首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在波浪和水流的作用下,泥沙在不同时间尺度下的运动会引起沙滩的冲淤演变,对海岸资源有重要的影响。因此,了解沙滩季节性演变规律,并采取针对性的防护措施,是近岸沙滩亟须解决的问题。目前,现场观测是研究沙滩剖面冲淤演变的重要方法,通过沉积物组成、岸滩坡度及波浪动力的时空变化,了解沙滩剖面的变化特性,对于沙滩管理和海岸保护具有十分重要的意义。基于2017年9月—2019年11月在荣成楮岛南岸沙滩每个月采集一次的剖面数据,以及波浪动力数据,分别探究了沙滩在不同时间尺度下的变化特征,并对沙滩变化特征与波浪动力因素的相关性进行了探讨。研究发现:楮岛南岸沙滩形态变化具有较强的季节性特征,春季沙滩比较稳定;夏季沙滩受台风影响侵蚀严重,但在风暴过后的短时间内,沙滩泥沙恢复较快;冬季沙滩恢复速度逐渐减缓并趋于稳定。在夏季和冬季期间,波能流密度的向岸分量对楮岛南沙滩的演变产生重要作用,而且波能流密度向岸分量的均值(选取数据采集前15 d的波浪条件参与计算)与沙滩体积的相关性最好,并给出了两者的线性拟合公式。  相似文献   

2.
岬湾相间的琼州海峡南岸在海岸动力条件作用下,岸滩发生侵蚀或堆积,特别是南岸中部的南渡江三角洲沿岸岸滩演变剧烈。该文从海岸动力地貌的角度,对琼州海峡南岸的海岸动力特征、泥沙运动以及岸滩演变进行分析。根据海峡南部三维潮流场数值模拟结果,结合经验公式初步分析潮流引起的泥沙运移速率和方向,得到岸外水域总的泥沙运移趋势为从西向东。根据波浪动力计算分析沿岸泥沙运移,探讨沙质岸滩的动态与地貌演变之间的关系,得出海峡南岸海岸地貌演变与盛行的NE和NNE向风浪有密切关系,岸滩的演变过程主要受制于这两个方向的风浪及其引起的泥沙沿岸运移。  相似文献   

3.
南渡江三角洲海岸泥沙纵向运移与岸滩演变的响应   总被引:7,自引:0,他引:7  
南渡三角洲沿岸在盛行NNE向波浪等动力条件的作用下,泥沙产生纵向运移,岸滩遭受侵蚀或堆积,岸滩演变剧烈。本文利用基于网格的波注折射绕射模型,分析南渡江三角洲海岸波浪动力过程、破波带波能与辐射应力分布及其引起的沿岸泥沙纵向运称。浴海岸动力学地貌的角度,通过三角洲沿岸波浪动力特征、泥沙运动的分析,探讨沙质岸滩的动态与地貌演变。  相似文献   

4.
Besides the different scales within which coastal processes manifest their energy, the majority of the world's coastal regions exhibit forms of sediment heterogeneity that are physically significant. One example of a heterogeneous environment is Cassino beach, located at the southernmost part of Brazil, a fine-grain-sized sandy beach where fluid mud sporadically is transported to the nearshore and eventually onto the beach. At this site in 2005, as part of a field experiment, a video system was installed. Three years after the installation, a large mud transgression event took place in February 2008 and had 5 km of extension. In this context, the goal of the present work is to characterize the mud deposition pattern across the surf zone, describing the consequences of mud on nearshore dynamics using remote sensing techniques, beach profiles and suspended matter concentration. The surveyed beach profiles registered the deposition of fluid mud at the inner surf zone with concentrations up to 12 mg/l. The material was deposited close to the shoreline and had a cross-shore width of 100 m during the first deposition day occupying the entire water column. From surf zone time series of pixel intensity, it was possible to detect the attenuation of the surface wave spectra due to the presence of fluid mud. The combination of video techniques and field data allowed one to follow the formation of a double-layer system, where fluid mud overlays the sandy bottom. The video-based system at Cassino demonstrated that remote detection of fluid mud and quantification of its effect on the nearshore dynamics is feasible. The combination of beach profiles, measurements of suspended matter concentration and intensity timestacks allowed the analysis of the short-term evolution of the mud depositional processes.  相似文献   

