首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The regional model REMO, which is the atmospheric component of the coupled atmosphere–ice–ocean–land climate model system BALTIMOS, is tested with respect to its ability to simulate the atmospheric boundary layer over the open and ice-covered Baltic Sea. REMO simulations are compared to ship, radiosonde, and aircraft observations taken during eight field experiments. The main results of the comparisons are: (1) The sharpness and strength of the temperature inversion are underestimated by REMO. Over open water, this is connected with an overestimation of cloud coverage and moisture content above the inversion. (2) The vertical temperature stratification in the lowest 200 m over sea ice is too stable. (3) The horizontal inhomogeneity of sea ice concentration as observed by aircraft could not be properly represented by the prescribed ice concentration in REMO; large differences in the surface heat fluxes arise especially under cold-air advection conditions. The results of the comparisons suggest a reconsideration of the parameterization of subgrid-scale vertical exchange both under unstable und stable conditions.  相似文献   

2.
The future rate of Greenland Ice Sheet (GrIS) deglaciation and the future contribution of GrIS deglaciation to sea level rise will depend critically on the magnitude of northern hemispheric polar amplification and global equilibrium climate sensitivity. Here, these relationships are analyzed using an ensemble of multi-century coupled ice-sheet/climate model simulations seeded with observationally-constrained initial conditions and then integrated forward under tripled preindustrial CO2. Polar amplifications and climate sensitivities were varied between ensemble members in order to bracket current uncertainty in polar amplification and climate sensitivity. A large inter-ensemble spread in mean GrIS air temperature, albedo and surface mass balance trends stemming from this uncertainty resulted in GrIS ice volume loss ranging from 5 to 40 % of the original ice volume after 500 years. The large dependence of GrIS deglaciation on polar amplification and climate sensitivity that we find indicates that the representation of these processes in climate models will exert a strong control on any simulated predictions of multi-century GrIS evolution. Efforts to reduce polar amplification and equilibrium climate sensitivity uncertainty will therefore play a critical role in constraining projections of GrIS deglaciation and sea level rise in a future high-CO2 world.  相似文献   

3.
Abstract

Airborne measurements in the atmospheric boundary layer (ABL) above the marginal ice zone (MIZ) on the Newfoundland Shelf reveal strong lateral variations in mean wind, temperature and the vertical fluxes of heat and momentum under conditions of cold, off‐ice wind. Flux measurements in (and near) the surface layer indicate that the neutral 10‐m drag coefficient depends on ice concentration, ranging from 2 × 10‐3 at 10% coverage to 5 × 10‐3 at 90%. Furthermore, cross‐ice‐edge transects consistently show increasing wind speed, temperature and heat flux in the off‐ice direction, but the momentum flux may either increase or decrease, depending on the relative importance of surface buoyancy flux and roughness. For the conditions encountered in this experiment, it appears surface wave maturity does not have a significant influence on the drag coefficient in fetch‐limited regimes near the ice edge.  相似文献   

4.
Analyzed is a phenomenon of the freezing rain observed in Perm krai on December 14, 2010, when the surface temperature was ?10.9°C. The process of cooling of falling drops is numerically simulated and their temperature is computed on the basis of the data of radio sounding of the atmosphere. It is demonstrated that the large-size drops do not have time to reach the supercooling state and, when falling to the ground, have a positive temperature. The finer drops are cooled to the negative temperature. An executed estimation of the process of transformation of falling drops into ice at the crystallization of the supercooled water demonstrated that the volume fraction of the ice crust of drops at the phase transition does not exceed 3% even under optimum cooling conditions.  相似文献   

