation to dwarf galaxies, the most “fragile” objects in the universe. At the same time models and simulations have been tailored to quantify the different effects of the environment on the evolution of galaxies. Simulations, models, and observations consistently indicate that star-forming dwarf galaxies entering high-density environments for the first time can be rapidly stripped from their interstellar medium. The lack of gas quenches the activity of star formation, producing on timescales of \({\sim }\)1 Gyr quiescent galaxies with spectro-photometric, chemical, structural, and kinematical properties similar to those observed in dwarf early-type galaxies inhabiting rich clusters and loose groups. Simulations and observations consistently identify ram pressure stripping as the major effect responsible for the quenching of the star-formation activity in rich clusters. Gravitational interactions (galaxy harassment) can also be important in groups or in clusters whenever galaxies have been members since early epochs. The observation of clusters at different redshifts combined with the present high infalling rate of galaxies onto clusters indicate that the quenching of the star-formation activity in dwarf systems and the formation of the faint end of the red sequence is a very recent phenomenon.  相似文献   

6.
We analyze the behavior of the scalar field as dark energy of the Universe in a static world of galaxies and clusters of galaxies. We find the analytical solutions of evolution equations of the density and velocity perturbations of dark matter and dark energy, which interact only gravitationally, along with the perturbations of metric in a static world with background Minkowski metric. It was shown that quintessential and phantom dark energy in the static world of galaxies and clusters of galaxies is gravitationally stable and can only oscillate by the influence of self-gravity. In the gravitational field of dark matter perturbations, it is able to condense monotonically, but the amplitude of density and velocity perturbations on all scales remains small. It was also illustrated that the “accretion” of phantom dark energy in the region of dark matter overdensities causes formation of dark energy underdensities-the regions with negative amplitude of density perturbations of dark energy.  相似文献   

7.
Galaxies with “rows” in Vorontsov-Velyaminov’s terminology stand out among the variety of spiral galactic patterns. A characteristic feature of such objects is the sequence of straight-line segments that forms the spiral arm. In 2001 A. Chernin and co-authors published a catalog of such galaxies which includes 204 objects from the Palomar Atlas. In this paper, we supplement the catalog with 276 objects based on an analysis of all the galaxies from the New General Catalogue and Index Catalogue. The total number of NGC and IC galaxies with rows is 406, including the objects of Chernin et al. (2001). The use of more recent galaxy images allowed us to detect more “rows” on average, compared with the catalog of Chernin et al. When comparing the principal galaxy properties we found no significant differences between galaxies with rows and all S-typeNGC/IC galaxies.We discuss twomechanisms for the formation of polygonal structures based on numerical gas-dynamic and collisionless N-body calculations, which demonstrate that a spiral pattern with rows is a transient stage in the evolution of galaxies and a system with a powerful spiral structure can pass through this stage. The hypothesis of A. Chernin et al. (2001) that the occurrence frequency of interacting galaxies is twice higher among galaxies with rows is not confirmed for the combined set of 480 galaxies. The presence of a central stellar bar appears to be a favorable factor for the formation of a system of “rows”.  相似文献   

8.
9.
We present measurements of the angular correlation function of galaxies selected from a B J ∼23.5 multicolour survey of two 5°×5° fields located at high galactic latitudes. The galaxy catalogue of ∼4×105 galaxies is comparable in size to catalogues used to determine the galaxy correlation function at low redshift. Measurements of the z ∼0.4 correlation function at large angular scales show no evidence for a break from a power law, although our results are not inconsistent with a break at ≳15 h−1 Mpc. Despite the large fields-of-view, there are large discrepancies between the measurements of the correlation function in each field, possibly caused by dwarf galaxies within z ∼0.11 clusters near the South Galactic Pole.
Colour selection is used to study the clustering of galaxies from z ∼0 to z ∼0.4. The galaxy correlation function is found to depend strongly on colour, with red galaxies more strongly clustered than blue galaxies by a factor of ≳5 at small scales. The slope of the correlation function is also found to vary with colour, with γ∼1.8 for red galaxies and γ∼1.5 for blue galaxies. The clustering of red galaxies is consistently strong over the entire magnitude range studied, although there are large variations between the two fields. The clustering of blue galaxies is extremely weak over the observed magnitude range, with clustering consistent with r 0∼2 h−1 Mpc. This is weaker than the clustering of late-type galaxies in the local Universe, and suggests that galaxy clustering is more strongly correlated with colour than morphology. This may also be the first detection of a substantial low-redshift galaxy population with clustering properties similar to faint blue galaxies.  相似文献   

