首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Activity/composition relations in the ternary feldspars   总被引:6,自引:0,他引:6  
Activity/composition relations are presented for high-structural state feldspars whose bulk compositions lie within the ternary system NaAlSi3O8 CaAl2Si2O8-KAlSi3O8. The expressions are parameterized from the data for coexisting feldspars of Seck (1971a) using an asymmetric regular solution approximation for the excess Gibbs free energy of mixing and an Al-avoidance model for the configurational entropy of solution. The solution properties of the plagioclase and alkali-feldspar binaries have been made to conform to the recent work of Thompson and Hovis (1979) and Newton et al. (1980). Using the proposed model the ternary feldspar solvus is extrapolated in temperature (up to 1,500° C) and pressure (up to 5kbars). A new two-feldspar geothermometer is presented which provides somewhat more reasonable estimates of crystallization temperatures than the equations and graphs of Stornier (1975), Powell and Powell (1977), Brown and Parsons (1981) and Haselton et al. (1983). In conjunction, some criteria are suggested for establishing the existence of equilibrium tie-lines between coexisting ternary feldspars in rhyolites and trachytes. Calculated values of the activity of KAlSi3O8 in plagioclase are examined in some detail. These compare favorably with independent estimates obtained from experimentally grown plagioclases precipitating at liquidus temperatures from igneous rocks of widely varying alkali contents.  相似文献   

2.
In recent years, there have been numerous calibrations of the biotite-garnet Fe-Mg exchange geothermometer. The Eastern Lac Seul region of the English River subprovince, Ontario, provides an excellent field area in which to compare these calibrations.Trend surface analysis using the temperatures obtained from garnet cores and matrix biotites-showed almost identical trends in the eastern Lac Seul region regardless of the calibration used. The absolute temperatures and the precision of each calibration do, however, show large variation. Geothermometers based solely on lnKD were found to give more precise results than the calibrations that attempt to incorporate non-Fe-Mg components. The Perchuk and Lavrent'eva (1983) thermometer yields the most precise and accurate results. If a sufficient number of samples are collected over a region, it can be used to estimate metamorphic temperature trends to ±30° C. Metamorphism and migmatization of the English River subprovince occurred during the Kenoran orogeny, 2.68 b.y. ago. Our results show that a thermal anticline has been preserved, with temperatures of 600° C at the north and south contacts with Uchi and Wabigoon Greenstone belts, increasing to 725 °C at the center of the subprovince. A garnet-cordierite in isograd occurs at 650° C and an orthopyroxene in isogradat 700° C.  相似文献   

3.
The partitioning of stable carbon isotopes between calcite, graphite and CO2 was experimentally determined at temperatures from 500 to 1200 °C and 1 to 15 kbar pressure. Attainment of carbon isotope equilibrium in CO2-calcite runs was proven by achieving the same fractionation from isotopically opposite directions. The resultant CO2-calcite fractionation curve for carbon differs from Bottinga's calculation by 1.2 and confirms recent experiments of Chacko et al. and Mattey et al. In CO2-graphite experiments equilibrium fractions were extrapolated by applying the partial-exchange technique of Northrop and Clayton and by optimizing the contribution of surface reaction in graphite. CO2-graphite fractionations at temperatures up to 800 °C are in fair agreement with Bottinga's calculation, but yield a surprisingly high fractionation of 5 at upper mantle temperatures. The combination of CO2-calcite (carbon) and CO2-graphite fractionation results in a new experimentally determined calcite-grapite fractionation curve, expressed by the equation:
  相似文献   

4.
One of the most widely used methods to estimate magmatic oxygen fugacity involves the use of empirical equations relating fO2 to the iron redox state in quenched silicate liquids; however none of the equations have been calibrated experimentally under subliquidus conditions at temperatures and oxygen fugacities that are relevant to natural magmas. To address this problem, we tested two empirical relationships [Eq. (1) in Kress and Carmichael 1991; Eq. (6) in Nikolaev et al. 1996] on synthetic glasses synthesized from a ferrobasaltic and a transitional alkali-basaltic composition at sub- to superliquidus temperatures (1,132–1,222°C) and controlled oxygen fugacities (FMQ=–2 to +1.4). Fe3+/Fe was determined using conventional and milliprobe Mössbauer spectroscopy, and verified using wet chemical analysis on selected samples. For the ferrobasaltic bulk composition SC1-P, both empirical models reproduce the Fe3+/Fe ratio of the quenched liquids generally within 0.03 for sub- as well as superliquidus temperatures, although agreement is worse at higher oxygen fugacities (FMQ>+1) at subliquidus temperatures. For the transitional alkali-basaltic composition 7159V-P, both models reproduce the Fe3+/Fe ratio of the quenched liquids generally within 0.04, although agreement is worse for both models at high oxygen fugacities (FMQ>+1). Such behaviour may be related to a change in melt structure, where a progressive change in Fe3+ coordination is inferred to occur as a function of Fe3+/Fe based on Mössbauer center shifts. Recasting the data in terms of oxygen fugacity shows that calculated oxygen fugacities deviate from those actually maintained during the equilibration of the sample material by generally no more than 0.5 log-bar unit, with maximum deviations that only rarely exceed one log-bar unit.Editorial responsibility: J. Hoefs  相似文献   

