首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李昭春  朱君鉴  张持岸  孙剑  王瑶 《气象》2021,47(9):1086-1098
分析了2019年8月29日发生在海南省屯昌县和儋州市龙卷过程的海口双偏振多普勒雷达探测资料.龙卷发生在台风杨柳右前方大约370 km处的台风雨带中的对流风暴单体中,两次龙卷发生都与风暴合并有关联,一次发生在风暴单体合并前12 min,一次发生在风暴单体合并后5 min.单体合并导致风暴反射率因子增强,风暴高度增高,风暴...  相似文献   

2.
双偏振多普勒天气雷达差分反射率因子的测量误差   总被引:1,自引:1,他引:0  
魏洪峰  薛震刚 《气象科技》2008,36(2):223-227
针对同时发射、同时接收体制双偏振多普勒天气雷达,论述了测量差分反射率因子时雷达应满足的基本要求,提出了测量差分反射率因子时能够引入误差的3类因素,即雷达测量基本要求不满足、接收机噪声和散射粒子相对运动引起的回波功率起伏、云雨目标对水平极化波和垂直极化波衰减的不同,并分别对影响差分反射率因子测量误差的各种因素及其影响程度,进行了深入研究和分析.  相似文献   

3.
针对贵州威宁X波段双偏振雷达的衰减订正问题,在利用综合小波去噪方法对差分传播相移ФDP进行质量控制基础上,基于自适应衰减订正算法对雷达反射率因子ZH进行衰减订正分析,订正结果与昭通C波段新一代天气雷达进行对比,结果表明:(1)综合小波去噪能够有效去除ФDP存在的脉动和毛刺,保证ФDP的连续性和平滑度;(2)订正前后雷达反射率因子在距离雷达较近处(20-35 km)强度廓线基本重合,订正前后差别不大,随着对流区(雨区)距离的增加,电磁信号出现衰减,订正后反射率值加强,总体上订正后的反射率值比订正前高1-12 dB,其中在35~75 km距离范围内,订正后的反射率值达到50 dBz以上,雷达反射率因子更加接近真实情况;(3)使用综合小波去噪配合自适应衰减订正算法可以提高雷达反射率因子衰减订正的准确率,方法具有普适性,在今后科研业务中可以采用该订正方法以进一步提高对粒子相态识别、降水估测精度。  相似文献   

4.
1522号台风“彩虹”外围佛山强龙卷特征分析   总被引:2,自引:0,他引:2  
2015年10月4日15:28-16:03(北京时间,下同),强龙卷自东南向西北方向影响了佛山市顺德、禅城和南海区的十多个村居,造成严重灾害。利用常规观测资料、自动气象站资料、广州多普勒雷达资料、风廓线资料等,对这次强龙卷过程进行分析。(1)强龙卷发生在1522号台风"彩虹"外围螺旋云带中,龙卷发生地位于台风中心的45°方向约340~360 km处。(2)大尺度环境场利于龙卷的发生。低空急流、低空强的垂直风切变和低的抬升凝结高度均利于龙卷的发生,高层辐散、低层辐合,上干下湿的不稳定层结,弱冷空气的低层入侵等提供了很好的动力条件。(3)地面中尺度辐合线是强龙卷发生的抬升机制之一,珠三角喇叭口地形以及佛山东南低、西北高的地形有利于低层辐合的加强。(4)在螺旋雨带中发展加强的超级单体风暴发展至强盛阶段,雷达上探测到典型的钩状回波、入流缺口等特征;中气旋由弱中气旋加强到强中气旋,由中层向低层发展且切变不断增强时,龙卷触地或继续加强。(5)此次强龙卷是发生在中气旋和TVS底高顶高下降,切变急剧增强期间,龙卷发生时强中气旋底高距离地面小于1 km,TVS底高低于500 m,龙卷发生前16 min出现弱中气旋,龙卷发生前4 min出现强中气旋并伴有TVS特征;TVS的底高、顶高明显下降,最强切变剧增是龙卷迅速增强的指标。  相似文献   

