首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The three-dimensional numerical model with σ-coordinate transformation in the vertical direction is applied to the simulation of surface water waves and wave-induced laminar boundary layers. Unlike most of the previous investigations that solved the simplified one-dimensional boundary layer equation of motion and neglected the interaction between boundary layer and outside flow, the present model solves the full Navier–Stokes equations (NSE) in the entire domain from bottom to free surface. A non-uniform mesh system is used in the vertical direction to resolve the thin boundary layer. Linear wave, Stokes wave, cnoidal wave and solitary wave are considered. The numerical results are compared to analytical solutions and available experimental data. The numerical results agree favorably to all of the experimental data. It is found that the analytical solutions are accurate for both linear wave and Stokes wave but inadequate for cnoidal wave or solitary wave. The possible reason is that the existing analytical solutions for cnoidal and solitary waves adopt the first-order approximation for free stream velocity and thus overestimate the near bottom velocity. Besides velocity, the present model also provides accurate results for wave-induced bed shear stress.  相似文献   

2.
Approximate analytical solutions of the boundary layer equation are obtained in closed form for oscillatory rough turbulent flow. The solutions are based on a time-varying eddy viscosity, and the aim of the study is to assess the effects of these time variations on the properties of the wave boundary layer. The flow and the eddy viscosity are made interdependent by a closure assumption which relates the peak value of viscosity in the wave cycle to the peak value of shear velocity. Instantaneous vertical profiles of horizontal velocity and shear stress, and time series of the bed shear stress, are presented for a typical case study. In addition, the wave drag coefficient, the boundary layer thickness and the phase lead of peak bed shear stress over peak free-stream velocity, are determined as functions of both the relative roughness and the parameter governing the magnitude of the time variations in viscosity. Reasonable agreement is demonstrated with previous experimental and theoretical results.  相似文献   

3.
A new set of Boussinesq-type equations describing the free surface evolution and the corresponding depth-integrated horizontal velocity is derived with the bottom boundary layer effects included. Inside the boundary layer the eddy viscosity gradient model is employed to characterize Reynolds stresses and the eddy viscosity is further approximated as a linear function of the distance measured from the seafloor. Boundary-layer velocities are coupled with the irrotational velocity in the core region through boundary conditions. The leading order boundary layer effects on wave propagation appear in the depth-integrated continuity equation to account for the velocity deficit inside the boundary layer. This formulation is different from the conventional approach in which a bottom stress term is inserted in the momentum equation. An iterative scheme is developed to solve the new model equations for the free surface elevation, depth-integrated velocity, the bottom stress, the boundary layer thickness and the magnitude of the turbulent eddy viscosity. A numerical example for the evolution of periodic waves propagating in one-dimensional channel is discussed to illustrate the numerical procedure and physics involved. The differences between the conventional approach and the present formulation are discussed in terms of the bottom frictional stress and the free surface profiles.  相似文献   

4.
Experimental investigation is made on the boundary layers of the transformation zone (i.e. the region between the last symmetrical wave profile depth and the breaking point) of plunging breakers propagating on a smooth beach with 1/12 uniform slope. Using a laser anemometer, the particle velocities are measured at four verticals along the transformation zone for three different steepnesses of waves within the plunging breaker range. The boundary layer flow in the transformation zone is found mostly of turbulent character and vertical distribution of particle velocities does not seem to conform to the classical law of the wall distribution given for steady-flow boundary layers. The results show that free-stream particle velocities, in the boundary layer of the breaker under the crest phase, increase considerably as the wave progresses towards the breaking point. The boundary layer thickness, defined as the velocity-affected region, remains constant throughout the transformation zone but it decreases with increasing deep-water wave steepness for the particular beach slope tested.  相似文献   

5.
In this note we investigated the effects of a thin visco-elastic mud layer on wave propagation. Within the framework of linear water-wave theory, analytical solutions are obtained for damping rate, dispersion relation between wave frequency and wave number, and velocity components in the water column and mud layer. The wave attenuation rate reaches a maximum value when the mud layer thickness is about the same as the mud boundary layer thickness. Heavier mud has a weaker effect on the wave damping. However, the wave attenuation rate does not always decrease as the elastic shear modulus increases. In the range of small values for elastic shear modulus, the wave attenuation can be amplified quite significantly. The current solutions are compared with experimental data with different wave conditions and mud properties. In general, good agreements are observed.  相似文献   

6.
1 .IntroductionThe interaction between waves propagating onthe surface of a body of water andthe bed materialis a long standing coastal problem.The problemis practicallyimportant because the waves can be at-tenuated at a muchfaster rate whenthe bed materi…  相似文献   

7.
Bed friction and dissipation in a combined current and wave motion   总被引:1,自引:0,他引:1  
Two simple two-layer eddy viscosity models, which facilitate analytical solutions, are presented in order to describe the velocity field and associated shear stress in a combined current wave motion. The models, which have the same eddy viscosity in the current boundary layer, but different eddy viscosities in the wave boundary layer, cover together the whole rough turbulent regime. Straightforward definitions are made for the wave friction factor and the current friction factor for the combined motion, which are in accordance with the results for pure waves and pure currents. In this way one avoids the fictitious reference velocities and elliptic integrals which e.g. Grant and Madsen (1978, 1979) experienced. The two friction factors turn out to be functions of four dimensionless parameters. A detailed calculation procedure is presented. Comparison with laboratory experiments yields promising results. A new relation connecting dissipation and bed shear stress is also developed.  相似文献   