5.
Kyser, O'Neil, and Carmichael (1981, 1982) measured the 18O values of coexisting minerals from peridotite nodules in alkali basalts and kimberlites, interpreting the nodules as equilibrium assemblages. Using Ca-Mg-Fe element-partition geothermometric data, they proposed an empirical18O/16O geothermometer: T(°C)=1,151–173–68 2, where is the per mil pyroxene-olivine fractionation. However, this geothermometer has an unusual crossover at 1,150 °C, and in contrast to what might be expected during closed-system equilibrium exchange, the most abundant mineral in the nodules (olivine) shows a much greater range in 18O (+4.4 to +7.5) than the much less abundant pyroxene (all 50 pyroxene analyses from spinel peridotites lie within the interval +5.3 to +6.5). On 18O-olivinevs. 18O-pyroxene diagrams, the mantle nodules exhibit data arrays that cut across the 18O=zero line. These arrays strongly resemble the non-equilibrium quartzfeldspar and feldspar-pyroxene 18O arrays that we now know are diagnostic of hydrothermally altered plutonic igneous rocks. Thus, we have re-interpreted the Kyser et al. data as non-equilibrium phenomena, casting doubt on their empirical geothermometer. The peridotite nodules appear to have been open systems that underwent metasomatic exchange with an external, oxygen-bearing fluid (CO2, magma, H2O, etc.); during this event, the relatively inert pyroxenes exchanged at a much slower rate than did the coexisting olivines and spinels, in agreement with available exchange-rate and diffusion measurements on these minerals. This accounts for the correlation between 18O pyroxene-olivine and the whole-rock 18O of the peridotites, which is a major difficulty with the equilibrium interpretation.Contribution No. 3978, Publications of the Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

