首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Docks constructed over salt marsh can reduce vegetation production and associated ecosystem services. In Massachusetts, there is a 1:1 height-to-width ratio (H:W) dock design guideline to reduce such impacts, but this guideline’s efficacy is largely untested. To evaluate dock height effects on underlying marsh vegetation and light availability, we deployed 1.2-m-wide experimental docks set at three different heights (low (0.5:1 H:W), intermediate (1:1 H:W), and high (1.5:1 H:W)) in the high and low marsh zones in an estuary in Massachusetts, USA. We measured temperature, light, vegetation community composition, and stem characteristics under the docks and in unshaded control plots over three consecutive growing seasons. Temperature and light were lower under all docks compared with controls; both increased with dock height. Maximum stem height and nitrogen content decreased with available light. In the Spartina patens-dominated high marsh, stem density and biomass were significantly lower than controls under low and intermediate but not high docks. Spartina alterniflora, the dominant low marsh vegetation, expanded into the high marsh zone under docks. S. alterniflora aboveground biomass significantly differed among all treatments in the low marsh, while stem density was significantly reduced for low and intermediate docks relative to controls. Permit conditions and guidelines based on dock height can reduce dock impacts, but under the current guideline of 1:1 H:W, docks will still cause significant adverse impacts to vegetation. Such impacts may interfere with self-maintenance processes (by decreasing sediment capture) and make these marshes less resilient to other stressors (e.g., climate change).  相似文献   

2.
The effects of light reduction on community metabolism and sediment sulfate reduction rates (SRR) were assessed experimentally in a shallow (<2.0 m) seagrass (Thalassia testudinum) meadow along Florida's north-central Gulf coast. Nine experimental plots (1.5 m×1.5 m) were shaded differentially to achieve a 0–90% gradient in light reduction within the seagrass meadow. Gross primary production and net community production (NCP), estimated with in situ benthic chamber incubations, decreased with increasing light reduction. The compensation irradiance for community metabolism, i.e., the shading level at which NCP shifted from net autotrophic to net heterotrophic, was determined to be 52.5% of the incoming irradiance at canopy height in the seagrass bed (308.7 μE m−2 s−1 PAR at noon). Sediment SRR, determined with the use of a35S−SO4 2− radiotracer technique, increased quickly (within 5 d) and markedly with increased shade, i.e., simulated light reduction. SRR increased 50-fold when shading exceeded the light compensation point for the seagrass community, rendering the community net heterotrophic. Five days after restoring ambient light conditions, SRR had decreased sharply for all shading treatments. The observed decrease in NCP, coincident with the increase in the SRR with light reduction, suggests that light reduction has an indirect influence on sediment SRR mediated through its effect on seagrass metabolism.  相似文献   

3.
The effects of in situ light reductions on two species of subtropical seagrasses, Thalassia testudirum (reduced to 14% and 10% of surface irradiance; SI) and Halodule wrightii (reduced to 16% and 13% SI) were examined over a 10-mo period (October 1992-September 1993) in relation to leaf elongation rates, sediment pore-water ammonium, and blade chlorophyll concentrations. No significant changes in pore-water ammonium levels were noted among treatments with time, but blade chlorophyll concentrations in both species were higher in plants exposed to the darkest treatments (10% and 13% SI) relative to controls exposed to 50% SI. In all treatments, blade chlorophyll concentrations were highest and chlorophyll a:b ratios lowest during the warner months, coincident with higher water temperatures. Leaf elongation rates in T. testudinum plants decreased relative to unshaded controls after 1 mo of treatment in autumn, but no significant differences in leaf elongation were noted among treatments for H. wrightii in late autumn or winter when very low growth rates (<0.1 cm shoot?1 d?1) were recorded. There were no differences between treatments during the spring growth period for T. testudinum (no data are available for H. wrightii), suggesting that growth (ca. 1 cm shoot?1 d?1) was probably not related to available light but was supported by belowground reserves. After 10 mo of treatment, all H. wrightii plants at 13% SI (1,600 mol m?2 yr?1) and 16% SI (2,000 mol m?2 yr?1) disappeared from experimental plots; similarly, no T. testudinum plants exposed to 10% SI (1,300 mol m?2 yr?1) remained, although 4% of the plants at 14% SI (1,800 mol m?2 yr?1) survived nearly 12 mo of reduced irradiance. In neither species were leaf elongation rates, which showed little change among treatments, a reliable indicator of the underwater light environment.  相似文献   

