首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and/or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show that the proposed numerical scheme and transfer function modulation method are efficient for the data transfer from the numerical model to the physical model up to a deterministic level.  相似文献   

2.
An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and/or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show that the proposed numerical scheme and transfer function modulation method are efficient for the data transfer from the numerical model to the physical model up to a deterministic level.  相似文献   

3.
A semi-analytical nonlinear wavemaker model is derived to predict the generation and propagation of transient nonlinear waves in a wave flume. The solution is very efficient and is achieved by applying eigenfunction expansions and FFT. The model is applied to study the effect of the wavemaker and its motion on the generation and propagation of nonlinear waves. The results indicate that the linear wavemaker theory may be applied to predict only the generation of waves of low steepness for which the nonlinear terms in the kinematic wavemaker boundary condition and free-surface boundary conditions are of secondary importance. For waves of moderate steepness and steep waves these nonlinear terms have substantial effects on wave profile and wave spectrum just after the wavemaker. A wave spectrum corresponding to a sinusoidally moving wavemaker possesses a multi-peak form with substantial nonlinear components, which disturbs or may even exclude physical modeling in wave flumes. The analysis shows that the widely recognized weakly nonlinear wavemaker theory may only be applied to describe the generation and propagation of waves of low steepness. This is subject to further restrictions in shallow and deep waters because the kinematic wavemaker boundary condition as well as the nonlinear interaction of wave components and the evolution of wave energy spectrum is not properly described by weakly nonlinear wavemaker theory. Laboratory experiments were conducted in a wave flume to verify the nonlinear wavemaker model. The comparisons show a reasonable agreement between predicted and measured free-surface elevation and the corresponding amplitudes of Fourier series. A reasonable agreement between theoretical results and experimental data is observed even for fairly steep waves.  相似文献   

4.
A full second-order theory for coupling numerical and physical wave tanks is presented. The ad hoc unified wave generation approach developed by Zhang et al. [Zhang, H., Schäffer, H.A., Jakobsen, K.P., 2007. Deterministic combination of numerical and physical coastal wave models. Coast. Eng. 54, 171–186] is extended to include the second-order dispersive correction. The new formulation is presented in a unified form that includes both progressive and evanescent modes and covers wavemaker configurations of the piston- and flap-type. The second order paddle stroke correction allows for improved nonlinear wave generation in the physical wave tank based on target numerical solutions. The performance and efficiency of the new model is first evaluated theoretically based on second order Stokes waves. Due to the complexity of the problem, the proposed method has been truncated at 2D and the treatment of regular waves, and the re-reflection control on the wave paddle is also not included. In order to validate the solution methodology further, a series of nonlinear, periodic waves based on stream function theory are generated in a physical wave tank using a piston-type wavemaker. These experiments show that the new second-order coupling theory provides an improvement in the quality of nonlinear wave generation when compared to existing techniques.  相似文献   

5.
基于推板造波理论和摇板造波理论,在Open FOAM平台上采用重叠网格技术建立黏性数值波浪水槽,并使用一种结合SIMPLE算法和PISO算法的PIMPLE算法对数值模型进行求解。利用开发的数值模型通过数值收敛性测试和网格独立性测试分别重点研究了时间步长、库朗数和网格尺寸对数值精度和计算效率的影响。并对比研究了此数值模型分别嵌入层流模型和湍流模型的计算精度和计算效率。实现的规则波和二阶有限振幅波与理论结果和试验结果吻合,验证了此黏性数值波浪水槽的造波和主动消波功能。基于二维数值波浪水槽,进一步研究了三维数值造波,数值计算结果与理论结果吻合良好。研究结果不仅验证了重叠网格在二维和三维两相流体域中求解运动物体与流场交互的可靠性和正确性,而且为使用此黏性数值波浪水槽解决更复杂的海洋工程问题提供了依据。  相似文献   

