首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Coastal Engineering》1999,36(3):171-195
A morphological stability analysis is carried out for a long straight coast with a longshore bar. The situation with oblique wave incidence and a wave-driven longshore current is considered. The flow and sediment transport are described by a numerical modelling system. The models comprise: (i) a wave model with depth refraction, shoaling and wave breaking, (ii) a depth integrated model for wave driven currents and (iii) a sediment transport model for the bed load transport and the suspended load transport in combined waves and current. The direction of the sediment transport is taken to be parallel to the depth integrated mean current velocity, neglecting the effects of a bed slope and secondary currents. An instability is found to develop around the bar crest. The instability is periodic in the alongshore direction, and tends to form rip channels and to steepen the offshore face of the bar between the rip channels. The alongshore wave length of the most unstable perturbation is determined for different combinations of the wave conditions and the geometry of the profile.  相似文献   

2.
Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales.  相似文献   

3.
A field experiment on the nature of rip currents was conducted on the Dutch coast, which differs from previous rip current study sites because it is a wind-sea dominated environment with mostly obliquely incident waves and tidally-driven longshore currents. During the experiment three distinct flow patterns, obtained with GPS tracked drifter instruments, were observed: (1) a locally governed circulation cell, (2) an offshore current that is deflected shore parallel outside the surf zone and (3) a meandering longshore current. The transition from rip currents (flow patterns 1 and 2) to meandering longshore currents (flow pattern 3) occurred gradually within the tidal cycle with longshore currents prevalent at mid to high tide. Rip currents at this site appeared at depressions in the surf zone bar and typically occurred when the water level fell below NAP (equivalent to MSL), even in the presence of obliquely incident waves and tidally driven longshore currents. Hindcast simulations of the drifter experiments were performed with the numerical model XBeach and showed good agreement with field observations. The model was subsequently used to investigate the influence of tidal water level fluctuations, longshore currents and obliquely incident waves on rip currents.Rip currents were initiated when the water level dropped below a specific threshold with the magnitude of the rip current associated with the water level. The strength of the tidal current and its orientation with respect to the incident waves governed the offshore extent and orientation of the rip current. In contrast to other studies that suggest that rip currents solely occur under shore normal (or slightly oblique waves), in this study both observations and numerical model simulations indicate that rip currents can exist under large angles of wave incidence, when the rip channel is sufficiently wide and the wave height is small.  相似文献   

4.
田海平  陈雷  王维  辛立彪 《海洋学报》2021,43(12):92-101
离岸流是近岸流的重要组成部分,当波浪受到特殊海滩地形的影响,会形成一股沿着离岸方向运动的高速水流,能够迅速将人带离海岸,对海滨安全造成威胁。为了深入探究离岸流的形成机理及水动力学特性,本文基于二阶Stokes波浪理论,采用了更为光滑的变截面沙坝模型,通过流体体积法捕捉自由液面,对离岸流进行三维数值模拟探究。本文重点分析了离岸流产生时流场的瞬时速度、时均速度、压强等不同参量的分布规律,结果显示在沙坝和海岸线之间,有一对方向相反的水循环体系;对比不同流层离岸流的速度,了解到波浪与离岸流的耦合作用;并探究了入射波波高对离岸流强度及分布区域的影响,深化了对离岸流水动力学过程的认识。  相似文献   

5.
On rip-channelled beaches, intense rip currents are driven by waves due to alongshore variations in breaking-induced wave energy dissipation. This study addresses for the first time the potential development of tidal currents superimposed onto the wave-driven circulation. This phenomenon is observed on a rip-channelled meso-macrotidal beach (Biscarrosse, SW France). Field measurements show 20 to 45% stronger mean rip velocities during ebb than during flood. Numerical experiments reveal that this asymmetry is the signature of tidal currents developing over the rip channel morphology. This asymmetry is found to increase roughly linearly with increasing tidal range. These results are significant to beach safety and lifeguarding and stimulate further numerical exercises.  相似文献   