4.
A study of Halodule wrightii in a shallow subtropical Texas lagoon was performed to obtain seasonal data on its physiological ecology. Leaf production and biomass dynamics of H. wrightii were intensively monitored along with the underwater light environment at a 1.2-m depth study site over a 21-month period from June 1995 to February 1997. The annual photosynthetically active radiation (PAR) flux of 6,764 mol m−2 year−1 was more than twice as high as 2,400 mol m−2 year−1, the minimum annual PAR required for maintenance of growth. As light intensity declined, blade chlorophyll a/b ratios increased suggesting that the plants were photo-adapting. Seasonal trends were evident in shoot growth and biomass. Compared to other Halodule populations in Texas, H. wrightii in LLM displayed slow growth and low biomass, high leaf tissue N content, and low C/N ratio but high N/P ratio of 38 suggesting that the plants were phosphorus-limited.  相似文献   

5.
Organic matter is a fundamental factor in the biogeochemical cycle of carbon; it influences the chemical, physical, and biological properties of the soil. The aim of this paper is to determine the organic fractions in the three predominant morphologies of aggregates found in Typical Argiudolls of the Buenos Aires southeastern area and to link them to different soil uses, as possible indicators of soil quality. The study was carried out in the basin de Los Padres Pound (General Pueyrredón, Buenos Aires). We analyzed the first 5 cm of mollic epipedons of plots with different soil uses: (a) cultivated plots, (b) pine and eucalyptus forests, (c) pastures, and (d) a natural plot in the de Los Padres Pound Reserve as a reference. The percentage of soil organic carbon (SOC), light organic carbon (LOC), fulvic acids (FA), humic acids (HA), and humins (H) in elongated, quadrangular and spherical aggregates were determined. The results show slight variations in SOC (7.2–8.6%) in the spherical aggregates of all the plots and a greater variability in elongated and quadrangular aggregates (5.6–10% and 6.9–13.6%, respectively). HA are minimal in the agroecosystems with extreme values of 0.02% in the spherical aggregates of cultivated plots, and maximal in the elongated and quadrangular aggregates of natural plots (0.3–0.5%). Fulvic acids display a similar behavior, while H decrease slightly with the morphologies and the different practices. The substantial decrease of humic substances in cultivated plots translates into a lower biologic activity; this, in turn, influences the aggregation, thus lowering the structural stability of these plots, which have been under agro-horticultural management for more than 50 years.  相似文献   

6.
We examined microbial processes and the distribution of particulate materials in the estuarine turbidity maximum (ETM, salinity 2–10 PSS) of northern San Francisco Bay on three cruises during the late spring of 1994 (low flow: April 19, April 28, May 17) and two cruises during the early summer of 1995 (high flow; June 13, July 18). Under low flow conditions, chlorophyll concentrations decreased by a factor of 2–4, bacterial abundance decreased by 20%, and L-leucine incorporation rate decreased by a factor of about 2 over a salinity range of 0–2 PSS, then remained relatively constant at higher salinities. Over this same salinity range under high flow conditions, chlorophyll concentration was c. twofold lower, bacterial abundance was c. threefold higher, and L-leucine incorporation rate was in the same range as during low flow. Under high flow conditions, chlorophyll concentration increased by 20%., bacterial abundance decreased by a factor of 2, and L-leucine incorporation rate decreased by half (June 13) or remained unchanged (July 19) with increasing salinity. Under low flow conditions the concentration of suspended particulate material (SPM), particulate organic carbon (POC), and particulate organic nitrogen (PON) increased 3–10 fold with salinity, to a maximum at intermediate salinities (c. 6 PSS). As a result, the contribution of phytoplankton to POC decreased from a maximum of 32% in fresh water to c. 6% in the ETM. The contribution of bacterial biomass similarly decreased from 5% in fresh water to 0.8% in the ETM. The C:N ratio of particulate material increased from <10 in fresh water to >12 in the ETM. High variability in abundance estimates confounded analysis of patterns in bacterial biomass partitioning between particle-associated and free-living fractions along the salinity gradient. However, the partitioning of L-leucine incorporation shifted dramatically from being predominantly by free-living cells in fresh water to being predominantly by particleassociated populations in the ETM. The metabolic fate of thymidine taken up differed, between particle-associated and free-living bacteria, suggesting some metabolic divergence of these assemblages.  相似文献   