10.
A significant fraction of clusters of galaxies are observed to have substructure, which implies that merging between clusters and subclusters is a rather common physical process in cluster formation. It still remains unclear how cluster merging affects the evolution of cluster member galaxies. We report the results of numerical simulations that show the dynamical evolution of a gas-rich, late-type spiral in a merger between a small group of galaxies and a cluster. The simulations demonstrate that the time-dependent tidal gravitational field during merging excites non-axisymmetric structure of the galaxy, subsequently drives efficient transfer of gas to the central region and finally triggers a secondary starburst. This result provides a close physical relationship between the emergence of starburst galaxies and the formation of substructure in clusters. We accordingly interpret post-starburst galaxies located near substructure of the Coma Cluster as one observational example indicating the global tidal effects of group–cluster merging. Our numerical results further suggest a causal link between the observed excess of blue galaxies in distant clusters and the cluster virialization process through hierarchical merging of subclusters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
在对不同光度星系大尺度分布进行空间两点相关函数分析的基础上,仍以CfA红移巡天资料为样本,对不同光度星系分布进行了交叉相关分析。结果表明,不同光度星系间的交叉相关函数仍可近似地以幂函数表示,说明不同光度星系在空间是一起成团的。但在较小尺度上((?)4—6Mpc),光度较高的星系间相关更强,而在更大一些尺度上光度较高的星系间相关减弱更快,甚至变得比与光度较低星系间的相关更弱。结合前面对自相关函数分析的结果可以看到,统计上看来,星系分布形成群和团。群或团中亮的星系形成更致密的分布而较暗的星系则在这些群和团中分布较弥散。此结果表明星系光度和其环境(密度)有关,从而从观测上为Biased星系形成理论提供了一个可能的证据。  相似文献   

12.
The presence of two globular cluster subpopulations in early-type galaxies is now the norm rather than the exception. Here we present two more examples for which the host galaxy appears to have undergone a recent merger. Using multi-colour Keck imaging of NGC 1052 and 7332 we find evidence for a bimodal globular cluster colour distribution in both galaxies, with roughly equal numbers of blue and red globular clusters. The blue ones have similar colours to those in the Milky Way halo and are thus probably very old and metal-poor. If the red globular cluster subpopulations are at least of solar metallicity, then stellar population models indicate young ages. We discuss the origin of globular clusters within the framework of formation models. We conclude that recent merger events in these two galaxies have had little effect on their overall globular cluster systems. We also derive globular cluster density profiles, global specific frequencies and, in the case of NGC 1052, radial colour gradients and azimuthal distribution. In general these globular cluster properties are normal for early-type galaxies.  相似文献   

13.
The galaxy populations in present-day clusters are distinctly different from those of the field, indicating that environment plays a strong role in galaxy evolution. This review discusses some of the recent observations of moderate to high redshift clusters. A consistent picture of galaxy evolution in clusters appears to be emerging, which includes a population of galaxies which formed early in the cluster history, as well as field galaxies which have had their star formation truncated upon falling into the cluster potential. Galaxy interactions probably play an important role in exhausting star formation in some of these galaxies. However, there is significant variation in the populations of different cluster samples, with substantial evidence that some galaxies have their star formation terminated more gradually. This suggests that different mechanisms may dominate in different clusters, perhaps because of the recent merging history of the clusters. We also present a recent analysis of population gradients in clusters which suggests that the observed evolution in cluster populations is consistent with a scenario where changing infall rates drive the fraction of star forming galaxies in clusters, rather than a changing physical mechanism within the cluster. Thus, galaxy populations may provide a fundamental measure of the growth of large scale structure. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
15.
We compare observations of the high-redshift galaxy population to the predictions of the galaxy formation model of Croton et al. and De Lucia & Blaizot. This model, implemented on the Millennium Simulation of the concordance Lambda cold dark matter cosmogony, introduces 'radio mode' feedback from the central galaxies of groups and clusters in order to obtain quantitative agreement with the luminosity, colour, morphology and clustering properties of the present-day galaxy population. Here we construct deep light cone surveys in order to compare model predictions to the observed counts and redshift distributions of distant galaxies, as well as to their inferred luminosity and mass functions out to redshift 5. With the exception of the mass functions, all these properties are sensitive to modelling of dust obscuration. A simple but plausible treatment agrees moderately well with most of the data. The predicted abundance of relatively massive  (∼ M *)  galaxies appears systematically high at high redshift, suggesting that such galaxies assemble earlier in this model than in the real Universe. An independent galaxy formation model implemented on the same simulation matches the observed mass functions slightly better, so the discrepancy probably reflects incomplete or inaccurate galaxy formation physics rather than problems with the underlying cosmogony.  相似文献   