6.
The phase relations in the Cu-Zn-S system were studied at temperatures ranging from 100 ° to 1050 °C with emphasis on the 500 ° and 800 °C isotherms. All experiments were performed in closed, evacuated silica tubes in which vapor always is a phase. Ternary phases did not appear in any of these experiments. At 800 °C tie-lines exist between cubic ZnS (sphalerite) and the digenite-chalcoite solid solution, between ZnS and three CuZn alloys (, , ) and between ZnS and ZnCu liquid containing from zero to about 30 wt % Cu. Only the cubic, sphalerite, form of ZnS was encountered in the present study. At 800 °C the solid solution of ZnS in Cu2S is 7.0 ± 1 wt % and the solid solution of Cu2S in ZnS is less than 1.0 wt %. At lower temperatures ZnS coexists with all other phases once they become stable, i.e., -CuZn (<598 °C), CuS (<507 °C), and blue-remaining covellite (<157 °C). At 500 °C the solid solution of ZnS in Cu2S is 1.5±0.5 wt % and that of Cu2S in ZnS is less than 0.1 wt %. The presence of ZnS depresses the temperature of the hexagonal cubic inversion in Cu2S by about 13 °C, but does not measurably affect the temperature of the monoclinic hexagonal inversion in Cu2S nor that of the cubic cubic inversion in Cu9S5. The coexistence in nature of sphalerite and copper-sulfides is discussed in light of the low temperature phase relations in the Cu-Zn-S system.
Zusammenfassung Die Phasengleichgewichtsredaktionen des Dreistoffsystems Cu-Zn-S wurden über einen weiten Temperaturbereich, nämlich von 100 °C bis zu 1050 °C und dabei besonders nachdrücklich die 500 ° und 800 °C-Isothermen, untersucht. Alle Experimente wurden in abgeschmolzenen und vorher evakuierten Quarzglasampullen durchgeführt, in welchen eine Dampfphase (vapor) stets gegenwärtig war. In keinem der Experimente war das Vorhandensein einer ternären Phase zu verzeichnen. Bei 800 °C verlaufen Konodenscharen vom kubischen ZnS (Zinkblende) zur Digenit-Kupferglanz-Mischkristallreihe, ferner Konoden zwischen ZnS und drei Cu-Zu-Legierungen (, , ) und zwischen ZnS und einer Zn-Cu-Schmelze von 0 bis ca. 30 Gew.-% Cu. In der hier vorliegenden Arbeit trat nur kubisches ZnS (Zinkblende) auf. Cu2S vermag bei 800 °C 7,0±1 Gew.-% ZnS in fester Lösung aufzunehmen, während die Löslichkeit von Cu2S in ZnS weniger als 1,0 Gew.-% beträgt. Mit zunehmender Temperaturerniedrigung koexistiert ZnS mit allen übrigen Phasen des Systems, sobald diese stabil werden, z. B. -CuZn (<598 °C), CuS (<507 °C) und blaubleibender Covellin (<157 °C). Bei 500 °C beträgt die Löslichkeit von ZnS in Cu2S nur noch 1,5±0,5 Gew.-% und die von Cu2S in ZnS weinger als 0,1 Gew.-%. Die Gegenwart von ZnS erniedright die Inversionstemperatur von hexagonalem kubischen Cu2S um etwa 13 °C, hat aber weder einen meßbaren Einfluß auf die Inversionstemperatur des monoklinen hexagonalen Cu2S noch auf die kubisch kubische Inversion des Cu9S5. Angeischts der im Cu-Zn-S-System ermittelten Phasenbeziehungen bei niedrigen Temperaturen werden die Koexistenz natürlicher Zinkblende mit Kupfersulfiden diskutiert.
  相似文献   

7.
Five lizardite-chrysotile type serpentinites from California, Guatemala and the Dominican Republic show oxygen isotope fractionations of 15.1 to 12.9 per mil between coexisting serpentine and magnetite (O18 magnetite=–7.6 to –4.6 per mil relative to SMOW). Nine antigorites (mainly from Vermont and S. E. Pennsylvania) show distinctly smaller fractionations of 8.7 to 4.8 per mil (O18 magnetite=–2.6 to +1.7 per mil). Two lizardite and chrysotile serpentinites dredged from the Mid-Atlantic Ridge exhibit fractionations of 10.0 and 12.4 per mil (O18 magnetite=–6.8 and –7.9 per mil, respectively), whereas an oceanic antigorite shows a value of 8.2 per mil (O18 magnetite=–6.2). These data all clearly indicate that the antigorites formed at higher temperatures than the chrysotilelizardites. Electron microprobe analyses of magnetites from the above samples show that they are chemically homogeneous and essentially pure Fe3O2. However, some magnetites from certain other samples that show a wide variation of Cr content also give very erratic oxygen isotopic results, suggesting non-equilibrium. An approximate serpentine-magnetite geothermometer curve was constructed by (1) extrapolation of observed O18 fractionations between coexisting chlorites and Fe-Ti oxides in low-grade pelitic schists whose isotopic temperatures are known from the quartz-muscovite O18 geothermometer, and (2) estimates of the O18 fractionation factor between chlorite and serpentine (assumed to be equal to unity). This serpentine-magnetite geothermometer suggests approximate equilibrium temperatures as follows: continental lizardite-chrysotile, 85° to 115° C; oceanic lizardite and chrysotile, 130° C and 185° C, respectively; oceanic antigorite, 235° C; and continental antigorites, 220° to 460° C.Contribution No. 2029 of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91109.  相似文献   