7.
Private docks are common in estuaries worldwide. Docks in Massachusetts (northeast USA) cumulatively overlie ~ 6 ha of salt marsh. Although regulations are designed to minimize dock impacts to salt marsh vegetation, few data exist to support the efficacy of these policies. To quantify impacts associated with different dock designs, we compared vegetation characteristics and light levels under docks with different heights, widths, orientations, decking types and spacing, pile spacing, and ages relative to adjacent control areas across the Massachusetts coastline (n = 212). We then evaluated proportional changes in stem density and biomass of the dominant vegetation (Spartina alterniflora and Spartina patens) in relation to dock and environmental (marsh zone and nitrogen loading) characteristics. Relative to adjacent, undeveloped habitat, Spartina spp. under docks had ~ 40% stem density, 60% stem biomass, greater stem height and nitrogen content, and a higher proportion of S. alterniflora. Light availability was greater under taller docks and docks set at a north-south orientation but did not differ between decking types. Dock height best predicted vegetation loss, but orientation, pile spacing, decking type, age, and marsh zone also affected marsh production. We combined our proportional biomass and stem elemental composition estimates to calculate a statewide annual loss of ~ 2200 kg dry weight of Spartina biomass (367 kg per ha of dock coverage). Managers can reduce impacts through design modifications that maximize dock height (> 150 cm) and pile spacing while maintaining a north-south orientation, but dock proliferation must also be addressed to limit cumulative impacts.  相似文献   

8.
It has been assumed that because seagrasses dominate macrophyte biomass in many estuaries they also dominate primary production. We tested this assumption by developing three carbon budgets to examine the contribution of autotrophic components to the total ecosystem net primary production (TENPP) of Lower Laguna Madre, Texas. The first budget coupled average photosynthetic parameters with average daily irradiance to calculate daily production. The second budget used average photosynthetic parameters and hourly in situ irradiance to estimate productivity. The third budget integrated temperature-adjusted photosynthetic parameters (using Q10=2) and hourly in situ irradiance to estimate productivity. For each budget TENPP was calculated by integrating production from each autotroph based on the producers’ areal distribution within the entire Lower Laguna Madre. All budgets indicated that macroalgae account for 33–42% of TENPP and seagrasses consistently accounted for about 33–38%. The contribution by phytoplankton was consistently about 15–20%, and the contribution from the benthic microalgae varied between 8% and 36% of TENPP, although this may have been underestimated due to our exclusion of the within bed microphytobenthos component. The water column over the seagrass beds was net heterotrophic and consequently was a carbon sink consuming between 5% and 22% of TENPP, TENPP ranged between 5.41×1010 and 2.53×1011 g C yr−1, depending on which budget was used. The simplest, most idealized budget predicted the highest TENPP, while the more realistic budgets predicted lower values. Annual production rates estimated using the third budget forHalodule urightii andThalassia testudinum compare well with field data. Macroalgae and microalgae contribute 50–60% of TENPP, and seagrass may be more important as three-dimensional habitat (i.e., structure) than as a source of organic carbon to the water column in Lower Laguna Madre.  相似文献   

9.
Field experiments on the CO2 flux of alpine meadow soil in the Qilian Mountain were conducted along the elevation gradient during the growing season of 2004 and 2005. The soil CO2 flux was measured using the Li-6400-09 soil respiration chamber attached to the Li-6400 portable photosynthesis system. The effects of water and heat and roots on the soil CO2 flux were statistically analyzed. The results show that soil CO2 flux along the elevation gradient gradually decreases. The soil CO2 flux was low at night, with lowest value occurring between 0200 and 0600 hours, started to rise rapidly during 0700–0830 hours, and then descend during 1600–1830 hours. The peak CO2 efflux appears during 1100–1600 hours. The diurnal average of soil CO2 efflux was between 0.56 ± 0.32 and 2.53 ± 0.76 μmol m−2 s−1. Seasonally, soil CO2 fluxes are relatively high in summer and autumn and low in spring and winter. The soil CO2 efflux, from the highest to the lowest in the ranking order, occurred in July and August (4.736 μmol m−2 s−1), June and September, and May and October, respectively. The soil CO2 efflux during the growing season is positively correlated with soil temperature, root biomass and soil water content.  相似文献   