16.
A large number of early-type galaxies are now known to possess blue and red subpopulations of globular clusters. We have compiled a data base of 28 such galaxies exhibiting bimodal globular cluster colour distributions. After converting to a common V – I colour system, we investigate correlations between the mean colour of the blue and red subpopulations with galaxy velocity dispersion. We support previous claims that the mean colours of the blue globular clusters are unrelated to their host galaxy. They must have formed rather independently of the galaxy potential they now inhabit. The mean blue colour is similar to that for halo globular clusters in our Galaxy and M31. The red globular clusters, on the other hand, reveal a strong correlation with galaxy velocity dispersion. Furthermore, in well-studied galaxies the red subpopulation has similar, and possibly identical, colours to the galaxy halo stars. Our results indicate an intimate link between the red globular clusters and the host galaxy; they share a common formation history. A natural explanation for these trends would be the formation of the red globular clusters during galaxy collapse.  相似文献   

17.
Chains ofnormal galaxies dominate small-scale clustering. This filamentary structure has nothing to do with large-scale filaments between clusters; and the revelation of short galaxy chains among normal galaxies was not expected by Arp, who investigated chains ofpeculiar galaxies. The nature of revealed chains cannot be explained in terms of so-called filaments observed in a scale of 100 Mpc: there is no continuation between 100 kpc and 100 Mpc chains of galaxies. Three sorts of clustering modes, corresponding toG 1,G 2 andG 4 non-isomorphic graphs withthree vertices, are free of the time paradox. Chains (the clustering mode corresponding to theG 3 graph) are stable on a time scale less (tens and sometimes a hundred times) than the conventional age ofnormal galaxies. Why do the chains dominate small scales?  相似文献   

18.
We follow the evolution of the galaxy population in a ΛCDM cosmology by means of high-resolution N -body simulations in which the formation of galaxies and their observable properties are calculated using a semi-analytic model. We display images of the spatial distribution of galaxies in the simulations that illustrate its evolution and provide a qualitative understanding of the processes responsible for the various biases that develop. We consider three specific statistical measures of clustering at     and     : the correlation length (in both real and redshift space) of galaxies of different luminosity, the morphology–density relation and the genus curve of the topology of galaxy isodensity surfaces. For galaxies with luminosity below L ∗, the     correlation length depends very little on the luminosity of the sample, but for brighter galaxies it increases very rapidly, reaching values in excess of 10  h −1 Mpc. The 'accelerated' dynamical evolution experienced by galaxies in rich clusters, which is partly responsible for this effect, also results in a strong morphology–density relation. Remarkably, this relation is already well-established at     . The genus curves of the galaxies are significantly different from the genus curves of the dark matter, however this is not a result of genuine topological differences but rather of the sparse sampling of the density field provided by galaxies. The predictions of our model at     will be tested by forthcoming data from the 2dF and Sloan galaxy surveys, and those at     by the DEEP and VIRMOS surveys.  相似文献   

19.
We consider current problems connected with the evolution of central dominant (cD) galaxies in clusters. In the second part of this series, internal properties of the cD galaxy — in particular its radio structure — are related to the appropriate ones of the cluster. The observations point to an earlier jet ejection along the major axis of the galaxy and a following change of the jet axis. From the existence of “hot-spot” like regions in different directions it is suggested that the radio engine would have to be intermittent with a relatively short period. Alternatively to the intermittent ejection scenario, the radio morphology of 4C 26.42 can be explained in the frame of the “standard” beam or jet model. The radio structure of 4C 26.42 being an inversion-symmetric configuration, which is probably due to galactic cannibalism, could be interpreted as a transition at the inner hot spots (at about 1 kpc) from supersonic, stable Fanaroff-Riley type II jets to subsonic, unstable FR I type structures (“plumes”). A quantitative investigation of the two scenarios for jet interaction with the surroudning interstellar/intercluster medium in 4C 26.42 gives parameter values in reasonable agreement with the ones discussed in the literature for related objects.  相似文献   

20.
We have performed a series ofN-body experiments including the effects of a massive dominant background which follows Schuster's density law in order to simulate clusters of galaxies in which a smoothly distributed dark component is present. The existence of this background is inferred from the weak luminosity segregation observed in clusters which, however, show several characteristics of well-relaxed systems. The comparison of the velocity dispersion profiles of three clusters of galaxies (Coma, Perseus, and Virgo) with those obtained in the numerical experiments allows us to place some constraints on both the distribution and amount of distributed dark material in these clusters. The profiles are rather insensitive to variations in the ratio of the background mass to the mass attached to galaxies (M b/Mg), but exhibit a strong dependence on their relative concentration. We conclude that highly concentrated background models are not consistent with observations. We find a maximum value for the ratio of the gravitational radius of the galaxies and the background (R g/Rb) (approximately 0.6) and using previous results (Navarroet al., 1986) we conclude that virial theorem masses underestimate the total mass (M b+M g) of the clusters. As a final result, we derive a minimum value for theM b/Mg ratio. All these conclusions could apply in general if Coma, Perseus, and Virgo constitute a fair sample of the rich clusters of galaxies in the Universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号