8.
A basanitoid flow of Miocene age, exposed near the West Kettle River, 25 km southeast of Kelowna, British Columbia, contains abundant ultramafic and mafic nodules. The subangular nodules are 1–20 cm across and typically show granular textures. A study of 250 nodules indicates that spinel lherzolite (60%) is the dominant type with subordinate olivine websterite (10%), websterite (7%), clinopyroxenite (4%), wehrlite (4%), pyroxene gabbro (4%), dunite (2%), harzburgite (1%) and granitic rocks (8%). Ultramafic nodules are of two types. Most of the wehrlites and clinopyroxenites belong to the black pyroxene (aluminous clinopyroxene) series, whereas the other clinopyroxene-bearing nodules belong to the green pyroxene (chromian diopside) series. Some spinel lherzolite nodules have distinctive pyroxene- and olivine-rich bands. Microprobe analyses of the constituent minerals of more than thirty nodules from the green pyroxene series indicate that grain to grain variations within individual nodules are small even when banding is present. Olivine, orthopyroxene, clinopyroxene and spinel in spinel lherzolite have average compositions of Fo90, En90, Wo47Fs5En48, Cr/(Cr+ Al+Fe3)=0.1 and Mg/(Mg+Fe2+)=0.8. Equilibration temperatures, which were calculated using the two pyroxene geothermometer of Wells (1977), range between 920–980° C. Based on published phase stability experiments, pressures of equilibration are between 10–18 kbar. In summary, the upper mantle beneath southern British Columbia is dominated by spinel lherzolite but contains some banding on a scale of cm to meters. The temperature in the upper mantle is 950° C at a depth of 30–60 km.On leave from the Geological Institute, University of Tokyo, Japan  相似文献   

9.
An experimental study of the system Zr-Fe-Ti-O in equilibrium with metallic iron has been conducted at atmospheric pressure and in the temperature range 950–1300° C, with the purpose of modelling sub-solidus relations between Zr-bearing Fe-Ti oxide phases in lunar rocks. The phase relations are governed by the coexistence of the Fe-Ti oxides with ZrO2 at temperatures below 1247° C, but with the new cubic ZFT phase at higher temperatures. ZFT, approximately Zr Fe Ti O5, is probably related to the so-called stabilized cubic zirconia and could represent a synthetic equivalent of some lunar Zr-Fe-Ti rich oxide minerals.The zirconium contents in all Fe-, Ti and Fe-Ti-oxide phases increase with increasing temperature. At each temperature, Zr is incorporated preferentially in the Ti-oxide (up to 11 wt% ZrO2), followed by ferropseudobrookite (up to 6 wt% ZrO2), ilmenite (max. 4 wt%) and wüstite (max. 2.5 wt%). Ulvöspinel coexisting with ilmenite (+Fe0+ ZrO2 and/or ZFT) always contains less than 1.2 wt% ZrO2, whereas the same mineral in assemblage with wüstite-ZrO2-Fe0 displays even higher ZrO2 contents than ilmenite (above 4 wt%). Considering that the values determined here in the synthetic parageneses represent saturation concentrations at high temperatures in a simple model system, the ZrO2 concentrations in the corresponding lunar minerals should generally be significantly lower. This is realized, except for the so-called Cr-Zr-Ca armalcolites which display ZrO2 contents in the range 3.5–7 wt% and are thus probably related rather to Zr-rich oxide minerals than to armalcolite itself.  相似文献   

10.
The pilot hole of the Continental Deep Borehole (KTB) drilling project is located in the Bavarian Oberpfalz at the western margin of the Bohemian Massif. The 4-km deep borehole penetrated various paragneisses and minor orthogneisses with intercalations of amphibolites and metagabbros. The different lithologies have systematically different whole-rock oxygen isotope values and give little evidence for large scale water-rock interaction. Minor fluid interaction is well documented during retrograde metamorphism by non-equilibrium fractionations between refractory minerals (quartz, garnet and hornblende) and altered minerals (chlorite/biolite and feldspar). Ubiquitous vein mineralisation indicates fluid-induced retrogression at temperatures between 150°C and 400°C. The D values of hydroxylbearing minerals are very uniform in all lithologic units. The calculated hydrogen isotope composition of the fluid in equilibrium with matrix and vein minerals increases from -45 for metabasic rocks, to -20 for gneisses, to about -5 for vein minerals. The oxygen isotope composition of the fluid has been buffered by the rock and decreases with decreasing temperature because of increasing fractionations at low temperatures and low water-rock ratios. Modern fluids sampled from open cavities within the borehole have isotopic compositions that suggest a continuous fluid evolution during retrogression in a closed system. The 13C values of calcite and graphite also indicate closed system mixing processes.  相似文献   

