首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以能量平衡方程为基础,考虑太阳短波辐射、大气和地面的长波辐射、潜热、感热传输以及下垫面的热传导等能量之间的平衡,建立了利用常规气象观测资料预测雪面温度和积雪深度变化的融雪模型。利用2009年1—3月以及2009年12月—2010年1月在湖北恩施雷达站的积雪观测数据进行模拟和验证,结果表明:该模型对于雪面温度和积雪深度都有较好的模拟效果。当下垫面导热系数λg〈0.5时,下垫面对雪深的影响很小;当λg≥0.5时,积雪融化速度随λg的增大而加快,说明下垫面的热传导是影响积雪深度变化的主要因素之一。  相似文献   

2.
北半球积雪监测诊断业务系统   总被引:1,自引:0,他引:1  
郭艳君  李威  陈乾金 《气象》2004,30(11):24-26
利用卫星遥感和常规观测的积雪资料,确定了适合业务使用的北半球及中国积雪监测诊断方法,并初步建立了北半球和中国积雪监测业务。其相关业务产品主要有:北半球月积雪日数、中国月积雪日数、积雪深度的分布,北半球、欧亚、中国等不同区域积雪面积距平指数。  相似文献   

3.
北疆积雪深度和积雪日数的变化趋势   总被引:6,自引:0,他引:6       下载免费PDF全文
 选取新疆北疆20个站1961-2006年积雪及稳定积雪日数、最大积雪深度资料,同时选择冬季降水量和气温稳定通过0℃以下的日数作为积雪的影响因子,分析了46 a来北疆积雪的变化趋势。结果表明:46 a来最大积雪深度呈显著增加趋势,平均年增长0.8%,其变化与冬季降水量增加有关,呈正相关;积雪日数和稳定积雪日数也呈稍增加趋势,增加主要发生在1960-1980年代,1990年代以来有所减少,其变化与气温稳定通过0℃以下的日数呈显著正相关。  相似文献   

4.
利用1971—2020年呼伦贝尔市16个国家气象站最长积雪日数和最大积雪深度资料,采用经验正交函数(EOF)分析、重标极差分析(R/S)和非周期循环分析,统计最长积雪日数和最大积雪深度时间序列的Hurst指数、分维数和非周期循环的平均循环长度,分析最长积雪日数和最大积雪深度变化趋势和记忆周期;同时采用MOD10A2积雪产品,研究2001—2018年呼伦贝尔市积雪覆盖率变化。结果表明:(1)近50年呼伦贝尔市最长积雪日数呈递减趋势,最大积雪深度呈递增趋势;(2)积雪深度>20、30cm的年平均积雪日数主要出现在1996—2014年,其中积雪深度>30cm年平均积雪日数>1d;(3)呼伦贝尔市积雪初日出现在10月中旬至11月上旬,积雪终日在4月结束,积雪初日出现最早时间和积雪终日结束最晚时间都在呼伦贝尔市的北部地区;(4)R/S分析和非周期循环研究表明,呼伦贝尔市最长积雪日数和最大积雪深度H指数分别为0.589 9和0.889,即最长积雪日数未来减少和最大积雪深度未来增多趋势持续,持续时间分别为8和12 a;(5)呼伦贝尔市年平均积雪覆盖率为98.87%,呈波动增加趋势,...  相似文献   

5.
1959-2003年中国天山积雪的变化   总被引:6,自引:0,他引:6  
利用天山山区17个气象站1959-2003年的气象观测资料,分析了中国天山山区冬季(12-2月)气温、积雪变化趋势特征, 并采用Mann-Kendall统计量对最大积雪深度的变化进行了突变检验,通过GIDS插值方法和DEM数据计算了它的空间分布。结果表明,天山山区冬季平均气温存在明显的上升趋势,倾向率为0.44℃/10 a,与北半球冬季平均气温的变化有着较好的相关性,最低气温的增加更为明显,其倾向率为0.79℃/10 a。45 a来天山山区最大积雪深度具有明显的增加趋势,倾向率为1.15 cm/10 a,检测表明,最大积雪深度在1977年前后发生了突变;与多年平均相比,积雪深度增加幅度最大的是西天山地区的昭苏、尼勒克,分别增加了39.3%和39.7%。天山山区积雪变化以2.8 a左右的周期为主。另外,积雪日数的增加主要出现在≥10 cm的积雪深度上;积雪初、终日期并没有表现出明显的提前或推迟。  相似文献   