5.
通过厦门S波段双偏振天气雷达观测到的超级单体、普通降雹单体和非降雹单体三种不同强度的强对流个例,分析其在发展、成熟阶段出现的双偏振参数特征差异,包括差分反射率(Z_(DR))、差分相位差(K_(DP))、相关系数(CC)等,发现:Z_(OR)柱和K_(DP)柱是不同强度强对流云体内部普遍存在的动力特征;超级单体和普通降雹单体在近地层还有表征入流区的CC谷特征;此外在超级单体成熟阶段低层还出现了Z_(DR)弧、K_(DP)印,以及高层对应着大冰雹的CC低值区等特征。Z_(DR)柱不仅可用于识别过冷水区还具有预测强对流云体未来发展趋势的能力,利用CC谷可识别强单体的入流区,K_(DP)柱、K_(DP)印及其空缺可识别强降水、大冰雹区等,因此双偏振参量特征识别在强对流短时临近预警预报、人工防雹方面都具有很强应用潜力。  相似文献   

6.
针对2018年夏季北京15次强对流天气过程,利用房山单站X波段双偏振雷达与北京观象台S波段天气雷达探测产品进行对比分析,探讨新探测手段的应用价值。结果表明:相对于常规天气雷达来说,双偏振雷达在粒子识别方面具有明显优势,成为冰雹等天气监测、预报预警的强有力手段。在冰雹识别上,X波段双偏振雷达的差分反射率因子( ZDR)和相关系数(ρhv )是两个重要的偏振量,ZDR 较小,接近0,有时为负值; ρhv小于0.9。在强降水识别方面, ZDR大值和差分传播相移率(KDP )能够较好地指示雨强较大的降水。低仰角的 ZDR达5dB以上,KDP 在8°/km以上, ρhv达0.95以上时,地面5分钟雨量可达到或超过10mm。两种雷达的对比分析来看,反射率因子强度(R)、垂直累积液态水含量(VIL)均较SA天气雷达强度偏强。此外,由于X波段雷达波长较短,单部雷达的探测波束经过强降水区会发生比较严重的电磁衰减,致使强降水后部的降水回波强度偏弱,严重影响预报员对降水强度和降雨持续时间的判断,需要与SA天气雷达配合使用或者利用多部X波段雷达组网进行强降雨的监测分析。  相似文献   

7.
王超  吴翀  刘黎平 《高原气象》2019,38(3):636-649
利用双偏振参量在弱降水过程中性质均一、随时空变化缓慢的特征,选取北京、佛山地区弱降水过程的观测资料,通过将较长时间观测结果沿径向或方位累积的方法,分析双偏振参量测量精确度受地物、避雷针、旋转及俯仰关节的影响,并提出相应的质控方法,得出以下结论:(1)差分反射率(ZDR)、相关系数(ρhv)及差分传播相位(ΦDP)比水平反射率(Z)对地物更敏感,其中在地物处ρhv小于0.85,ZDR低于-1 dB。根据降雨与地物之间偏振参量特征的不同,将ρhv长时间累积能有效的识别地物回波。(2)每根避雷针对双偏振参量影响的方位和幅值是近似一致的。在以避雷针为中心的±15°的方位范围内,ZDR增大0.4~1.5 dB,ρhv降低0.01以下、Z降低1~2 dBZ,且均在避雷针中心处影响达到极值。通过基于上述方位的统计订正可以较好的去除避雷针对双偏振参量的影响。(3)雷达旋转关节的异常会导致ZDR在水平方向上不平稳变化,而俯仰关节异常会使ZDR在高、低仰角差距较大,通过ZDR沿方位一段时间的累积得到各层仰角ZDR变化曲线,用此曲线来实现ZDR的误差标定。通过检验,本文提出的质量控制方法有效的提升了X波段双偏振雷达的数据质量,为其在业务中的进一步推广提供了支持。  相似文献   

8.
X波段双通道同时收发式多普勒偏振天气雷达   总被引:5,自引:1,他引:5  
王致君  楚荣忠 《高原气象》2007,26(1):135-140
以我们研制的X波段多普勒偏振天气雷达为基础,介绍一种双通道同时收发式多普勒偏振雷达技术,并对其优缺点和应用问题进行讨论。这是一部真正意义上的多参数雷达,它可同时获取云和降水的强度信息(ZH)、多普勒信息(平均径向速度V,谱宽W)和偏振信息(差反射率ZDR,差传输相移ΦDP及比相差KDP和相关系数ρHV)。这些信息反映了云和降水粒子的范围、大小、运动变化和相态的不同,是全面了解云和降水特别是灾害性天气的形成机理及其微物理变化过程的较好工具。它可广泛用于大气物理研究、人工影响天气、暴洪监测和临近天气预报等领域,对于提高云和降水物理研究水平和提高防灾减灾能力都有重要意义。  相似文献   