6.
Regional Ocean Modeling System (ROMS v 3.0), a three-dimensional numerical ocean model, was previously enhanced for shallow water applications by including wave-induced radiation stress forcing provided through coupling to wave propagation models (SWAN, REF/DIF). This enhancement made it suitable for surf zone applications as demonstrated using examples of obliquely incident waves on a planar beach and rip current formation in longshore bar trough morphology (Haas and Warner, 2009). In this contribution, we present an update to the coupled model which implements a wave roller model and also a modified method of the radiation stress term based on Mellor (2008, 2011a,b,in press) that includes a vertical distribution which better simulates non-conservative (i.e., wave breaking) processes and appears to be more appropriate for sigma coordinates in very shallow waters where wave breaking conditions dominate. The improvements of the modified model are shown through simulations of several cases that include: (a) obliquely incident spectral waves on a planar beach; (b) obliquely incident spectral waves on a natural barred beach (DUCK'94 experiment); (c) alongshore variable offshore wave forcing on a planar beach; (d) alongshore varying bathymetry with constant offshore wave forcing; and (e) nearshore barred morphology with rip-channels. Quantitative and qualitative comparisons to previous analytical, numerical, laboratory studies and field measurements show that the modified model replicates surf zone recirculation patterns (onshore drift at the surface and undertow at the bottom) more accurately than previous formulations based on radiation stress (Haas and Warner, 2009). The results of the model and test cases are further explored for identifying the forces operating in rip current development and the potential implication for sediment transport and rip channel development. Also, model analysis showed that rip current strength is higher when waves approach at angles of 5° to 10° in comparison to normally incident waves.  相似文献   

7.
华南休闲海滩沙坝触发的裂流风险及特征研究   总被引:1,自引:1,他引:0  
为应对频发的致命性海滩溺水事故,自然资源部开展了我国首次滨海旅游区裂流灾害技术调查,在华南地区发现大量滨海休闲海滩存在浅滩沙坝和裂流现象。作为全国调查的部分成果,本文应用多种方法研究了广东省3个热门海滩沙坝触发的裂流机理、特征和演变规律。地形动力计算和卫星影像显示了沙坝形态、岸线形状以及裂流的高度动态性,尤其在青澳湾裂流呈现非常规的反季节变化,冬季风险较高而夏季风险较低。在相位解析水动力数值模拟中,裂流表现出对沙坝形态、浪高、浪向的高度敏感性。沙坝间较宽间隙会产生尺寸较大的裂流区,但比起窄沟槽不一定伴随更强的流速。当大部分水流集中从邻近的较宽通道回流入海时,部分窄沟槽几乎没有裂流产生。裂流流速与浪高成正比与入射角成反比。数值模拟结果表明,当入射角达到10°~30°时,沿岸流会取代离岸流占主导地位。现场调查也验证了在低潮时,较浅的水深会放大水流和波浪的地形效应,导致裂流风险加剧。本文研究结果可为滨海旅游区裂流灾害的工程减缓措施和公共警示提供有益参考。未来将会持续开展针对特定岸线的长期观测,以为裂流预警报和风险管控积累足够的统计数据。  相似文献   

8.
Ding  Yu-mei  Shi  Fengyan 《中国海洋工程》2019,33(5):544-553
An offshore shoal or bar refracts ocean surface waves and causes wave focusing/defocusing on the adjacent beach.Wave focal patterns characterized by alongshore variations in wave height, wave angle, and breaking location induce alongshore non-uniformities of wave setup and nearshore circulation, e.g., rip currents and alongshore currents, in the surfzone. A simplified analytic model for nearshore circulation generated by focused/defocused waves on a planar beach is developed and theoretical solutions are obtained using transport stream function and perturbations in alongshore distributions of wave height and wave angle at the breaker line. The analytic model suggests that alongshore currents are strongly affected by a pair of counter-rotating vortices generated shoreward of the wave focal zone. The vortices are persistent, and their strengths depend on the amplitudes of alongshore variations in wave height and wave angle. The alongshore gradient in wave height tends to intensify the vortices while the convergence of wave angle tends to weaken the vortices. Divergent flows associated with the vortices in the surfzone are intense,strengthening alongshore currents in the downstream of the wave focal zone and weakening alongshore currents or causing flows reversal in the upstream. Alongshore currents are modulated by rip currents associated with the wave focusing/defocusing patterns.  相似文献   

9.
The wave-induced setup and circulation in a two dimensional horizontal (2DH) reef-lagoon-channel system is investigated by a non-hydrostatic model. The simulated results agree well with observations from the laboratory experiments, revealing that the model is valid in simulating wave transformation and currents over reefs. The effects of incident wave height, period, and reef flat water depth on the mean sea level and wave-driven currents are examined. Results show that the distributions of mean sea level and current velocities on the reef flat adjacent to the channel vary significantly from those in the area close to the side walls. From the wave averaged current field, an obvious alongshore flux flowing from the reef flat to the channel is captured. The flux from the reef flat composes the second source of the offshore rip current, while the first source is from the lagoon. A detailed momentum balance analysis shows that the alongshore current is mainly induced by the pressure gradient between the reef flat and the channel. In the lagoon, the momentum balances are between the pressure and radiation stress gradient, which drives flow towards the channel. Along the channel, the offshore current is mainly driven by the pressure gradient.  相似文献   

