首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Focal mechanisms determined from moment tensor inversion and first motion polarities of the Himalayan Nepal Tibet Seismic Experiment (HIMNT) coupled with previously published solutions show the Himalayan continental collision zone near eastern Nepal is deforming by a variety of styles of deformation. These styles include strike-slip, thrust and normal faulting in the upper and lower crust, but mostly strike-slip faulting near or below the crust–mantle boundary (Moho). One normal faulting earthquake from this experiment accommodates east–west extension beneath the Main Himalayan Thrust of the Lesser Himalaya while three upper crustal normal events on the southern Tibetan Plateau are consistent with east–west extension of the Tibetan crust. Strike-slip earthquakes near the Himalayan Moho at depths >60 km also absorb this continental collision. Shallow plunging P -axes and shallow plunging EW trending T -axes, proxies for the predominant strain orientations, show active shearing at focal depths ∼60–90 km beneath the High Himalaya and southern Tibetan Plateau. Beneath the southern Tibetan Plateau the plunge of the P -axes shift from vertical in the upper crust to mostly horizontal near the crust–mantle boundary, indicating that body forces may play larger role at shallower depths than at deeper depths where plate boundary forces may dominate.  相似文献   

2.
3.
Magnetic and gravity data collected during a GLORIA survey of the Indus Fan provide new information on the earliest sea-floor spreading history of the Arabian Sea. A negative gravity anomaly correlates with the buried Laxmi Ridge. This ridge is interpreted here to be a sliver of continental crust adjacent to the oceancontinent transition which bounds thinned, probably intruded, transitional crust to the NE. The oldest sea-floor spreading anomaly is anomaly 28 (65-66 Ma), breakup occurring at the time of the Deccan Traps volcanic event. The earliest oceanic crust formed from two phases of rift propagation which accommodates the angular disparity between the E-W trending anomalies in the western Arabian Sea and the NE-SW trending western part of the Laxmi Ridge. Flow-line projection shows that the Laxmi ridge forms the conjugate structure to the northern Mascarene Plateau margin.  相似文献   

4.
Our objectives are as follows. First, we wish to develop a methodology to recover the long-term component of deformation from any set of distributed, time-averaged geodetic strain measurements that were subject to seismic disturbance, given a catalogue of local seismicity that occurred during the measurement period. Second, using seismic and geodetic data sets that span approximately 100 years, we apply this technique in the western Aegean to assess the role of local seismicity in regional deformation. The methodology is developed using a model for crustal deformation constructed from a long-term, smooth regional strain field combined with instantaneous, local perturbations from upper-crustal earthquakes approximated by static elastic dislocations. By inverting geodetic displacements for the smooth field while simultaneously floating influential but uncertain earthquake source parameters, an estimate of the regional component of deformation that is approximately independent of the seismicity can be made. In the western Aegean we find that the horizontal component of regional deformation can be described with minor inaccuracy by a quadratic relative displacement field. The principal horizontal extensional axes calculated from the regionally smooth displacement field agree in orientation with the T-axes of earthquakes in the region. These observations indicate that the instantaneous elastic strain of the 10 km thick seismogenic layer is driven by a stress field that is smooth on the scale of the geodetic network as a whole, 200-300 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号