9.
为提高X波段双偏振相控阵雷达(XPAR-D)数据质量,采用自适应约束订正方法对反射率因子ZH、差分反射率因子ZDR进行质量控制;利用广州S波段双偏振雷达(CINRAD/SAD)和地面二维雨滴谱观测对XPAR-D雷达的数据质量进行分析,结果表明XPAR-D雷达与CINRAD/SAD雷达的回波强度基本一致,由于XPAR-D雷达灵敏度较低,导致对弱回波的探测能力低于CINRAD/SAD雷达。将XPAR-D雷达测量的反射率因子ZH与雨滴谱仪反演的ZH对比,两者相变化趋势基本一致;XPAR-D雷达差分反射率ZDR、差分相移率KDP与ZH的一致性较好,其中KDP约是CINRAD/SAD雷达的3.3倍;XPAR-D雷达偏振参量能有效反映融化层的偏振特征;一次局地性强降水的观测结果表明相控阵雷达能够精细监测降水的触发、演变过程以及不同降水强度的微物理特征。   相似文献   

10.
针对移动X波段双线偏振多普勒天气雷达,提出了一套差分相位数据质量控制算法,包括地物杂波抑制、退折叠、初始差分相位调整和滤波等,然后利用2个个例分析了这种差分相位数据质量控制算法的效果。结果表明,该算法能有效地识别和消除差分相位数据中的地物杂波、退掉折叠的相位和滤除正常的随机差分相位波动。  相似文献   

11.
为了提高X波段双线偏振多普勒雷达的共极化差分相移ΨC质量,利用714XDP-A型车载X波段双线偏振多普勒雷达在北京顺义的探测资料,构造了一个综合滤波方法。将其应用于滤波处理,得到结果:(1)综合小波去噪滤波方法在滤波处理及差分传播相移率KDP的估算方面相较于中值滤波、综合滑动平均、综合卡尔曼滤波及综合有限脉冲响应(FIR)滤波都是最优秀的,其能较好地保留原始ΨC平均趋势及细节特征(偏差基本在±2°可信范围内,部分区域由于对原始ΨC细节特征的保留会略有超出),避免探测误差零值对滤波产生的影响(误差零值订正值回归平均趋势水平,偏差在±2°可信范围内),对原始ΨC距离廓线的平滑程度达到了94%~97%[平滑了超出±1.5° Gate-1(Gate表示雷达距离库)的波动,对±1.5° Gate-1内波动保留];(2)估算的KDP整体在±5° km-1边界阈值内,避免了探测误差零值、环境噪声和δ对KDP估算产生的误差影响,KDP对较强降水指示明显(在回波强度30 dBZ ≤ ZH < 37 dBZ的层积云降水中KDP普遍大于0.25° km-1,峰值可达到4.3° km-1;在回波强度30 dBZ ≤ ZH < 50 dBZ的积雨云降水中KDP普遍大于0.1° km-1,峰值可达到1.95° km-1)。本文工作对于降水估测和水成物粒子识别有着改善效果,这对雷暴天气预警预报具备重要意义。  相似文献   

12.
2018年6月8日在距台风“艾云尼”中心80 km、160 km的广州市南沙区横沥镇、佛山市南海区大沥镇两地罕见地先后出现了龙卷天气。利用X波段双偏振雷达组网、广州S波段双偏振雷达、风廓线雷达和区域加密自动站等观测资料对两次近距离台风龙卷过程的环境条件和雷达特征进行了分析。环境条件分析表明,两次龙卷发生地位于低层西南急流和东南急流辐合区,所处环境为弱的对流有效位能(CAPE)、低的抬升凝结高度和强的低层垂直风切变环境中,0~1 km垂直风切变值超过15×10-3 s-1。中小尺度雷达特征分析表明:(1)两地龙卷由台风外围微型超级单体引起,超级单体在发展强盛阶段有钩状回波、入流缺口、中层回波悬垂等典型特征,最强反射率因子55~60 dBz,强度≥50 dBz强回波发展高度在4 km以下,微型超级单体有水平尺度2~3 km的中气旋,由于速度模糊影响,仅在南海龙卷发生前9 min广州S波段雷达能自动识别中气旋。(2)与南沙龙卷相联系的中气旋核心高度低,强度进一步加强紧缩导致龙卷发生;而与南海龙卷相联系的中气旋从中层发展,中气旋加强紧缩下降到更低导致龙卷发生。(3)两地弱龙卷发生时广州和南海双偏振雷达没能捕捉到龙卷碎片(TDS)特征,南海X波段雷达能提前30 min监测到入流急流,提前27 min探测出钩状回波等特征,并通过分析ZDR弧和KDP弧可判断低层强盛的上升气流和强的垂直风切变利于风暴的发展。(4)佛山四部X波段组网雷达反演的1 km水平风场可分析出小尺度涡旋结构,对应钩状回波尾端有强的风向切变,这对龙卷发生地点的判断和风暴的流场结构有较好指示意义。   相似文献   