10.
By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three-dimensional wave-induced current are carried out in this study. The wave model is based on the numerical solution of the modified wave action equation and eikonal equation, which can describe the wave refraction and diffraction. The hydrodynamic model is driven by the wave-induced radiation stresses and affected by the wave turbulence. The numerical implementation of the module has used the finite-volume schemes on unstructured grid, which provides great flexibility for modeling the waves and currents in the complex actual nearshore, and ensures the conservation of energy propagation. The applicability of the proposed model is evaluated in calculating the cases of wave set-up, longshore currents, undertow on a sloping beach, rip currents and meandering longshore currents on a tri-cuspate beach. The results indicate that it is necessary to introduce the depth-dependent radiation stresses into the numerical simulation of wave-induced currents, and comparisons show that the present model makes better prediction on the wave procedure as well as both horizontal and vertical structures in the wave-induced current field.  相似文献   

11.
An experimental study of rip channel flow   总被引:2,自引:0,他引:2  
A laboratory study of the flow over a bar with a single rip channel has been performed. First, the well-known pattern of a bar circulation cell with a strong offshore-directed current out through the rip channel and a weaker onshore-directed return flow over the bar is documented. Then measurements of the three-dimensional structure of the flow in the area where the rip channel, the bar and the trough meet and well inside the rip channel are presented. These measurements reveal that 3D effects play an important role, and that a depth-integrated viewpoint may not always be sufficient for predicting the flow in the near bed region. Particle-tracking experiments illustrate the near bed flow pattern over the entire area. These demonstrate how the overall trajectory pattern changes as a function of the distance of wave breaking from the bar crest: For some conditions, the rip current is fed from the trough and for other conditions it is fed directly from the bar. Both the 3D measurements and the trajectory tests show the existence of a weaker onshore-directed near-bed drift in the area where the rip current ceases. Finally, in a series of sensitivity tests, measurements of the rip current intensity for different wave climate and water level conditions reveal a strong correlation between the rip current intensity and the wave height (both normalized).  相似文献   

12.
In this paper, infragravity (IG) waves, forced by normally and obliquely incident wave groups, are studied using the quasi-3D (Q3D) nearshore circulation model SHORECIRC [Van Dongeren, A.R., I.A. Svendsen, 1997b. Quasi 3-D modeling of nearshore hydrodynamics. Research report CACR-97-04. Center for Applied Coastal Research, University of Delaware, Newark, 243 pp.], which includes the Q3D effects. The governing equations that form the basis of the model, as well as the numerical model and the boundary conditions, are described. The model is applied to the case of leaky IG waves. It is shown that the Q3D terms have a significant effect on the cross-shore variation of the surface elevation envelope, especially around the breakpoint and in the inner surf zone. The effect of wave groupiness on the temporal and spatial variation of all Q3D terms is shown after which their contribution to the momentum equations is analyzed. This reveals that only those Q3D coefficients, which appear in combination with the largest horizontal velocity shears make a significant contribution to the momentum equations. As a result of the calculation of the Q3D coefficients, the IG wave velocity profiles can be determined. This shows that in the surf zone, the velocity profiles exhibit a large curvature and time variation in the cross-shore direction, and a small — but essential — depth variation in the longshore direction.  相似文献   

13.
Nearshore shoaling and breaking waves can drive a complex circulation system of wave-induced currents. In the cross-shore direction, the local vertical imbalance between the gradient of radiation stress and that of pressure due to the setup drives an offshore flow near the bottom, called ‘undertow’, which plays a significant role in the beach profile evolution and the structure stability in coastal regions. A 1DV undertow model was developed based on the relationship between the turbulent shear stress and t...  相似文献   

14.
Idealized computational simulations with the nearshore model XBeach were carried out for a series of barred beach configurations in order to quantify the impact of nearshore bars on infragravity swash. Results show that nearshore bar systems reduce infragravity swash energy at the shoreline. The amount of swash reduction was found to correlate with both bar depth and rip width, when a rip channel is present. In order to develop a generalized empirical model for significant infragravity swash for barred beaches, the simulations were used to extend the empirical swash model of Stockdon et al. (2006) to include bar characteristics. The developed empirical model relates significant infragravity swash to incident wave conditions and nearshore bar depth. With respect to Stockdon et al. (2006), this new model improves predictive skill by reducing root-mean-square error by 50% for the computational simulations and by 15% when applied to a range of field data.  相似文献   