5.
I~crIOWIn the coastal area, especially at the sandy seashore, wave and nearshore current are the major factors which affect sediment transPOrt and the motyhChdynamics.The numerical models of predicting the beach evolution can be classified intO the medi~term and long-term models according to their space and time scales (De Briend et al., 1993;Watanabe, 1990; Watanabe et al., 1986; Tao, 1996). In the medium-term model the effects ofwave, nearshore current and sediment transport are conside…  相似文献   

6.
Recent field measurements on beaches of different slopes have established that wave motion at periods substantially longer than the incident waves dominates the velocity field close to the shore. Analysis of a number of extensive data sets shows that much of this long wave motion is in the form of progessive edge waves, though forced wave motion, standing edge waves and free waves propagating away from the shore may also contribute to the energy.Theoretically, the drift velocities in bottom boundary layers due to edge waves show spatial patterns of convergence and divergence which may move sediment to form either regular crescentic or cuspate features when only one edge wave mode dominates, or a bewildering array of bars, bumps and holes when several phase-locked modes exist together.Convincing field demonstration of the link between nearshore topography and edge waves only exists for the special case of small-scale beach cusps on steep beaches, formed by edge waves at the subharmonic (twice the period) of the incident waves. At longer periods the link is proving more difficult to establish, due to the longer time-scales of topographic changes, the interaction between pre-existing topography and the water motion, and the observation of broad-banded edge wave motion which is not readily linked to topography with a well-defined scale.These ideas are, however, central to the study of nearshore processes, as most of the plausible alternate hypotheses do not seem to lead to quantitative predictions. Clearly, further theoretical and observational work is essential.  相似文献   

7.
The availability of 10 h of continuous, uninterrupted field measurements of wind waves recorded in the western Pacific and containing a complete wave growth episode, has provided a distinct opportunity for us to make a novel, unprecedented examination of detailed wave growth processes. We found that the significance of the size of data used in the measurement, which can only be addressed with continuous and uninterrupted measurements, reflected the ineptness of the conventional approach toward further detailed understanding of realistic wave growth processes, as the conventional 20 min data size essentially stamped out any dynamics with time scale below 20 min. While our conventional understanding and modeling were generally operative and useful, they left no real vestige on time localized mechanisms such as wave grouping or wave breaking processes all with time scales much less than 20 min.  相似文献   

8.
随着全球海平面的上升及极端气象的频发,全球海滩总体呈现出一定的退化现象,海滩保护成为海岸带生态修复的焦点问题之一。我国华南地区岬湾型海滩分布广泛,以深圳市大鹏湾官湖海滩为代表,基于2020—2021年实测海滩剖面高程数据,分析岬湾型海滩季节性变化特征。研究表明,官湖海滩剖面坡度夏秋缓冬春陡,夏秋侵蚀冬春淤积;海滩沉积物粒径季节性变化不明显。海滩剖面形态受风浪、平均潮位的季节性变化控制,以夏秋季为例,平均潮位逐渐升高,南向波浪强度较大,在二者的共同作用下,海滩后滨侵蚀明显,泥沙离岸输运,并在前滨淤积。补沙方案宜在夏秋季进行,且重点区域为官湖海滩东侧与观海湾海滩,防御方案应主要削弱南向波浪。  相似文献   

9.
To analyze the grain size and depositional environment of the foreshore sediments, a study was undertaken on wave refraction along the wide sandy beaches of central Tamil Nadu coast. The nearshore waves approach the coast at 45° during the northeast(NE) monsoon, at 135° during the southwest(SW) monsoon and at 90° during the non-monsoon or fair-weather period with a predominant wave period of 8 and 10 s. A computer based wave refraction pattern is constructed to evaluate the trajectories of shoreward propagating waves along the coast in different seasons. The convergent wave rays during NE monsoon, leads to high energy wave condition which conveys a continuous erosion at foreshore region while divergent and inept condition of rays during the SW and non-monsoon, leads to moderate and less energy waves that clearly demarcates the rebuilt beach sediments through littoral sediment transport. The role of wave refraction in foreshore deposits was understood by grain size and depositional environment analysis. The presence of fine grains with the mixed population, during the NE monsoon reveals that the high energy wave condition and sediments were derived from beach and river environment. Conversely, the presence of medium grains with uniform population, during SW and non-monsoon attested less turbulence and sediments were derived from prolong propagation of onshore-offshore wave process.These upshots are apparently correlated with the in situ beach condition. On the whole, from this study it is understood that beaches underwent erosion during the NE monsoon and restored its original condition during the SW and non-monsoon seasons that exposed the stability of the beach and nearshore condition.  相似文献   