6.
The present paper develops the complete second-order wavemaker theory for the generation of multidirectional waves in a semi-infinite basin. The theory includes superharmonics and subharmonics and is valid for a rotational as well as a translatory serpent-type wave-board motion. The primary goal is to obtain the second-order motion of the wave paddles required to get a prescribed multidirectional irregular wave field correct to second order, i.e. to suppress spurious free-wave generation. The wavemaker theory is a 3D extension of the full second-order wavemaker theory for wave flumes by Schäffer (1996).  相似文献   

7.
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoc unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application.  相似文献   

8.
This paper provides an experimental validation of the second-order coupling theory outlined by Yang et al. (Z. Yang, S. Liu, H.B. Bingham and J. Li., 2013. Second-order coupling of numerical and physical wave tanks for 2D irregular waves. Part I: Formulation, implementation and numerical properties, submitted for publication) using 2D irregular waves. This work provides a second-order dispersive correction for the physical wavemaker signal which improves the nonlinear transfer of information between the numerical and physical models compared to the first-order method of Zhang et al. (2007). The important nonlinear parameters and numerical performance were theoretically investigated in Part I. In the present Part II, careful experimental validation is carried out using a sequence of progressively more complex analytical and numerical target waves. The results demonstrate clearly that improved performance is achieved by using the second-order correction. When controlling with a second-order coupling signal, two key points are notable: (i) The higher harmonics underlying the numerical waves are accurately captured and transferred into the physical model. (ii) The second-order behavior leads to an unwanted spurious freely propagating second harmonic that is substantially reduced when compared to an identical wave paddle operating with a first-order coupling signal. Using nonlinear regular (monochromatic), bi-chromatic and irregular wave cases as well as varying coupled wave tank bathymetries, both these aspects are verified over a broad range of wave frequencies and shown to be extensively applicable to physical wave tanks.  相似文献   

9.
This article uses a comparison of four different numerical wave prediction models for hindcast wave conditions in Lake Michigan during a 10-day episode in October 1988 to illustrate that typical wave prediction models based on the concept of a wave energy spectrum may have reached a limit in the accuracy with which they can simulate realistic wave generation and growth conditions. In the hindcast study we compared the model results to observed wave height and period measurements from two deep water NOAA/NDBC weather buoys and from a nearshore Waverider buoy. Hourly wind fields interpolated from a large number of coastal and overlake observations were used to drive the models. The same numerical grid was used for all the models. The results show that while the individual model predictions deviate from the measurements by various amounts, they all tend to reflect the general trend and patterns of the wave measurements. The differences between the model results are often similar in magnitude to differences between model results and observations. Although the four models tested represent a wide range of sophistication in their treatment of wave growth dynamics, they are all based on the assumption that the sea state can be represented by a wave energy spectrum. Because there are more similarities among the model results than significant differences, we believe that this assumption may be the limiting factor for substantial improvements in wave modeling.  相似文献   

10.
11.
This study investigates the initialization of nonlinear free-surface simulations in a numerical wave flume.Due to the mismatch between the linear input wavemaker motion and the kinematics of fully nonlinear waves,direct numerical simulations of progressive waves,generated by a sinusoidally moving wavemaker,are prone to suffering from high-frequency wave instability unless the flow is given sufficient time to adjust.A time ramp is superimposed on the wavemaker motion at the start that allows nonlinear free-surface simulations to be initialized with linear input.The duration of the ramp is adjusted to test its efficiency for short waves and long waves.Numerical results show that the time ramp scheme is effiective to stabilize the wave instability at the start of the simulation in a wave flume.  相似文献   