13.
X波段双线偏振雷达冰雹识别初步研究   总被引:7,自引:0,他引:7  
苏德斌  马建立  张蔷  吕达仁 《气象》2011,37(10):1228-1232
利用北京市人工影响天气办公室X波段双线偏振雷达2009年4—10月观测的不同降雨类型的资料,统计出下雨天ZH—ZDR的分布特征,给出了ZH-ZDR分布的分段函数表达式,在此基础上定义了X波段双线偏振雷达冰雹识别参量HDR,HDR〉0表示有冰雹,HDR〈0表示无冰雹,并指出电磁波的衰减会影响H_DR识别冰雹的结果。根据实际降雹情况和识别效果对比,结果表明HDR大于零的区域与地面降雹情况基本对应一致。  相似文献   

14.
双偏振多普勒天气雷达探测雷电的初步研究   总被引:1,自引:0,他引:1  
利用S波段双偏振多普勒天气雷达和闪电定位仪数据,分析了2009年6月5日发生在南京地区一次雷暴个例的双偏振雷达参量特征与闪电之间关系及雷达水平反射率因子ZH、差分反射率因子ZDR和零滞后相关系数ρhv等偏振参量在3 km、5 km、7 km等3个不同高度上的CAPPI图,结果表明:负地闪主要落在强回波中心及其附近,少数...  相似文献   

15.
利用济南CINRAD/SA-D双偏振天气雷达的探测数据,结合龙卷实地调查资料,对2021年7月11日发生在山东聊城高唐的一次EF3级龙卷风暴的雷达回波演变过程、龙卷风暴单体的结构及龙卷风暴的中气旋(M)、龙卷涡旋特征(TVS)和龙卷碎片特征(TDS)进行分析。结果表明:(1)龙卷发生在高空冷涡及地面气旋共同作用天气形势下,龙卷位于地面气旋中心东偏北方向约200 km处;螺旋状对流云带中2个较强对流单体合并发展,演变成超级单体风暴,其后部下沉气流较强,与强的入流共同作用,诱发了强龙卷。(2)风暴中中气旋的顶高大多在5~7 km之间;龙卷发生前中气旋最大切变平均值为19×10^(-3)s^(-1),龙卷维持期间,中气旋最大切变平均值达到51×10^(-3)s^(-1)。(3)高唐龙卷涡旋底层双偏振参量主要特征是大的水平极化反射率因子,小的甚至负的差分反射率ZDR,小的相关系数CC;TDS时间及空间特征是,底层CC都小于0.7,CC低值区的面积在龙卷生成后随时间明显增大,CC值底层最小,随高度逐渐增大;CC低值区的面积低层和顶层较大,中间层较小;龙卷生成后TDS最大高度随时间逐渐增高,龙卷最强时TDS最高达到4.8 km,之后逐渐降低;龙卷消散后,1.5°以上TDS的特征很快消失,0.5°仰角TDS特征继续维持了大约11 min。  相似文献   

16.
利用MaXPol双偏振雷达观测的26个雹云单体和冰雹资料进行反演,统计分析了降雹前偏振参量特征和强中心回波顶高变化,并对雹灾最严重的一次过程进行个例分析。结果表明:①雷达的冰雹指标为Zh(反射率因子)>50dBz、ρHV(相关系数)≤0.8、-2dB<Zdr(差分反射率)<1dB且强中心回波顶高至少超过-10℃层。降雹前时间为6~12min,大冰雹的平均时间是小冰雹的1.6倍。②降雹前大、小冰雹强中心回波顶高走势一致但在4~5min大冰雹强中心回波顶高增长率明显大于小冰雹。③只有大冰雹强中心回波顶高能突破-30℃层。④个例分析发现强中心与冰雹区并非一一对应,生成发展阶段冰雹区集中位于强中心后侧相关系数环内,悬垂于0~-20℃层;成熟阶段冰雹区扩散包含强中心,悬垂的冰雹区坍塌接地,降雹开始。  相似文献   