10.
采用SWAN模型和ADCIRC模型建立了风浪、潮汐和水流联合作用的耦合数值模式,并通过渤海湾西南岸实测资料对该模式进行了验证。利用该模式分析了近岸区水位和流场时空变化对风浪模拟结果的影响,计算结果表明水位变化对近岸区风浪模拟结果有显著影响,特别是中等大风过程高潮位时波高受水位影响的变化幅值可达0.5m以上,且水深越浅影响越大。但在岸滩平缓的近岸海域由于流速、流向的时空变化不太剧烈,流场作用和波浪辐射应力作用对波浪场的影响都基本可以忽略。在模拟近岸风浪过程时,应选用耦合模式。  相似文献   

11.
Hydrodynamics and sediment transport in the nearshore zone were modeled numerically taking into account turbulent unsteady flow. The flow field was computed using the Reynolds Averaged Navier–Stokes equations with a kε turbulence closure model, while the free surface was tracked using the Volume-Of-Fluid technique. This hydrodynamical model was supplemented with a cross-shore sediment transport formula to calculate profile changes and sediment transport in the surf and swash zones. Based on the numerical solutions, flow characteristics and the effects of breaking waves on sediment transport were studied. The main characteristic of breaking waves, i.e. the instantaneous sediment transport rate, was investigated numerically, as was the spatial distribution of time-averaged sediment transport rates for different grain sizes. The analysis included an evaluation of different values of the wave friction factor and an empirical constant characterizing the uprush and backwash. It was found that the uprush induces a larger instantaneous transport rate than the backwash, indicating that the uprush is more important for sediment transport than the backwash. The results of the present model are in reasonable agreement with other numerical and physical models of nearshore hydrodynamics. The model was found to predict well cross-shore sediment transport and thus it provides a tool for predicting beach morphology change.  相似文献   

12.
The accuracy of nearshore infragravity wave height model predictions has been investigated using a combination of the spectral short wave evolution model SWAN and a linear 1D SurfBeat model (IDSB). Data recorded by a wave rider located approximately 3.5 km from the coast at 18 m water depth have been used to construct the short wave frequency-directional spectra that are subsequently translated to approximately 8 m water depth with the third generation short wave model SWAN. Next the SWAN-computed frequency-directional spectra are used as input for IDSB to compute the infragravity response in the 0.01 Hz–0.05 Hz frequency range, generated by the transformation of the grouped short waves through the surf zone including bound long waves, leaky waves and edge waves at this depth. Comparison of the computed and measured infragravity waves in 8 m water depth shows an average skill of approximately 80%. Using data from a directional buoy located approximately 70 km offshore as input for the SWAN model results in an average infragravity prediction skill of 47%. This difference in skill is in a large part related to the under prediction of the short wave directional spreading by SWAN. Accounting for the spreading mismatch increases the skill to 70%. Directional analyses of the infragravity waves shows that outgoing infragravity wave heights at 8 m depth are generally over predicted during storm conditions suggesting that dissipation mechanisms in addition to bottom friction such as non-linear energy transfer and long wave breaking may be important. Provided that the infragravity wave reflection at the beach is close to unity and tidal water level modulations are modest, a relatively small computational effort allows for the generation of long-term infragravity data sets at intermediate water depths. These data can subsequently be analyzed to establish infragravity wave height design criteria for engineering facilities exposed to the open ocean, such as nearshore tanker offloading terminals at coastal locations.  相似文献   