12.
A numerical solution is developed to investigate the generation and propagation of small-amplitude water waves in a semi-infinite rectangular wave basin. The three-dimensional wave field is produced by the prescribed “snake-like” motion of an array of segmented wave generators located along the wall at one end of the tank. The solution technique is based on the boundary element approach and uses an appropriate three-dimensional Green function which explicitly satisfies the tank-wall boundary conditions. The Green function and its derivatives which appear in the integral equation formulation can be shown to be slowly convergent when the source and field points are in close proximity. Therefore, when computing the velocity potentials on the wave generators, the source points are chosen outside the fluid domain, thereby ensuring the rapid convergence of these functions and rendering the integral equations non-singular. Numerical results are shown which illustrate the influence of the various wavemaker and basin parameters on the generated wave field. Finally, the complete wave field produced by the diffraction of oblique waves by a vertical circular cylinder in a basin is presented.  相似文献   

13.
Propagation of a solitary wave over rigid porous beds   总被引:1,自引:0,他引:1  
The unsteady two-dimensional Navier–Stokes equations and Navier–Stokes type model equations for porous flows were solved numerically to simulate the propagation of a solitary wave over porous beds. The free surface boundary conditions and the interfacial boundary conditions between the water region and the porous bed are in complete form. The incoming waves were generated using a piston type wavemaker set up in the computational domain. Accuracy of the numerical model was verified by comparing the numerical results with the theoretical solutions. The main characteristics of the flow fields in both the water region and the porous bed were discussed by specifying the velocity fields. Behaviors of boundary layer flows in both fluid and porous bed regions were also revealed. Effects of different parameters on the wave height attenuation were studied and discussed. The results of this numerical model indicate that for the investigated incident wave as the ratio of the porous bed depth to the fluid depth exceeds 10, any further increase of the porous bed depth has no effect on wave height attenuation.  相似文献   

14.
The applicability of existing nonlinear (triad) spectral models for steep slopes (0.1–0.2) characteristic of reef environments was investigated, using both deterministic (phase-resolving) and stochastic (phased-averaged) formulations. Model performance was tested using laboratory observations of unidirectional wave transformation over steep and smooth bathymetry profiles. The models, developed for mild slopes, were implemented with minimal modifications (the inclusion of breaking parametrizations and linear steep-slope corrections) required by laboratory data. The deterministic model produced typically more accurate predictions than the stochastic one, but the phase averaged formulation proved fast enough to allow for an inverse modeling search for the optimal breaking parametrization. The effects of the additional assumptions of the stochastic approach resulted in a slower than observed evolution of the infragravity band. Despite the challenge posed by the fast wave evolution and energetic breaking characteristic to the steep reef slopes, both formulations performed overall well, and should be considered as good provisional candidates for use in numerical investigation of wave–current interaction processes on steep reefs.  相似文献   

15.
A physical model study of combined refraction and diffraction of waves through a breakwater gap at different incident angles was conducted. Both regular and random waves with narrow and broad frequency and direction spreading were studied. Besides the presence of a mild bottom slope in the lee of the breakwater, the distribution of wave heights across the width of a navigation channel inside the model harbor was also simulated. In addition to contributing to an understanding of the phenomenon of refraction and diffraction of random waves, the relatively complete set of data obtained can serve as a benchmark for testing of numerical models.  相似文献   

16.
进动(precession)共振是一种非线性共振相互作用,2016年才有学者对这一现象进行研究。采用非静压二维自由表面流模型模拟了深水条件下重力波的进动共振现象。通过边界造波的方法产生双色波,分析了触发进动共振的初始条件;探讨了进动共振在小振幅前提条件下发生的简化初始条件。数值模拟分析两组对称测点,对不同测点的波面、能量谱进行对比分析。数值结果表明:非静压二维自由表面流模型可以模拟进动共振现象,并且可以采用双色波作为条件来研究深水五波进动共振现象,进动共振需要一定的能量转化时间,进动共振发生的条件是三波组合的进动频率等于一个系统存在的非线性频率。  相似文献   