15.
A well-established 3D phase-averaged beach morphodynamic model was applied to investigate the morphodynamics of a typical artificial beach,and a series of discussions were made on the surfzone hydro-sedimentological processes under calm and storm events.Model results revealed that the nearshore wave-induced current presents a significant 3D structure under stormy waves,where the undertow and longshore currents exist simultaneously,forming a spirallike circulation system in the surfzone.Continuous longshore sediment transport would shorten the sediment supply in the cross-shore direction,subsequently suppress the formation of sandbars,showing that a typical recovery profile under calm waves does not necessarily develop,but with a competing process of onshore drift,undertow and longshore currents.Sediment transport rate during storms reaches several hundreds of times as those under calm waves,and two storm events contribute approximately 60%to the beach erosion.Sediment transport pattern under calm waves is mainly bed load,but as the fine sands underneath begin to expose,the contribution of suspended load becomes significant.  相似文献   

16.
The prediction of near-shore morphology on the time scale of a storm event and the length scale of a few surf zone widths is an active area of research. Intense wave breaking drives offshore-directed currents (undertow) carrying sediment seawards, resulting in offshore bar migration. In contrast, higher order nonlinear properties, such as wave asymmetry (velocity skewness) and velocity asymmetry, are drivers for shoreward transport. These wave processes are included in phase-resolving models such as Boussinesq-type wave models (e.g., TRITON). Short-wave averaging in the wave model yields wave-induced forces (e.g., radiation stress gradients) and a wave asymmetry term. The wave-induced forces are used in a hydrostatic model (e.g., Delft3D flow module) to drive the current and undertow, resulting in a 3D velocity profile. The wave model and hydrostatic model are coupled online with a morphodynamic model (e.g., Delft3D morphology module). The latter computes, based on the 3D flow profile and the wave asymmetry term, the sediment transport and performs the bathymetry updates. The updates are transferred directly back to the hydrodynamic models. The coupling of the wave model TRITON and the Delft3D modules is validated by comparing against extensive laboratory data sets (LIP and Boers) and a field case (Duck94), and show a good performance for the hydrodynamics and a reasonable/fair performance for the bar movements.  相似文献   

17.
《Ocean Modelling》2011,39(3-4):230-243
A three-dimensional numerical model was established to simulate the wave-induced currents. The depth-varying residual momentum, surface roller, wave horizontal and vertical turbulent mixing effects were incorporated as major driving forces. A surface roller evolution model considering the energy transfer, roller density and bottom slope dissipation was developed. The expression of the wave-induced horizontal turbulent mixing coefficient proposed by Larson and Kraus (1991) was extended to three-dimensional form. Plenty of experimental cases were used to validate the established model covering the wave setup, undertow, longshore currents and rip currents. Validation results showed the model could reasonably describe the main characteristics of different wave-induced current phenomena. The incorporation of surface roller for breaking waves should not be neglected in the modeling of surfzone hydrodynamics. The wave-induced turbulent mixing affects the structures of wave-induced current either in horizontal or in vertical directions. Sensitivity analysis of the major calibration parameters in the established model was made and their ranges were evaluated.  相似文献   

18.
金沙湾是粤港澳大湾区重要的滨海旅游景点之一,深受世界各地游客的青睐.利用XBeach模型模拟金沙湾海滩的近岸环流,研究了不同模拟波况下裂流的发生情况.结果表明,金沙湾产生裂流很大程度上受到波高和地形的影响,在年平均有效波高波况下,金沙湾沿岸无明显裂流,当入射波高超过某个阈值后,沿岸裂流风险提高.裂流的强度和离岸距离与入...  相似文献   

19.
弧形海岸裂流的数值模拟研究   总被引:3,自引:0,他引:3  
弧形海岸波浪产生的裂流严重危害人类活动,但是目前对其特征缺乏充分认识。本文对Haller物理模型实验和三亚大东海的数值模拟表明FUNWAVE模式具有较好的裂流模拟能力。基于该模式进行了多种弧形海岸条件的裂流数值模拟,给出裂流的一些特征:(1)海岸弯曲度增大,裂流增强;(2)海岸坡度对裂流有比较大的影响,太陡或太平缓的海岸不利于形成裂流;(3)海岸尺寸减小,裂流减弱;(4)波高和波周期增大,裂流增强,但是对于某些海岸而言,0.4m波高可能就存在危害比较大的裂流。  相似文献   

20.
基于高阶边界元方法的完全非线性数值水槽模型模拟潜堤地形上波浪的传播变形,通过与实验值进行比较,考察数学模型的正确性.采用两点法分离得到堤后高倍频自由波来研究入射波参数、水深对堤后高倍频自由波的影响.研究发现:基频波、二阶和三阶自由波幅值分别与入射波波幅成线性、二次和三次函数关系,基频波幅值基本不随波浪周期变化,而二阶和...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号