13.
近岸海域水沙界面通量与水流挟沙力研究   总被引:1,自引:0,他引:1  
郑俊  李瑞杰  于永海 《海洋学报》2014,36(5):136-141
近岸海域的波浪、潮流及海流等动力因素具有周期性和时间、空间尺度差异大的特点,在综合考虑各动力因子的联合作用时具有较大的难度。本文根据平动动能叠加原理给出了一种近岸动力因子的表达形式,并提出了海洋波动有效速度的概念,结合水沙界面处泥沙通量的切应力与挟沙力关系,得到了水流挟沙力的新的计算公式。指出了水流挟沙力与水流临界速度有关,并且该水流临界速度随水深的增大及相对糙率的减小而增大。采用近岸实测数据和模拟结果,对本文的近岸水流挟沙力公式进行了验证,结果表明该公式的计算值与实测值吻合较好,可以适用于近岸海域。  相似文献   

14.
9914号(Dan)台风浪的后报试验研究   总被引:5,自引:2,他引:5  
利用WAM第三代海浪模式的第四版本(WAMC4)对40a来造成福建沿海灾害最严重的9914号台风海浪过程进行了后报试验,并与近岸常规观测和卫星高度计有效波高资料进行了比较。与常规观测站的比较结果表明,WAMC4能较好地再现海浪的发展过程。后报结果与TOPEX/POSEIDON和ERS-2卫星观测资料的对比研究表明,风速的后报结果与卫星观测有较好的一致性,但海浪的后报比卫星高度计反演的有效波高整体略偏低。  相似文献   

15.
This is a sequel with extensive new data to Liu's (Liu, 2000a. Wave grouping characteristics in nearshore Great Lakes. Ocean Engineering 27, 1221–1230) exploratory study on wave grouping characteristics in the nearshore Great Lakes. We analyze recent GLERL time-series measurements recorded by pressure sensors deployed at four nearshore stations in southern Lake Michigan during 1998–1999. With the advantage of continued application of time-frequency wavelet spectrum analysis, the extensive new measurements substantially confirmed the effectiveness of the empirical characterization of wave grouping parameters defined in Liu. We show that a wave group is really the basic element for a detailed understanding of wave processes, in contrast to the conventional approach of using a frequency spectrum as the basic element, which depends on the recording length and requires the data to be stationary. While studying wave time-series alone does not really alleviate the vast intricacies of the wind wave processes, the embodiment of wave grouping as the predominant feature in the wind wave processes clearly represents a significant step forward toward sound conceptual advancement.  相似文献   

16.
New laboratory data are presented on the influence of free long waves, bound long waves and wave groups on sediment transport in the surf and swash zones. As a result of the very significant difficulties in isolating and identifying the morphodynamic influences of long waves and wave groups in field conditions, a laboratory study was designed specifically to enable measurements of sediment transport that resolve these influences. The evolution of model sand beaches, each with the same initial plane slope, was measured for a range of wave conditions, firstly using monochromatic short waves. Subsequently, the monochromatic conditions were perturbed with free long waves and then substituted with bichromatic wave groups with the same mean energy flux. The beach profile changes and net cross-shore transport rates were extracted and compared for the different wave conditions, with and without long waves and wave groups. The experiments include a range of wave conditions, e.g. high-energy, moderate-energy, low-energy waves, which induce both spilling and plunging breakers and different turbulent intensities, and the beaches evolve to form classical accretive, erosive, and intermediate beach states. The data clearly demonstrate that free long waves influence surf zone morphodynamics and promote increased onshore sediment transport during accretive conditions and decreased offshore transport under erosive conditions. In contrast, wave groups, which can generate both forced and free long waves, generally reduce onshore transport during accretive conditions and increase offshore transport under erosive conditions. The influence of the free long waves and wave groups is consistent with the concept of the relative fall velocity, H/wsT, as a dominant parameter controlling net beach erosion or accretion. Free long waves tend to reduce H/wsT, promoting accretion, while wave groups tend to increase the effective H/wsT, promoting erosion.  相似文献   