11.
In pelitic rocks, under conditions of low f O 2 and low f H 2 O, the stability of the mineral pair cordierite-garnet is limited by five univariant reactions. In sequence from high pressure and low temperature to high temperature and low pressure these are: cordierite+garnet hypersthene+sillimanite+quartz, cordierite+garnet hypersthene+sapphirine+quartz, cordierite+garnet hypersthene+spinel+quartz and cordierite+garnet olivine+spinel +quartz. In this sequence of reactions the Mg/Mg+Fe2+ ratio of all ferro-magnesian minerals involved decreases continuously from the first reaction to the fifth. The five univariant boundaries delimit a wide P-T range over which cordierite and garnet may coexist.Two divariant equilibria in which the Mg/Mg+ Fe2+ ratio of the coexisting phases are uniquely determined by pressure and temperature have been studied in detail. P-T-X grids for the reactions cordierite garnet+sillimanite+quartz and cordierite+hypersthene garnet+quartz are used to obtain pressure-temperature estimates for several high grade metamorphic areas. The results suggest temperatures of formation of 700–850° C and load pressures of 5–10 kb. In rare occasions temperatures of 950–1000° C appear to have been reached during granulite metamorphism.On the basis of melting experiments in pelitic compositions it is suggested that Ca-poor garnet xenocrysts found in calc-alkaline magmas derive from admixed pelitic rocks and did not equilibrate with the calc-alkaline magma.  相似文献   

12.
A new mineralogic geothermometer based on the partitioning of Fe and Mn between garnet and ilmenite has been calibrated by reversal experiments in the P-T range 600–900° C, 2 and 5 kbars and for fO2=QFM. The results constitute a sensitive geothermometer applicable over a broad range of composition and conditions. Garnetilmenite thermometry has advantages relative to existing geothermometers because of its accurate calibration, marked temperature sensitivity and the chemical and structural simplicity of the crystalline solutions involved. Application to natural assemblages reveals that the garnet-ilmenite geothermometer yields temperatures that agree well with other estimates. The reactivity of, and relatively rapid Fe-Mn diffusion in ilmenite may lead to retrograde resetting of high temperature partition values, but these factors may be useful for estimating rock cooling rates. Analysis of the experimental data indicates minor positive deviations from ideality for Fe-Mn garnets and ilmenites. Absolute magnitudes of interaction parameters (W AB) derived from a regression analysis are subject to considerable uncertainty. The partition coefficient is, however, strongly dependent on the difference between solution parameters. These differences are well constrained with a magnitude of W FeMn ilmW FeMn gar 300 cal mol–1. The accuracy and applicability of garnet-ilmenite thermometry will improve with the availability of better thermodynamic data for garnet crystalline solutions.Abbreviations and symbols used in text R universal gas constant (cal/mol/°K) - T absolute temperature (°K or °C) - P pressure (kbars) - V 0 volume change of reaction (1) - H 1, T 0 standard state enthalpy change of reaction (1) at 1 bar and the T of interest, in cal/mole - S T 0 entropy change of reaction (1) at T of interest, in cal/mole/°K - G P,T 0 standard free energy change of reaction (1) at the T and P of interest, in cal/mole - distribution coefficient for Fe-Mn partitioning between garnet and ilmenite - K apparent equilibrium coefficient for reaction (1) - i j activity of component i in phase j - W A-B binary A-B interaction (Margules) parameter - gar garnet - ilm ilmenite - biot biotite - ol olivine - opx orthopyroxene  相似文献   

13.
The polymorphic transformation between synthetic pyroxmangite and rhodonite of MnSiO3 composition has been reversibly bracketed in the presence of water at 3 kbar (between 425 ° and 450 ° C), 6 kbar (between 475 ° and 525 ° C), 20 kbar (between 500 ° and 900 ° C), 25 kbar (between 800 ° and 900 ° C) and 30 kbar (between 900 ° and 1,000 ° C), using standard cold-seal pressure vessels and piston cylinder apparatus. Oxygen fugacities buffered by the bomb walls and piston-cylinder cell assemblies sufficed to keep manganese in the divalent state. Pyroxmangite of MnSiO3 composition is shown to be the high-pressure, low-temperature polymorph with respect to rhodonite of the same composition. It is a stable phase at atmospheric pressure below 350–405 ° C.X-ray data for synthetic pyroxmangite are presented. The unit-cell parameters (a0=6.717(2) Å, b0=7.603(1)Å, c0=17.448(5) Å, =113 °50(1), = 82 °21(2), =94 °43(1); space group P-1) give a unit-cell volume (807.5(0.3) Å3) which, in accordance with other recent least squares lattice refinements of hydrothermally synthesized material, is slightly smaller than that obtained by single-crystal work on anhydrously synthesized material.Application of the present results to natural rocks is severely restricted due to the great variety and extent of cationic substitutions observed in natural pyroxenoids. The univariant polymorphic transformation determined for the MnSiO3 composition is thus replaced in natural systems by a divariant field in which pyroxmangite and rhodonite of differing composition will stably coexist.  相似文献   