17.
This paper presents new experimental data on 2-D surf beat generation by a time-varying breakpoint induced by bichromatic wave groups. The experimental investigation covers a broad range of wave amplitudes, short wave frequencies, group frequencies and modulation rates. The data include measurements of incident and outgoing wave amplitudes, breakpoint position, shoreline run-up and the cross-shore structure of both the short and long wave motion. Surf beat generation is shown to be in good agreement with theory [Symonds, G., Huntley, D.A., Bowen, A.J., 1982. Two dimensional surf beat: long wave generation by a time-varying breakpoint. J. Geophys. Res. 87, 492–498]. In particular, surf beat generation is dependent on the normalised surf zone width, which is a measure of the phase relationship between the seaward and shoreward breakpoint forced long waves, and linearly dependent on the short wave amplitude. The cross-shore structure of the long wave motion is also consistent with theory; at maximum and minimum surf beat generation, the mean breakpoint coincides with the nodal and anti-nodal points, respectively, for a free long wave standing at the shoreline. A numerical solution, using measured data as input, additionally shows that the phase relationship between the incident bound long wave and the outgoing breakpoint forced wave is consistent with the time-varying breakpoint mechanism.  相似文献   

18.
Waves generated by vertical seafloor movements are simulated by use of a fully nonlinear two-dimensional numerical wave tank. In the souree region, the seafloor lifts to a designated height by a generation function. The numerical tests show that the linear theory is only valid for estimating the wave behaviors induced by the seafloor movements with a small amplitude, and the fully nonlinear numerical model should be adopted in the simulation of the wave generation by the large amplitude seafloor movements. Without the background surface waves, many numerical tests on the stable maximum elevations η0^max are carried out by beth the linear theory and the fully nonlinear model. The results of two models are compared and analyzed. For the fully nonlinear model, the influences of the amplitudes and the horizontal lengths on η^max are stronger than that of the characteristic duration times. Furthermore, results reveal that there are significant differences be- tween the linear theory and the fully nonlinear model. When the influences of the background surface waves are considered, the corresponding numerical analyses reveal that with the fully nonlinear model the η0^max near-linearly varies with the wave amplitudes of the surface waves, and the η0^max has significant dependences on the wave lengths and the wave phases of the surface waves. In addition, the differences between the linear theory and the fully nonlinear model are still obvious, and these differences are significantly affected by the wave parameters of the background surface waves, such as the wave amplitude, the wave length and the wave phase.  相似文献   

19.
A numerical model for wave propagation in a harbour is verified by use of physical models.The extended time-dependent mild slope equation is employed as the governing equation,and the model is solved by use of ADI method containing the relaxation factor.Firstly,the reflection coefficient of waves in front of rubble-mound breakwaters under oblique incident waves is determined through physical model tests,and it is regarded as the basis for simulating partial reflection boundaries of the numerical model.Then model tests on refraction,diffraction and reflection of waves in a harbour are performed to measure wave height distribution.Comparative results between physical and numerical model tests show that the present numerical model can satisfactorily simulate the propagation of regular and irregular waves in a harbour with complex topography and boundary conditions.  相似文献   

20.
The objective of the present work is to discuss the implementation of an active wave generating–absorbing boundary condition for a numerical model based on the Volume Of Fluid (VOF) method for tracking free surfaces. First an overview of the development of VOF type models with special emphasis in the field of coastal engineering is given. A new type of numerical boundary condition for combined wave generation and absorption in the numerical model VOFbreak2 is presented. The numerical boundary condition is based on an active wave absorption system that was first developed in the context of physical wave flume experiments, using a wave paddle. The method applies to regular and irregular waves. Velocities are measured at one location inside the computational domain. The reflected wave train is separated from the incident wave field in front of a structure by means of digital filtering and subsequent superposition of the measured velocity signals. The incident wave signal is corrected, so that the reflected wave is effectively absorbed at the boundary. The digital filters are derived theoretically and their practical design is discussed. The practical use of this numerical boundary condition is compared to the use of the absorption system in a physical wave flume. The effectiveness of the active wave generating–absorbing boundary condition finally is proved using analytical tests and numerical simulations with VOFbreak2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号