6.
1962-2008年辽宁省积雪变化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
采用1962-2008年辽宁省52个气象观测站逐日积雪深度以及同期温度、降水资料,用统计方法和小波方法分析了辽宁省积雪气候变化规律。结果表明:近47 a辽宁省积雪日数呈不显著增加趋势,共增加了3 d;年最大雪深随时间变化呈不明显增加趋势,平均每10 a增加0.2 cm;年累积雪深也呈不显著增加趋势,气候倾向率为8.9 cm/10 a。从年代际变化来看,20世纪80年代前辽宁省积雪日数、年最大雪深和年累积雪深偏小;而20世纪80年代后至今,则经历了一个积雪日数、年最大雪深和年累积雪深均增加的过程。  相似文献   

7.
选取阿尔山气象站1981—2015年冷季(10月—次年4月)气象资料,利用滑动平均、线性倾向估计和Mann-Kendall等方法,对年最大积雪深度、积雪日数、气温和降水量进行分析。结果表明,阿尔山地区年最大积雪深度主要发生在1月至3月,其中2月份概率最大,达50%;34 a内最大积雪深度呈上升趋势(2.77 cm/10a),年平均增加0.98%,且年最大积雪深度在1998年发生了突变,即在1998年之前增长缓慢,在2000年以后上升趋势显著。积雪日数的统计分析表明,初始积雪日数和有效积雪日数呈现略微减少趋势,而稳定积雪日数有微弱的增加趋势;通常初始积雪日数比有效积雪日数大30天左右。年最大积雪深度与稳定积雪时期的降水量、积雪日数、日照时数有显著的相关性,相关系数分别为0.647、0.515、0.584,但与稳定积雪时期的气温没有明显的相关性。在全球变暖的大环境下,积雪深度随着降水量和日照时数的增加而增加,且积雪深度受降水量的影响大于日照时数的影响。  相似文献   

8.
The combination of field experiments and satellite observations is the fundamental way to understand the characteristics of spatial-temporal variation in surface albedo over the Tibetan(Qinghai-Xizang) Plateau. Under the condition without snow cover, the relatively regular annual variation cycle of the surface albedo can be expressed by an empirical formula. The effect of snow cover on the surface albedo in winter can be expressed by introducing two variables of snow forcing and sensitivity parameter. The existing satellite retrieved results of surface albedo may provide the digital grid data for describing the geographical distribution. However, some satellite retrieved surface albedos available over the Tibetan Plateau are obviously too low in winter. Taking the satellite derived results in summer as the background field representative of geographical distribution and combining the empirical formula of annual cycle based on the surface observations,a dynamic model of surface albedo is developed for the need of modeling the climatic influence of the underlying surface forcing of the Tibetan Plateau.  相似文献   

9.
The combination of field experiments and satellite observations is the fundamental way tounderstand the characteristics of spatial-temporal variation in surface albedo over the Tibetan(Qinghai-Xizang) Plateau. Under the condition without snow cover, the relatively regular annualvariation cycle of the surface albedo can be expressed by an empirical formula. The effect of snowcover on the surface albedo in winter can be expressed by introducing two variables of snow forcingand sensitivity parameter. The existing satellite retrieved results of surface albedo may provide thedigital grid data for describing the geographical distribution. However, some satellite retrievedsurface albedos available over the Tibetan Plateau are obviously too low in winter. Taking thesatellite derived results in summer as the background field representative of geographicaldistribution and combining the empirical formula of annual cycle based on the surface observations,a dynamic model of surface albedo is developed for the need of modeling the climatic influence ofthe underlying surface forcing of the Tibetan Plateau.  相似文献   