14.
Exsolved augite pyroxenes from the ferromonzonite border facies of the ferrosyenite in the Laramie Anorthosite Complex have been studied with the transmission electron microscope and the electron microprobe to determine their exsolution histories. The Lindsley and Andersen (1983) geothermometer gives initial crystallization temperatures of 1000° C for the bulk augite crystal (Wo32 En22 Fs46). Exsolved lamellae are predominantly pigeonites with very low calcium contents (Wo1–3 En23–24 Fs71–74) and have formation temperatures estimated to be in the range of 600 to 975° C. The uniform compositions of lamellae and hosts, despite the range in lamellar size and orientation, suggest that either 1) the ferromonzonite experienced an extended plateau in cooling or a reheating event at 600 to 650° C or 2) the pyroxenes recorded a blocking temperature. Two-feldspar geothermometry on exsolved feldspars also records 600° C and suggests that these low temperatures are not blocking temperatures.  相似文献   

15.
Sub-sea-floor metamorphism,heat and mass transfer   总被引:4,自引:0,他引:4  
The ophiolitic rocks of E. Liguria, Italy contain a spilitic metamorphic assemblage sequence, cross-cut by hydrothermal veins, which developed in the oceanic environment. Metamorphic parageneses indicate that temperatures as high as 400°C were realised at depths as shallow as 300 m below the original rock/water interface. The inferred temperature interval was equivalent to a geothermal gradient of 1300°C/km.It is suggested that metamorphism took place in a sub-sea-floor geothermal system, and that such systems are an integral part of the sea-floor spreading process. Modern evidence is provided to support this hypothesis, and to suggest that heavy metal rich solutions discharged from such systems are responsible for the formation of a metal enriched sedimentary component. A unified model of sub-sea-floor metamorphism and mass transfer is proposed, and possible differences between sub-sea-floor and terrestial geothermal systems are discussed. In the light of the model, the origins of certain aspects of bedded cherts found associated with ophiolitic rocks, of ophiolitic massive sulphide deposits and of certain trace element patterns are considered.  相似文献   

16.
Sapphirine/kornerupine-bearing rocks occur within the anorthosites of the Messina layered intrusion in the Limpopo mobile belt of Zimbabwe. The XMg range of the major minerals is as follows: cordierite (0.98-0.93); enstatite (0.97-0.86); chlorite (0.98-0.92); phlogopite (0.98-0.90); sapphirine (0.98-0.86); kornerupine (0.94-0.88); gedrite (0.96-0.85); spinel (0.92-0.78). There are four rock types, the constituent minerals of which have different values, which decrease in the above mineral order; other minerals are corundum, sillimanite and relict kyanite. We recognise twenty reactions without phlogopite and nine reactions involving phlogopite. The textural relations and the plots of the microprobe data of coexisting minerals in the MgO-Al2O3-SiO2-(H2O) system are consistent with the following sequence of main reactions: (1) enstatite+corundum cordierite+sapphirine; (4) sapphirine+sillimanite cordierite+corundum; (8) kornerupine+corundum cordierite+sapphirine; (13) kornerupine cordierite+sapphirine+enstatite; (15) enstatite+spinel chlorite+sapphirine; (18) cordierite+sapphirine chlorite+corundum; (20) sapphirine chlorite+corundum+spinel. The early reactions are shown by coarse-grained reaction intergrowths, kornerupine and gedrite breakdown is shown by finer-grained symplectites, and the latest reactions by very fine-grained products in micro-fractures. These selected reactions illustrate a remarkably steep trajectory from thePT peak close to 10 kbar and 800° C to the minimum observable at 3.5–4.5 kbar and 700° C as indicated by the pure MASH system. Very rapid uplift took place under nearly isothermal conditions. The protolith of this material was possibly sedimentary, derived from altered volcanic rocks. The bulk composition is close to the composition of kornerupine or to a mixture of alunite, chlorite and pyrophyllite. These texturally and mineralogically complex rocks contain a wealth of relevant data for documenting crustal uplift history.  相似文献   