8.
The comparison of six well-known models of the wave bottom boundary layer shows that they are identical in the case of a smooth bottom but exhibit serious differences for the other types of conditions. The thickness of the wave bottom boundary layer and the coefficient of vertical diffusion of momentum are studied by using the relations of the k-ε-model. The validity of these estimates is checked by comparing the measured and computed values of the friction velocity. This comparison demonstrates fairly good agreement between the results characterized by a coefficient of correlation equal to 0.851. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 6, pp. 54–67, November–December, 2005.  相似文献   

9.
The results of direct numerical simulations of the boundary layer generated at the bottom of a solitary wave are described. The numerical results, which agree with the laboratory measurements of Sumer et al. (2010) show that the flow regime in the boundary layer can be laminar, laminar with coherent vortices and turbulent. The average velocity and bottom shear stress are computed and the results obtained show that the logarithmic law can approximate the velocity profile only in a restricted range of the parameters and at particular phases of the wave cycle. Moreover, the maximum value of the bottom shear stress is found to depend on the dimensionless wave height only, while the minimum (negative) value depends also on the dimensionless boundary layer thickness. Diagrams and simple formulae are proposed to evaluate the minimum and maximum bottom shear stresses and their phase shift with respect to the wave crest.  相似文献   

10.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2006,33(17-18):2310-2331
The problem of wave propagation in a fully nonlinear numerical wave tank is studied using desingularized boundary integral equation method coupled with mixed Eulerian–Lagrangian formulation. The present method is employed to solve the potential flow boundary value problem at each time step. The fourth-order predictor–corrector Adams–Bashforth–Moulton scheme is used for the time-stepping integration of the free surface boundary conditions. A damping layer near the end-wall of wave tank is added to absorb the outgoing waves with as little wave reflection back into the wave tank as possible. The saw-tooth instability is overcome via a five-point Chebyshev smoothing scheme. The model is applied to several wave propagations including solitary, irregular and random incident waves.  相似文献   

11.
The boundary layer is very important in the relation between wave motion and bed stress, such as sediment transport. It is a known fact that bed stress behavior is highly influenced by the boundary layer beneath the waves. Specifically, the boundary layer underneath wave runup is difficult to assess and thus, it has not yet been widely discussed, although its importance is significant. In this study, the shallow water equation (SWE) prediction of wave motion is improved by being coupled with the kω model, as opposed to the conventional empirical method, to approximate bed stress. Subsequently, the First Order Center Scheme and Monotonic Upstream Scheme of Conservation Laws (FORCE MUSCL), which is a finite volume shock-capturing scheme, is applied to extend the SWE range for breaking wave simulation. The proposed simultaneous coupling method (SCM) assumes the depth-averaged velocity from the SWE is equivalent to free stream velocity. In turn, free stream velocity is used to calculate a pressure gradient, which is then used by the kω model to approximate bed stress. Finally, this approximation is applied to the momentum equation in the SWE. Two experimental cases will be used to verify the SCM by comparing runup height, surface fluctuation, bed stress, and turbulent intensity values. The SCM shows good comparison to experimental data for all before-mentioned parameters. Further analysis shows that the wave Reynolds number increases as the wave propagates and that the turbulence behavior in the boundary layer gradually changes, such as the increase of turbulent intensity.  相似文献   

12.
《Ocean Modelling》2011,39(3-4):267-279
Near-surface enhancement of turbulent mixing and vertical mixing coefficient for temperature owing to the effect of surface wave breaking is investigated using a two-dimensional (2-D) ocean circulation model with a tidal boundary condition in an idealized shelf sea. On the basis of the 2-D simulation, the effect of surface wave breaking on surface boundary layer deepening in the Yellow Sea in summer is studied utilizing a 3-D ocean circulation model. A well-mixed temperature surface layer in the Yellow Sea can be successfully reconstructed when the effect of surface wave breaking is considered. The diagnostic analysis of the turbulent kinetic energy equation shows that turbulent mixing is enhanced greatly in the Yellow Sea in summer by surface wave breaking. In addition, the diagnostic analysis of momentum budget and temperature budget also show that surface wave breaking has an evident contribution to the turbulent mixing in the surface boundary layer. We therefore conclude that surface wave breaking is an important factor in determining the depth of the surface boundary layer of temperature in the Yellow Sea in summer.  相似文献   

13.
In the Boussinesq approximation, for topographic waves entrapped by a sloping bottom, we determine mean currents induced by a wave due to nonlinearity with regard for turbulent viscosity and diffusion. We determine the thickness of the bottom boundary layer, the vertical turbulent exchange coefficients, and turbulent stresses on the upper boundary of the boundary layer depending on the parameters of the wave. In the diffusion approximation, we find the vertical distribution of the concentration of sediments suspended by the wave and the flow rates of sediments along and perpendicular to the isobaths. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 5, pp. 13–24, September–October, 2005.  相似文献   