5.
We conduct a high-resolution large-eddy simulation (LES) case study in order to investigate the effects of surface heterogeneity on the (local) structure parameters of potential temperature \(C_T^2\) and specific humidity \(C_q^2\) in the convective boundary layer (CBL). The kilometre-scale heterogeneous land-use distribution as observed during the LITFASS-2003 experiment was prescribed at the surface of the LES model in order to simulate a realistic CBL development from the early morning until early afternoon. The surface patches are irregularly distributed and represent different land-use types that exhibit different roughness conditions as well as near-surface fluxes of sensible and latent heat. In the analysis, particular attention is given to the Monin–Obukhov similarity theory (MOST) relationships and local free convection (LFC) scaling for structure parameters in the surface layer, relating \(C_T^2\) and \(C_q^2\) to the surface fluxes of sensible and latent heat, respectively. Moreover we study possible effects of surface heterogeneity on scintillometer measurements that are usually performed in the surface layer. The LES data show that the local structure parameters reflect the surface heterogeneity pattern up to heights of 100–200 m. The assumption of a blending height, i.e. the height above the surface where the surface heterogeneity pattern is no longer visible in the structure parameters, is studied by means of a two-dimensional correlation analysis. We show that no such blending height is found at typical heights of scintillometer measurements for the studied case. Moreover, \(C_q^2\) does not follow MOST, which is ascribed to the entrainment of dry air at the top of the boundary layer. The application of MOST and LFC scaling to elevated \(C_T^2\) data still gives reliable estimates of the surface sensible heat flux. We show, however, that this flux, derived from scintillometer data, is only representative of the footprint area of the scintillometer, whose size depends strongly on the synoptic conditions.  相似文献   

6.
A one-dimensional numerical model of the planetary boundary layer was used to investigate thermal and kinetic energy budgets. The simulation experiments were based on two sets of data. The first set was based on a ‘typical’ June with climatological data extracted for the oceanic region slightly northeast of Barbados. The second set used data from the third phase of project BOMEX, for approximately the same area and time of year as the first set. Comparison with observations of three simulated elements (viz., sea surface temperature and wind and humidity at 6 m) which are important in determining the near-interface energy transports shows that:
  1. the model is capable of realistic simulations of both ‘typical’ conditions, and conditions for a specific four-day period;
  2. the model is capable of realistically simulating the differences between prevailing values of these parameters in the two cases (‘typical’ and specific four-day period).
The simulated interface fluxes are those of incoming and outgoing short- and long-wave radiation; transmitted radiation at -0.5 m in the ocean, sensible heat transfer into the ocean and air, and latent heat flux of evaporation. Comparison with observational analyses shows that the diurnal variations in net radiation and heat storage in the mixed layer are realistically simulated. The simulated values of evaporation are consistent with other estimates for both ‘typical’ conditions and specific conditions during this four-day period. The rate of heat storage varies between +51 and -37 percent of the diurnal maximum incoming radiation, and the evaporation varies between +16% and -13% of this term. The non-dimensional transfer coefficients (C D, CT, Cq) computed from the model show general agreement with the coefficients calculated from observations in the simulated region (Pondet al., 1971). The simulated vertical profiles of temperature are in general agreement with observed profiles, except in the uppermost portions of the atmospheric boundary layer where deviations of approximately 1.5C occur. Simulated vertical profiles of wind speed are generally consistent with observed profiles, with the largest deviations appearing to be of the order of 0.5 m s-1. Simulated vertical profiles of the eddy fluxes of sensible heat, water vapor, and momentum are generally consistent with Bunker's (1970) aircraft-based measurements of these quantities. The time averages of these simulated profiles show regular decreases with height, while simulated profiles for specific hours of the day show intermediate maxima and minima, which are also seen in the measured profiles. The vertically integrated kinetic energy budgets of the modelled atmospheric layer are presented through the four terms of the kinetic energy budget, viz., the upper and the lower boundary drags, dissipation, and potential-to-kinetic conversion. The dominant terms in the atmospheric energy budgets are the production and dissipation terms, with kinetic energy being exported both to the overlying atmospheric layer and to the underlying oceanic layer at rates of about 2 to 6% of the production, respectively. Comparisons between the climatological and BOMEX simulations are presented. The vertically integrated humidity budgets are presented for the two simulation experiments. Under ‘typical’ conditions, the humidity budget reveals an upper boundary flux of about +29% of the lower boundary flux with the vertically integrated advective flux being -59% of the lower flux. For the specific four-day simulation, the upper boundary flux and advection are about +28 and -70%, respectively, of the lower boundary flux.  相似文献   