10.
 Meteorological data at 17 weather stations in the Tianshan Mountains from 1959 to 2003 were analyzed to explore the variations in temperature and snow cover. The abrupt change test for snow depth was performed using Mann-Kendall statistic. The spatial distribution of maximum snow depth was calculated by employing GIDS interpolation and DEM data. The results show that mean temperature in winter had a rising trend at a rate of 0.44 ℃/10 a. The minimum temperature in winter increased more evidently at a rate of 0.79 ℃/10 a. The maximum snow depth has obviously deepened at a rate of 1.15 cm/10 a in the past 45 years, and it was about 16% higher than the average during 1991-2003. The Mann-Kendall statistic test of snow depth indicates that the abrupt change occurred in 1976. The maximum increment for snow cover depth occurred in Zhaoshu (Kunes) (39.3%) and Nilka (39.7%) in the west Tianshan Mountains. In contrast, the snow cover depth reduced by 17% in Barkol in the east Tianshan Mountains. There was a primary change periodicity of about 2.8 years in snow cover. In addition, snow cover days with a depth more than 10 cm increased distinctly, however, there was no obvious advance or delay in snow beginning and ending dates.  相似文献   

11.
Mcteorological data at 17 weather stations in the Tianshan Mountains from 1959 to 2003 were analyzed to explore the variations in temperature and snow cover.The abrupt change test for snow depth was performed using Mann-Kendall statistic.The spatial distribution of maximum snow depth was calculated by employing GIDS interpolation and DEM data.The results show that mean temperature in winter had a rising trend at a rate of 0.44℃/10a.The minimum temperature in winter increased more evidently at a rate of 0.79℃/10a.The maximum snow depth has obviously deepened at a rate of 1.15 cm/10 a in the past 45 years,and it was about 16% higher than the average during 1991-2003.The Mann-Kendall statistic test of snow depth indicates that the abrupt change occurred in 1976.The maximum increment for snow cover depth occurred in Zhaoshu(Kunes)(39.3%)and Nilka(39.7%)in the west Tiansban Mountains.In contrast,the snow cover depth reduced by 17% in Barkol in the east Tianshan Mountains.There was a primary change periodicity of about 2.8 years in snow cover.In addition,snow cover days with a depth more than 10 cm increased distinctly,however,there was no obvious advance or delay in snow beginning and ending dates.  相似文献   

12.
中国冬季多种积雪参数的时空特征及差异性   总被引:6,自引:2,他引:4  
利用1979~2006年冬季中国站点最大雪深和站点雪日、卫星遥感雪深、积雪覆盖率和雪水当量5种积雪资料,从多角度深入细致地分析了我国冬季积雪的时空变化特征。结果表明:5种积雪资料的经验正交分解第一模态都表现为中国南、北方反位相的特征,即当新疆和东北三省-内蒙古地区积雪偏多(少)时,青藏高原和南方地区积雪偏少(多)。新疆和东北三省-内蒙古地区的雪深、积雪覆盖率和雪日随时间有逐渐增多的趋势,而其中边缘山区的雪水当量表现出减少的趋势,青藏高原地区的积雪表现出与其完全相反的特征。南方地区站点最大雪深和雪日表现出随时间减少的趋势,卫星遥感难以监测到该区积雪。相比较而言,卫星遥感资料比较适合高原和山区缺少气象站的地区及北半球更大区域积雪的研究,而站点资料更适用于中国中东部和平原地区积雪的区域研究。雪深、雪日、积雪覆盖率和雪水当量这些多样性积雪参数存在一定的差异性,因此5种积雪资料结合使用才能得到更准确的结论。  相似文献   