17.
Ferric iron in mantle-derived garnets   总被引:4,自引:0,他引:4  
The oxidation state of a mantle assemblage may be defined by heterogeneous reactions between oxygen and iron-bearing minerals. In spinel lherzolites, the presence of Fe3+ in spinel allows use of the assemblage olivine-orthopyroxene-spinel to define f O 2 at fixed T and P. As a first step towards establishing an analogous reaction for garnet lherzolites, garnets from mantle-derived xenoliths from South Africa and the USSR have been analyzed with 57Fe Mössbauer spectroscopy at 298 and 77K to determine Fe3+/Fe2+ and the coordination state of iron. Garnets from South African alkremites (pyrope+Mg-spinel) and eclogites, as well as garnet-spinel and low-temperature garnet lherzolites from both South Afica and the USSR, have Fe3+/Fe<0.07. In contrast, garnets from high-temperature garnet lherzolites from within the Kaapvaal craton of South Africa have Fe3+/Fe>0.10. Ferric iron is octahedrally coordinated, and ferrous iron is present in the dodecahedral site in all samples. The occurrence of significant Fe3+ in these garnets necessitates caution in the use of geothermometers and geobarometers that are applied to mantle samples. For example, the presence of 12% of the Fe as Fe3+ in garnets can increase temperatures calculated from existing Fe/Mg geothermometers by>200°C. The concomitant increase in pressures calculated from geobarometers that use the Al content in orthopyroxene coexisting with garnet are 10–15 kbar. Results of calculations based on heterogeneous equilibria between garnet, olivine, and pyroxene are consistent with the derivation of the peridotite samples from source regions that are relatively oxidized, between the f O 2 of the FMQ (quartz-fayalite-magnetite) buffer and that of the WM buffer. No samples yield values of f O 2 as reduced as IW (iron-wüstite buffer).  相似文献   

18.
We report the result of H2O-undersaturated melting experiments on charges consisting of a layer of powdered sillimanite-bearing metapelite (HQ36) and a layer of powdered tonalitic gneiss (AGC150). Experiments were conducted at 10 kbar at 900°, 925° and 950°C. When run alone, the pelite yielded 40 vol% strongly peraluminous granitic melt at 900°C while the tonalite produced only 5 vol% weakly peraluminous granitic melt. At 950°C, the pelite and the tonalite yielded 50 vol% and 7 vol% granitic melt, respectively. When run side by side, the abundance of melt in the tonalite was 10 times higher at all temperatures than when it was run alone. In the pelite, the melt abundance increased by 25 vol%. When run alone, biotite dehydration-melting in the tonalite yielded orthopyroxene and garnet in addition to granitic melt. When run side by side only garnet was produced in addition to granitic melt. Experiments of relatively short duration, however, also contained Al-rich orthopyroxene. We suggest that the large increase in melt fraction in the tonalite is mainly a result of increased activity of Al2O3 in the melt, which lowers the temperature of the biotite dehydration-melting reaction. In the pelite, the increase in the abundance of melt is caused by transport of plagioclase component in the melt from the tonalite-layer to the pelite-layer. This has the effect of changing the bulk composition of this layer in the direction of minimum-temperature granitic liquids. Our results show that rocks which are poor melt-producers on their own can become very fertile if they occur in contact with rocks that contain components that destabilize the hydrous phase(s) and facilitate dehydration-melting. Because of this effect, the continental crust may have an even greater potential for granitoid melt production than previously thought. Our results also suggest that many anatectic granites most likely contain contributions from two or more different source rocks, which will be reflected in their isotopic and geochemical compositions.  相似文献   