10.
Phytoplankton seasonal and interannual variability in the Guadiana upper estuary was analyzed during 1996–2005, a period that encompassed a climatic controlled reduction in river flow that was superimposed on the construction of a dam. Phytoplankton seasonal patterns revealed an alternation between a persistent light limitation and episodic nutrient limitation. Phytoplankton succession, with early spring diatom blooms and summer–early fall cyanobacterial blooms, was apparently driven by changes in nutrients, water temperature, and turbulence, clearly demonstrating the role of river flow and climate variability. Light intensity in the mixed layer was a prevalent driver of phytoplankton interannual variability, and the increased turbidity caused by the Alqueva dam construction was linked to pronounced decreases in chlorophyll a concentration, particularly at the start and end of the phytoplankton growing period. Decreases in annual maximum and average abundances of diatoms, green algae, and cyanobacteria were also detected. Furthermore, chlorophyll a decreases after dam filling and a decrease in turbidity may point to a shift from light limitation towards a more nutrient-limited mode in the near future.  相似文献   

11.
The climatology and interannual variability of winter phytoplankton was analyzed at the Long Term Ecological Research Station MareChiara (LTER-MC, Gulf of Naples, Mediterranean Sea) using data collected from 1985 to 2006. Background winter chlorophyll values (0.2–0.5 μg chl a dm−3) were associated with the dominance of flagellates, dinoflagellates, and coccolithophores. Winter biomass increases (<5.47 μg chl a dm−3) were often recorded until 2000, generally in association with low-salinity surface waters (37.3–37.9). These blooms were most often caused by colonial diatoms such as Chaetoceros spp., Thalassiosira spp., and Leptocylindrus danicus. In recent years, we observed more modest and sporadic winter biomass increases, mainly caused by small flagellates and small non-colonial diatoms. The resulting negative chl a trend over the time series was associated with positive surface salinity and negative nutrient trends. Physical and meteorological conditions apparently exert a strict control on winter blooms, hence significant changes in winter productivity can be foreseen under different climatic scenarios.  相似文献   

12.
Eight meadows of the seagrassThalassia testudinum Banks ex König representing a gradient of freshwater influence in Charlotte Harbor, Florida (United States), were sampled on a bimonthly basis from April 1995 to August 1996. Spatial and temporal variation in the density, biomass, productivity, and epiphyte loads of short shoots were determined. Physical factors such as water temperature, salinity, and light extinction coefficients were also measured. Areal blade production (g dw m?2 d?1) ofT. testudinum was not strongly associated with water temperature, salinity, or the amount of subsurface irradiance reaching the bottom at each station. Variation in production could be described by a linear combination of the independent variables water temperature and salinity. Water clarity (expressed as the percent of subsurface irradiance reaching the bottom) was positively related to salinity. The lack of a clear relationship between water clarity and areal production was probably due to water clarity being highest during times of the year when water temperatures were too cold to support growth ofT. testudinum. Our results suggest that seagrass light requirements determined by averaging irradiance levels measured during the growing season might be more relevant than those established by averaging light measurements collected throughout the year. The use of field studies for estimating lower salinity tolerances of seagrasses might be inappropriate for those systems where water clarity is positively associated with salinity.  相似文献   

13.
The effects of light and salinity onVallisneria americana (wild celery) were studied in outdoor mesocosms for an entire growing season. Morphology, production, photosynthesis, and reproductive output were monitored from sprouting of winter buds to plant senescence and subsequent winter bud formation under four salinity (0, 5, 10, and 15 psu) and three light (2%, 8%, and 28% of surface irradiance) regines. Chlorophylla fluorescence was used to examine photochemical efficiency and relative electron transport rate. High salinity and low light each stunted plant growth and reproduction. Production (biomass, rosette production, and leaf area index) was affected more by salinity than by light, apparently because of morphological plasticity (increased leaf length and width), increased photosynthetic efficiency, and increased chlorophyll concentrations under low light. Relative maximum electron transport rate (ETRmax) was highest in the 28% light treatment, indicating increased photosynthetic capacity. ETRmax was not related to salinity, suggesting that the detrimental effects of salinity on production were through decreased photochemical efficiency and not decreased photosynthetic capacity. Light and salinity effects were interactive for measures of production, with negative salinity effects most apparent under high light conditions, and light effects found primarily at low salinity levels. For most production and morphology parameters, high light ameliorated salinity stress to a limited degree, but only between the 0 and 5 psu regimes. Growth was generally minimal in all of the 10 and 15 psu treatments, regardless of light level. Growth was also greatly reduced at 2% and 8% light. Flowering and winter bud production were impaired at 10 and 15 psu and at 2% and 8% light. Light requirements at 5 psu may be approximately 50% higher than at 0 psu. Because of the interaction between salinity and light requirements for growth, effective management of SAV requires that growth requirements incorporate the effects of combined stressors.  相似文献   