13.
 Snow cover fraction (SCF) has a significant influence on the surface albedo and thus on the radiation balance and surface climate. Long-term three dimensional simulations with general circulation models (GCMs) show that the SCF greatly affects the climate in the Northern Hemisphere. By means of both ground observations and remotely sensed data, several deficiencies in the SCF simulated by the current ECHAM4 GCM were identified: over mountainous areas a substantial overestimation in the SCF was found whereas flat areas showed a distinctly underestimated SCF. This work proposes a new parametrization of the SCF for use in GCMs. Evaluations illustrate that it is beneficial to distinguish between the following three terrains: (1) flat, non-forested areas, (2) mountainous regions and (3) forests. The modified SCF parametrization for flat, non-forested areas was derived by using global datasets of ground-based snow depth and remote sensing observations of snow cover data. A 3-dimensional ECHAM4 simulation showed that this modification raises the SCF by up to approximately 20%, mainly in areas with a relatively thin snow cover. The comparison between remotely sensed and simulated mean monthly surface albedo revealed a significant overestimation of the surface albedo in snow-covered mountainous areas. An extension of the current SCF parametrization in ECHAM4 to take into account mountain effects, based on the French climate model Arpège, yielded a close agreement with satellite-derived surface albedo. The adoption of the submodel for snow albedo, as used in the Canadian Land Surface Scheme (CLASS), combined with a newly developed simple snow interception model, demonstrated the ability to capture the main physical processes of snow-covered canopies, including the albedo. The validation of the new parametrization with Boreal Ecosystem-Atmosphere Study (BOREAS) field data showed that the modification is appropriate to capture the main features of the albedo over snow-covered forests during and after heavy snowfall events. Furthermore, the proposed modification has a beneficial impact on the delayed snow melt in spring, a well-known problem in many current GCMs: The simulated surface albedo over the boreal forests decreases by approximately 0.1 during winter and spring, which is in better agreement with ground-based observations. This induces a significant rise in the surface temperature over extended parts of Eurasia and North America in late spring, which subsequently yields a faster snowmelt and an accelerated retreat of the snow line. Received: 28 April 2000 / Accepted: 18 December 2000  相似文献   

14.
气象卫星遥感资料在积雪监测中的应用   总被引:2,自引:2,他引:2  
沙依然  王茂新 《气象》2004,30(4):33-35
介绍了在地区级气象台站采用气象系统 92 1 0工程下发的FY 1D卫星遥感数据 ,在短红外波段的基础上建立多光谱提取积雪信息的计算方法及监测模型 ,并以2 0 0 2年 1 1月至 2 0 0 3年 5月新疆积雪遥感监测为例 ,介绍了卫星遥感监测积雪深度和积雪覆盖面积的方法 ,分析了积雪覆盖特征和变化规律。  相似文献   

15.
改进的CLDAS降水驱动对中国区域积雪模拟的影响评估   总被引:4,自引:3,他引:1  
师春香  张帅  孙帅  姜立鹏  梁晓  贾炳浩  吴捷 《气象》2018,44(8):985-997
积雪因为其特定的属性在气候变化和水文循环中扮演着重要角色,在大气和陆面之间起到了调节能量和水交换的显著作用,而陆面驱动数据的质量直接决定着模式对积雪的模拟效果。本文采用CLDAS(CMA Land Data Assimilation System)和改进后的降水驱动(CLDAS-Prcp)分别驱动Noah3.6陆面模式对积雪变量进行模拟,并对中国主要的积雪区东北区域、新疆区域、青藏高原区域的积雪覆盖率、雪深、雪水当量的模拟效果进行了评估。结果表明,CLDAS-Prcp改善了原有驱动在冬季由于低估降水所造成的模拟积雪量偏少的情况;东北区域模拟结果与观测的时间变率最为一致,积雪覆盖率、雪深、雪水当量的相关系数分别为0.42,0.78,0.93;而雪水当量的改进效果最明显,均方根误差和偏差分别减小了54.8%和83.1%,相关系数提高了0.47;同时,CLDAS-Prcp不仅能反映积雪变量的年际变率,而且能够较准确地反映出强度较大的突发降雪事件。  相似文献   