14.
Knott(诺特)方程是AVO理论公式的位移位表达形式。同一个弹性界面的边值定解问题在数学上的不同表述方式将导致Knott方程出现多种表达形式。研究表明,XOZ平面内,P和SV平面简谐波入射到弹性界面时遵循的Knott方程共有8种独立表达形式,其中纵波和横波各有4种;对于相同类型的平面简谐波入射和相同的入射介质,不同形式的Knott方程可以完全统一于相同表达形式的能量平衡方程。  相似文献   

15.
The hydrodynamic problem of a hydrofoil travelling at constant speed in water waves has been investigated through velocity potential theory. The boundary conditions on the free surface have been linearized, and the effects are accounted for through the Green function. The overall problem is decomposed into the steady forward speed problem and periodic wave radiation and diffraction problems. Each of these problems is solved using the boundary integral equation over the hydrofoil surface together with a vortex sheet behind the trailing edge. The body surface boundary condition is imposed on its mean position. As a result the steady potential will contribute a well-known mj term to the body surface boundary condition on the radiation problem. The numerical difficulty in dealing with this term is effectively resolved through a difference method. The effects of the thickness on the wave radiation and diffraction are investigated. The applicability of various reciprocity relationships in this problem is discussed.  相似文献   

16.
A numerical model for coastal water wave motion that includes an effective method for treatment of non-reflecting boundaries is presented. The second-order one-way wave equation to approximate the non-reflecting boundary condition is found to be excellent and it ensures a very low level of reflection for waves approaching the boundary at a fairly wide range of the incidence angle. If the Newman approximation is adopted, the resulting boundary condition has a unique property to allow the free propagation of wave components along the boundary. The study is also based on a newly derived mild-slope wave equation system that can be easily made compatible to the one-way wave equation. The equation system is theoretically more accurate than the previous equations in terms of the mild-slope assumption. The finite difference method defined on a staggered grid is employed to solve the basic equations and to implement the non-reflecting boundary condition. For verification, the numerical model is then applied to three coastal water wave problems including the classical problem of plane wave diffraction by a vertical circular cylinder, the problem of combined wave diffraction and refraction over a submerged hump in the open sea, and the wave deformation around a detached breakwater. In all cases, the numerical results are demonstrated to agree very well with the relevant analytical solutions or with experimental data. It is thus concluded that the numerical model proposed in this study is effective and advantageous.  相似文献   

17.
The wave friction factor is commonly expressed as a function of the horizontal water particle semi-excursion (A wb) at the top of the boundary layer. A wb, in turn, is normally derived from linear wave theory by \fracU\textwbT\textw2p \frac{{{U_{\text{wb}}}{T_{\text{w}}}}}{{2\pi }} , where U wb is the maximum water particle velocity measured at the top of the boundary layer and T w is the wave period. However, it is shown here that A wb determined in this way deviates drastically from its real value under both linear and non-linear waves. Three equations for smooth, transitional and rough boundary conditions, respectively, are proposed to solve this problem, all three being a function of U wb, T w, and δ, the thickness of the boundary layer. Because these variables can be determined theoretically for any bottom slope and water depth using the deepwater wave conditions, there is no need to physically measure them. Although differing substantially from many modern attempts to define the wave friction factor, the results coincide with equations proposed in the 1960s for either smooth or rough boundary conditions. The findings also confirm that the long-held notion of circular water particle motion down to the bottom in deepwater conditions is erroneous, the motion in fact being circular at the surface and elliptical at depth in both deep and shallow water conditions, with only horizontal motion at the top of the boundary layer. The new equations are incorporated in an updated version (WAVECALC II) of the Excel program published earlier in this journal by Le Roux et al. Geo-Mar Lett 30(5): 549–560, (2010).  相似文献   

18.
Chiu-On Ng   《Ocean Engineering》2001,28(10):1731
The transport of a chemical species under the pure action of surface progressive waves in the benthic boundary layer which is loaded with dense suspended sediments is studied theoretically. The flow structure of the boundary layer is approximated by that of a two-layer Stokes boundary layer with a sharp interface between clear water and a heavy fluid. The simplest model of constant eddy diffusivities is adopted and the exchange of matter with the bed is ignored. For a thin layer of heavy fluid, whose thickness is comparable to the surface wave amplitude and the Stokes boundary layer thickness, effective transport equations are deduced using an averaging technique based on the method of homogenization. The effective advection velocity is found to be equal to the depth-averaged mass transport velocity, while the dispersion coefficient can be shown to be positive definite. Explicit expressions for the transport coefficients are obtained as functions of fluid properties and flow kinematics. Physical discussions on their relations are also presented.  相似文献   

19.
Anumericalmodelonseasurfacewindoftyphoonanditshindcastingcalibration¥SheJun;YuanYeliandPanZengdi(ReceivedApril14,1993;accepte...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号