14.
We investigated the hypothesis that effects of cultural eutrophication can be reversed through natural resource restoration via addition of an oyster module to a predictive eutrophication model. We explored the potential effects of native oyster restoration on dissolved oxygen (DO), chlorophyll, light attenuation, and submerged aquatic vegetation (SAV) in eutrophic Chesapeake Bay. A tenfold increase in existing oyster biomass is projected to reduce system-wide summer surface chlorophyll by approximately 1 mg m−3, increase summer-average deep-water DO by 0.25 g m−3, add 2100 kg C (20%) to summer SAV biomass, and remove 30,000 kg d−1 nitrogen through enhanced denitrification. The influence of osyter restoration on deep extensive pelagic waters is limited. Oyster restoration is recommended as a supplement to nutrient load reduction, not as a substitute.  相似文献   

15.
Partitioning of carbon isotopes between main polymers of biomass of higher plants was investigated by the example of the structural polymers of wheat plant: lignin, hemicellulose, and cellulose representing the ligno-carbohydrate complex, starch and proteins representing storage compounds, and the lipid fraction. Biopolymers account from 80% (grasses) to 95% (trees) of the biomass of higher plants and are of geochemical interest as biological precursors for the terrigenous organic matter (OM) of sediments and sedimentary rocks. The biomass of algae is also dominated (∼80%) by polymers: proteins, carbohydrates, and lipids. The isotopic heterogeneity of the organs and parts of plants is controlled by carbon isotope composition (from −33.3 to −25.9‰) in biopolymers and their distribution: among various parts of plants. The carbohydrates: starch and hemicellulose are isotopically heaviest (−25.9 and −26.2‰), proteins are slightly poorer in 13C (up to −27.3‰), and lipids (−33.3‰) and lignin (−32.6‰) are isotopically light components of the biomass. The regularity of carbon isotopes partitioning among the large complexes of the biomass of higher plants is reflected in the existence of a common linear trend of δ13C values of biopolymers versus the ranges of thermodynamic β-factor values calculated by the method of isotopic bond numbers for the whole set of monomers in the composition of each polymer studied. The carbohydrates of grain and straw (starch, xylan, and cellulose) form a common C6–C5 pool of the isotopically heaviest polymers of the higher plant biomass (wheat). No significant isotopic effects were observed at the transformation between C6–C5 monomers and their transport between plant organs during grain ripening.  相似文献   

16.
The Florida Bay ecosystem has changed substantially in the past decade, and alterations in the seagrass communities have been particularly conspicuous. In 1987 large areas ofThalassia testudinum (turtlegrass) began dying rapidly in western Florida Bay. Although the rate has slowed considerably, die-off continues in many parts of the bay. Since 1991, seagrasses in Florida Bay have been subjected to decreased light availability due to widespread, persistent microalgal blooms and resuspended sediments. In light of these recent impacts, we determined the current status of Florida Bay seagrass communities. During the summer of 1994, seagrass species composition, shoot density, shoot morphometrics, and standing crop were measured at 107 stations. Seagrasses had been quantified at these same stations 10 yr earlier by Zieman et al. (1989).T. testudinum was the most widespread and abundant seagrass species in Florida Bay in both 1984 and 1994, and turtlegrass distribution changed little over the decade. On a baywide basis,T. testudinum density and biomass declined significantly between surveys; mean short-shoot density ofT. testudinum dropped by 22% and standing crop by 28% over the decade.T. testudinum decline was not homogeneous throughout Florida Bay; largest reductions in shoot density and biomass were located principally in the central and western bay. Percent loss ofT. testudinum standing crop in western Florida Bay in 1994 was considerably greater at the stations with the highest levels of standing crop in 1984 (126–215 g dry wt m−2) than at the stations with lower levels of biomass. While turtlegrass distribution remained consistent over time, both the distribution and abundance of two other seagrasses,Halodule wrightii andSyringodium filiforme, declined substantially between 1984 and 1994. Baywide,H. wrightii shoot density and standing crop declined by 92%, andS. filiforme density and standing crop declined by 93% and 88%, respectively, between surveys. Patterns of seagrass loss in Florida Bay between 1984 and 1994 suggest die-off and chronic light reductions were the most likely causes for decline. If die-off and persistent water-column turbidity continue in Florida Bay, the long-term future of seagrasses in the bay is uncertain.  相似文献   