16.
伊犁地区近35年冬季积雪变化特征分析   总被引:1,自引:0,他引:1  
通过对伊犁地区8个气象地面观测站35a(1971—2005年)11—3月逐旬的冬季最大积雪深度、积雪日数、降水量和平均温度的统计分析,结果表明:伊犁地区冬季降雪的时间、空间分布不均,最大降雪发生在新源;平均雪深最大的是伊宁县,最小的是特克斯县;冬季积雪日数变化相对比较稳定;冬季降雪与平均温度存在着很好的响应关系。在SPSS中对冬季的平均温度与平均降水和平均雪深进行相关分析,发现平均雪深、平均温度和平均降水为显著正相关。  相似文献   

17.
利用青藏高原(下称高原)1961-2014年地面110个气象站积雪深度、积雪日数、气温和降水逐日资料,系统地分析了高原积雪深度和积雪日数时空特征,并进一步探究了高原积雪深度和积雪日数与气候因子和地理因子之间的关系。研究发现:1961-2014年高原年平均积雪深度和积雪日数分别为0.26 cm和23.78 d,空间和季节尺度上分布不均匀,且积雪深度和积雪日数大值并不完全重合;在整体变化趋势上,积雪深度和积雪日数均呈缓慢下降趋势,分别为-0.0080±0.0086 cm·(10a)^-1(p=0.36)和-0.64±0.47 d·(10a)^-1(p=0.17),但在数理统计上不显著,且各站点差异性大;积雪深度和积雪日数在春季、冬季和年表现为“减-增-减”的年代际变化特征,而在秋季为“增-减”的变化特征;气温与积雪深度和积雪日数均有较好的相关性,冬季的降水与积雪深度和积雪日数高度相关;积雪深度和积雪日数随海拔呈增加趋势,积雪日数与纬度也高度相关,但积雪深度与纬度的相关性不明显。  相似文献   

18.
基于GIS的雪灾风险区划   总被引:2,自引:0,他引:2  
依据巴彦淖尔地区冬春季节降水少、年变率大的气候特点和易形成雪灾的量级指标进行雪灾风险区划。选取1971—2010年11月到次年3月,日降雪量大于等于3mm,并出现积雪和结冰现象为研究对象,分析了降雪量大于等于3mm的降雪日数和积雪深度大于等于5cm的积雪日数年代际变化,结合民政部门历史灾情记载、实地调查、农牧业现状以及各种基础资料数据与GIS技术,从致灾因子、脆弱性评估分析方面,在NOAA卫星遥感雪覆盖监测图像上,利用加权综合与层次分析法,构建雪灾判别模型,得出巴彦淖尔地区雪灾风险区划:雪灾最严重的地区为五原县大部、乌前旗南部和东北部部分区域、乌中旗东南和西南两区域、乌后旗的海力素附近大片区域。  相似文献   

19.
青藏高原积雪对中国夏季风气候的影响   总被引:39,自引:7,他引:32  
利用SVD等方法对青藏高原积雪与中国区域降水的关系作了诊断分析。并用区域气候模式(RegCM2)对高原积雪的气候效应进行了模拟。结果表明:青藏高原积雪对中国夏季风气候的影响是显著的。积雪的增加会明显减弱亚洲夏季风的强度,使华南的降水减少,江淮流域的降水增多。高原冬季积雪深度的增加,比积雪面积的扩大和春季积雪深度的增加对后期气候的影响更大。  相似文献   

20.
希爽  张志富 《干旱气象》2013,(3):451-456,470
利用1961~2012年中国1400个站点逐日积雪增量、积雪日数和气温稳定通过0℃日数资料,对我国积雪时空变化特征进行了分析研究。结果表明:我国积雪主要分布在新疆北部地区、东北和内蒙古东北部地区及青藏高原地区,年积雪增量均超过50era;在年代际变化中,1991~2000年我国大部分地区积雪增量偏少;在对我国5个区域的趋势分析中,新疆北部地区、东北和内蒙古东北部地区积雪量有显著增加趋势,积雪日数的变化趋势均不显著,气温稳定通过0oC日数均呈显著减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号