17.
X波段双偏振雷达具有时空分辨率高、易于布网的特点,但散射特性差异和衰减影响使现有S波段雷达的相态识别和拼图算法不适用于X波段双偏振雷达。该文针对X波段相态识别及拼图产品的关键技术开展研究,提出基于准垂直剖面的融化层识别方法、基于数据质量的置信度阈值调整方法、基于统计的隶属函数参数改进方法和基于衰减程度的拼图融合方法。通过对比改进后可有效提升水凝物相态识别结果的可靠性和多雷达拼图结果的合理性。在2016年汛期北京典型个例中,融合后的X波段雷达网与当地S波段业务雷达相比能够提供更精细的回波结构和水凝物相态分布,有效缓解S波段雷达在近处探测能力降低的问题,识别的降雹区与地面观测相符。  相似文献   

18.
利用阜阳S波段双偏振多普勒雷达和闪电定位系统资料分析2021年6月13日发生在阜阳市境内的一次强雷暴过程特征;将闪电定位仪探测的闪电频次与双偏振多普勒雷达的偏振参量进行匹配分析,并采用插值算法绘制雷达回波偏振产品剖面图,分析回波偏振参量的垂直分布特征与闪电的关系,进一步研究阜阳地区的雷暴特征。结果表明:闪电频次与水平反射率因子(ZH)有较好的相关性,相关系数达078;有闪电时的ZH、差分反射率因子(ZDR)、差分相移率(KDP)平均值均大于无闪电时。闪电发生时的ZH达40 dBZ以上,且强回波突破-10 ℃高度层以上,ZDR、KDP在-10 ℃层为较小的正值或局部的负值;0 ℃层以下ZDR和KDP值均较高,其大值区出现在风暴前侧入流区。  相似文献   

19.
张羽  姚聃  杨金红  曾琳  冯嘉宝 《气象科技》2023,51(3):419-430
利用广州S波段双偏振雷达和X波段相控阵雷达资料,对2022年3月26日一次降雹超级单体风暴成熟阶段的雷达观测特征开展分析,结果表明:超级单体呈现出钩状回波、回波悬垂、中气旋、三体散射等经典结构特征。径向速度上观测到中低层辐合、高层辐散以及中气旋和反气旋共存的双涡旋结构,有助于超级单体的维持发展。偏振特征分析发现,超级单体低层出现了反射率因子(ZDR)弧,低层强回波区对应偏小的差分反射率(ZDR)、低的相关系数(CC)和大的差分相移率(KDP),符合融化的冰雹特征。中层观测到ZDR环、CC环和三体散射(TBSS)的偏振特征。高层强回波区对应低的ZDR、较高的CC和低的KDP,对应空中干的大冰雹。垂直方向上观测到ZDR柱和KDP柱,ZDR柱最大发展高度达到8 km。X波段相控阵雷达更快的扫描速度还精细监测到超级单体钩状回波和中气旋的形成演变过程,低层也观测到与S波段双偏振雷达类似的ZDR弧特征和融化中的冰雹特征,但是使用中要留意衰减造成的影响。  相似文献   

20.
双发双收双偏振天气雷达差分反射率工程标定方法   总被引:1,自引:0,他引:1  
分析了利用小雨、太阳、边界层顶的Bragg散射、地物等外界目标对双偏振天气雷达差分反射率(Zdr)进行标定的原理和局限性,介绍了一种可以在线获得发射机、接收机和天线引入的Zdr偏差的工程标定方法,并提出了一种提高Zdr测量精度的方法,即在每个脉冲重复周期,实时测量每个通道的发射功率耦合测试信号和气象目标回波信号在接收机数字中频的输出值,用于补偿发射功率和接收机增益的变化。该文介绍的两种工程标定方法可用于水平通道和垂直通道同时发射同时接收的双偏振天气雷达系统,能够满足在线实时标定的业务运行要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号