17.
We present a comparative analysis of 1400 data series of water chemistry (particularly nitrogen and phosphorus concentrations), phytoplankton biomass as chlorophylla (chla) concentrations, concentrations of suspended matter and Secchi depth transparency collected from the mid-1980s to the mid-1990s from 162 stations in 27 Danish fjords and coastal waters. The results demonstrate that Danish coastal waters were heavily eutrophied and had high particle concentrations and turbid waters. Median values were 5.1 μg chla 1−1, 10.0 mg DW 1−1 of suspended particles, and Secchi depth of 3.6 m. Chlorophyll concentration was strongly linked to the total-nitrogen concentration. The strength of this relationship increased from spring to summer as the concentration of total nitrogen declined. During summer, total nitrogen concentrations accounted for about 60% of the variability in chlorophyll concentrations among the different coastal systems. The relationship between chlorophyll and total phosphorus was more consistant over the year and correlations were much weaker than encountered for total nitrogen. Secchi depth could be predicted with good precision from measurements of chlorophyll and suspended matter. In a multiple stepwise regression model with In-transformed values the two variables accounted for most of the variability in water transparency for the different seasons and the period March–October as a whole (c. 80%). We were able to demonstrate a significant relationship between total nitrogen and Secchi depth, with important implications for management purposes.  相似文献   

18.
The effectiveness of glass prisms in boat docks was assessed to determine if shading impacts to submerged aquatic vegetation (SAV), primarilyVallisneria americana, were reduced. Six experimental docks, three with prisms and three without prisms, were constructed in the lower St. Johns River, Florida. SAV percent cover and photosynthetically active radiation (PAR) were monitored under each dock and in an adjacent control area with no experimental docks. Subsurface PAR during the growing season of the first year of the study was not significantly greater beneath docks having prisms than beneath docks without prisms. Postconstruction SAV monitoring (February 2000 to May 2002) revealed no significant differences in SAV percent cover between dock treatments, although coverage declined in both dock treatments and the control area. Declining water quality conditions at the study site clearly impacted the health of the SAV habitat as indicated by the decline in SAV coverage in the control area initially in the study. Given the subsequent resurgence of SAV in the control area, the additional light transmitted through the prisms did not appear to be biologically significant or adequate to counteract effects from larger-scale environmental stressors.  相似文献   

19.
The seasonal pattern of phytoplankton biomass (chlorophyll and particulate organic carbon) and the salinity-related pattern of phytoplankton biomass and size composition were determined in Apalachicola Bay, Florida, throughout 2004. Phytoplankton biomass was highest during summer and lowest during winter. During summer, phytoplankton biomass was highest in waters with salinity between about 5 and 23. In waters between 5 and 23, phytoplankton biomass was primarily (> 50%) composed of < 5 μm cells. The results from this study support the idea that a microbial food web characterizes mass and energy flow through the planktonic food web in Apalachicola Bay and other estuaries. During winter, the carbonxhlorophylla ratio averaged 56 ± 60 (standard deviation). During summer, the ratio ranged from 23 to 345, with highest values occurring in waters with salinity between about 8 and 22. The carbonxhlorophylla ratio was positively related to the percent of chlorophyll < 5 μm in size during summer.  相似文献   

20.
Subtropical estuaries have received comparatively little attention in the study of nutrient loading and subsequent nutrient processing relative to temperate estuaries. Australian estuaries are particularly susceptible to increased nutrient loading and eutrophication, as 75% of the population resides within 200 km of the coastline. We assessed the factors potentially limiting both biomass and production in one Australian estuary, Moreton Bay, through stoichiometric comparisons of nitrogen (N), phosphorus (P), silicon (Si), and carbon (C) concentrations, particulate compositions, and rates of uptake. Samples were collected over 3 seasons in 1997–1998 at stations located throughout the bay system, including one riverine endmember site. Concentrations of all dissolved nutrients, as well as particulate nutrients and chlorophyll, declined 10-fold to 100-fold from the impacted western embayments to the eastern, more oceanic-influenced regions of the bay during all seasons. For all seasons and all regions, both the dissolved nutrients and particulate biomass yielded N:P ratios <6 and N:Si ratios <1. Both relationships suggest strong limitation of biomass by N throughout the bay. Limitation of rates of nutrient uptake and productivity were more complex. Low C:N and C:P uptake ratios at the riverine site suggested light limitation at all seasons, low N:P ratios suggested some degree of N limitation and high N:Si uptake ratios in austral winter suggested Si limitation of uptake during that season only. No evidence of P limitation of biomass or productivity was evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号