17.
In this study,typhoon waves generated during three typhoons(Damrey(1210),Fung-wong(1416),and Chan-hom(1509))in the Yellow Sea and East China Sea were simulated in a simulating waves nearshore(SWAN)model,and the wind forcing was constructed by combining reanalyzed wind data with a Holland typhoon wind model.Various parameters,such as the Holland fitting parameter(B)and the maximum wind radius?,were investigated in sensitivity experiments in the Holland model that affect the wind field construction.Six different formulations were considered and the parameters determined by comparing the simulated wind results with in-situ wind measurements.The key factors affecting wave growth and dissipation processes from deep to shallow waters were studied,including wind input,whitecapping,and bottom friction.Comparison with in-situ wave measurements suggested that the KOMEN scheme(wind input exponential growth and whitecapping energy dissipation)and the JONSWAP scheme(dissipation of bottom friction)resulted in good reproduction of the significant wave height of typhoon waves.A preliminary analysis of the wave characteristics in terms of wind-sea and swell wave revealed that swell waves dominated with the distance of R to the eye of the typhoon,while wind-sea prevailed in the outer region up to six to eight times the R values despite a clear misalignment between wind and waves.The results support the hypothesis that nonlinear wave-wave interactions may play a key role in the formation of wave characteristics.  相似文献   

18.
Hydrodynamics and sediment resuspension events, induced at the shoreline by a deep-draft vessel passing nearby, are described. Measurements (pressure, currents and turbidity) were obtained at 4 Hz, on a lower beach ~50 m from a channel where large car ferries operate in Wootton Creek, Isle of Wight. The study focuses on a representative 8-min 32-s-long record, during which two large vessels passed the channel section. At the shore, the passage of each vessel induced a long-period water-level drawdown, followed by a water-level oscillation (seiche) of similar period, and the short-period waves of the wake. Both drawdowns were the main constituents of the prevailing wave pattern. The second drawdown was the largest in amplitude, in response to a higher speed of the ferry, and the influence of the seiche which had been activated during the preceding event. Two successive peaks of turbidity were observed shortly after this drawdown. Analyses of current velocity and direction indicate that the sediments resuspended originated from the shallower upper beach. Anthropogenically induced erosion of the foreshore is predicted at Wootton Creek.  相似文献   

19.
利用高分辨率的大气和波浪数值模式,模拟了2016年苏北近海的风场和波浪场,并与卫星高度计资料、散射计风场、再分析资料以及实测浮标资料进行了比较,验证了模式的准确性。基于这套模式结果,系统地分析了江苏近海的风场和波浪场的多时间尺度变化:季节变化、日变化以及季节内变化(台风、寒潮)。分析结果表明:苏北近海海域的风速、有效波高和涌浪在冬季和秋季较大、春季和夏季较小;冬季盛行西北风,常浪向为西北向,夏季盛行东南风,常浪向为东南向。风场和波浪场还具有显著的日变化特征,且日变化存在季节变化规律,离岸越近海域日变化特征越明显。同时,江苏近海还会经历季节内尺度的强天气过程的影响,比如台风和寒潮。  相似文献   

20.
The formation of beach megacusps along the shoreline of southern Monterey Bay, CA, is investigated using time-averaged video and simulated with XBeach, a recently developed coastal sediment transport model. Investigations focus on the hydrodynamic role played by the bay's ever-present rip channels. A review of four years of video and wave data from Sand City, CA, indicates that megacusps most often form shoreward of rip channels under larger waves (significant wave height (Hs) = 1.5–2.0 m). However, they also occasionally appear shoreward of shoals when waves are smaller (Hs ~ 1 m) and the mean water level is higher on the beach. After calibration to the Sand City site, XBeach is shown to hindcast measured shoreline change moderately well (skill = 0.41) but to overpredict the erosion of the swash region and beach face. Simulations with small to moderate waves (Hs = 0.5–1.2 m) suggest, similar to field data, that megacusps will form shoreward of either rip channels or shoals, depending on mean daily water level and pre-existing beach shape. A frequency-based analysis of sediment transport forcing is performed, decomposing transport processes to the mean, infragravity, and very-low-frequency (VLF) contributions for two highlighted cases. Results indicate that the mean flow plays the dominant role in both types of megacusp formation, but that VLF oscillations in sediment concentration and advective flow are also significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号