19.
The Miocene-Oligocene volcanism of this region is part of the larger Tertiary volcanic province found throughout E. Australia. Within the S.E. Queensland region, the volcanism is strongly bimodal, and has emanated from six major centres, and many additional smaller centres. The mafic lavas (volumetrically dominant) range continuously from ne-normative through to Q-normative and are predominantly andesine-normative; Mg/Mg+Fe (atomic ratios range from 30–60; K2O ranges from 0.42–2.93%, and TiO2 from 0.81–3.6%.Phenocryst contents are low (averaging 6.7 vol.%), and comprise olivine (Fa18–75; Cr-spinel inclusions occur locally in Mg-rich phenocrysts), plagioclase (An25–68), and less commonly augite, which is relatively aluminous in lavas of the Springsure volcanic centre. Very rare aluminous bronzite occurs in certain Q-normative lavas. Groundmass minerals comprise augite, olivine (Fa33–77), feldspar (ranging from labradorite through to anorthoclase and sanidine), Fe-Ti oxides, and apatite. Within many of the Q-normative lavas, extensive development of subcalcic and pigeonitic pyroxenes occurs, and also relatively rarely orthopyroxene. Mineralogically, the ne- and ol-normative lavas, and some of the Q-normative lavas are indistinguishable, and in view of the gradations in chemistry, the term hawaiite has been extended to cover these lavas. The term tholeiitic andesite is used to describe the Q-normative lavas containing Ca-poor pyroxenes as groundmass phases.Megacrysts of aluminous augite, aluminous bronzite, olivine, ilmenite, and spinel sporadically occur within the lavas, and their compositions clearly indicate that they are not derived from the Upper Mantle. Rare lherzolite xenoliths are also found.The petrogenesis of these mafic lavas is approached by application of the thermodynamic equilibration technique of Carmichael et al. (1977), utilizing three parental mineral assemblages that could have been in equilibrium with the magmas at P and T. The models are: (a) standard upper mantle mineralogy; (b) an Fe-enriched upper mantle model (Wilkinson and Binns 1977); (c) lower crust mineralogy, based on analysed megacryst compositions. The calculations suggest that these mafic magmas were not in equilibrium with either mantle model prior to eruption, but show much closer approaches to equilibrium with the lower crust model. Calculated equilibration temperatures and pressures (for the lower crust model) range from 995°–l,391° C (average 1,192), and 7.2–16.3 kb (average 12.4). These results are interpreted in terms of a model of intrusion and magma fractionation within the crust-mantle interface region, with consequent crustal underplating and thickening beneath the Tertiary volcanic regions. Some support for the latter is provided by regional isostatic gravity anomalies and physiographic considerations.  相似文献   

20.
The Delakhari sill (maximum thickness cf. 200 m) is the most extensive Deccan Trap instrusion which occurs in central India, between longitutdes 78°3835 to 78°2240 and latitudes 22°26 and 22°2230. Based on petrographic examination, the sill is divided, from bottom to top, into (1) the Lower Chilled Zone (LCZ), up to 8 m thick, marked by abundant interstitial glass and an overall fine grain size, (2) the Olivine-Rich Zone (ORZ), 27 m thick, enriched in olivine (relative to the other zones in the sill), (3) the Central Zone (CZ), 70 m thick, marked by depletion in olivine and overall coarse grain size, (4) the Upper Zone (UZ), 55 m thick, marked by the presence of two chemically and morphologically distinct olivine types and abundant interstitial granophyre, and (5) the Upper Chilled Zone (UCZ), 10–25m thick, marked by abundant interstitial glass.Compositions of the pyroxenes and olivines show an overall increase in Fe/Mg with crystallization, but extensive interzonal and intrazonal variations and overlaps exist. Olivine ranges from Fa24 (ORZ) to Fa95 (UZ). In the UZ and inner UCZ, an equant (Fa44–50, called type-A olivine) and interstitial skeletal olivine (Fa70–95, called type-B olivine) occur together. Compositions of the Ca-rich and Ca-poor pyroxenes fall in the range Wo38En34Fs28 to Wo33En8Fs59 and Wo14En41Fs45 to Wo16En19Fs65, respectively. Overall, the two pyroxene trends converge with Fe-enrichment except for one anomalous sample from the UZ which contains a Ca-rich (Wo34En8Fs58) and a Ca-poor (Wo10En18Fs72) pyroxene well within the Forbidden Zone of Smith (1972).Compositions of coexisting oxide minerals indicate that the sill crystallized at oxygen fugacities from 10–10 atm (ORZ) to 10–13 (UZ). The magma prior to intrusion appears to have been derived from a more primitive melt from which a considerable amount of olivine and plagioclase have fractionated out. A model of open, interrupted fractional crystallization in the sill is proposed to explain the compositional variations exhibited by the major mineral phases.A previous study (Crookshank 1936) concluded that the sill is actually a multiple intrusion and has given rise to the lowermost (flow I) and the topmost (flow III) lava flows in the neighboring area around Tamia (78°4015, 22°2035). The olivines of flows I and III have compositions Fo87 and Fo88 respectively, and are much more Mg-rich than the maximum Mg-rich olivine (Fo76) of the Delakhari sill, refuting the possibility of the sill being the feeder of the lava flows I and III.Geosciences Department, University of Texas at Dallas Contribution No. 338  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号