7.
The BALTEX Integrated Model System (BALTIMOS) coupled atmosphere ocean model was compared to passive microwave observations of the Advanced Microwave Scanning Radiometer (AMSR-E). Emphasis was put on quantifying the uncertainties associated with the different variables based on data screening both in the model and observations. Monthly means of three atmospheric parameters, as well as sea surface temperature, were compared for a period of 1 year. Sea ice extent was also derived from AMSR-E and compared to the model data on a daily basis. It is shown that the accuracy of the comparisons on a monthly mean basis is limited by precipitation screening. Out of the three atmospheric parameters, surface wind speed and water vapor column amount agree with the model data to within the accuracy of the comparison. The vertically integrated cloud liquid water content diagnosed from BALTIMOS is systematically higher than the liquid water content derived from satellite, even if potential systematic errors are accounted for. In terms of coupling, the two most relevant variables discussed are sea surface temperature and sea ice extent. The temporal extent of sea ice in the investigation area is well represented, as are the periods of the main growing and decay periods. The total sea ice cover appears to be underestimated by BALTIMOS, especially in the peak season between January and the beginning of March. The amplitude of the annual cycle of sea surface temperature in BALTIMOS appears to be too weak compared to the observations, leading to too cold sea surface temperatures in summer and too warm sea surface temperatures in winter. This might also partially explain the underestimation of sea ice cover by BALTIMOS.  相似文献   

8.
A model developed recently for the long-term variations of global ice mass, carbon dioxide, and mean ocean temperature through the late Cenozoic is simplified by hypothesizing a new equation for the CO2 variations containing one less adjustable parameter, but retaining the essential physical content of the previous equation (including nonlinearity and the potential for instability). By assuming plausible time constants for the glacial ice mass and global mean ocean temperature, and setting the values of six adjustable parameters (rate constants), a solution for the last 5 My is obtained displaying many of the features observed over this period, including the transition to the near-100 ky major ice-age oscillations of the late Pleistocene. In obtaining this solution it is also assumed that variations in tectonic forcing lead to a reduction of the equilibrium CO2 concentration (perhaps due to increased weathering of rapidly uplifted mountain ranges over this period). As a consequence of this CO2 reduction, the model dynamical system can bifurcate to a free oscillatory ice-age regime that is under the pacemaker influence of earthorbital (Milankovitch) forcing. Expanded discussions are given of the surface temperature variations accompanying the evolution of ice, CO2, and ocean temperature, and of the bifurcation properties of the model from both mathematical and physical viewpoints.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dumenil  相似文献   

9.
Arctic sea ice responds to atmospheric forcing in primarily a top-down manner, whereby near-surface air circulation and temperature govern motion, formation, melting, and accretion. As a result, concentrations of sea ice vary with phases of many of the major modes of atmospheric variability, including the North Atlantic Oscillation, the Arctic Oscillation, and the El Niño-Southern Oscillation. However, until this present study, variability of sea ice by phase of the leading mode of atmospheric intraseasonal variability, the Madden–Julian Oscillation (MJO), which has been found to modify Arctic circulation and temperature, remained largely unstudied. Anomalies in daily change in sea ice concentration were isolated for all phases of the real-time multivariate MJO index during both summer (May–July) and winter (November–January) months. The three principal findings of the current study were as follows. (1) The MJO projects onto the Arctic atmosphere, as evidenced by statistically significant wavy patterns and consistent anomaly sign changes in composites of surface and mid-tropospheric atmospheric fields. (2) The MJO modulates Arctic sea ice in both summer and winter seasons, with the region of greatest variability shifting with the migration of the ice margin poleward (equatorward) during the summer (winter) period. Active regions of coherent ice concentration variability were identified in the Atlantic sector on days when the MJO was in phases 4 and 7 and the Pacific sector on days when the MJO was in phases 2 and 6, all supported by corresponding anomalies in surface wind and temperature. During July, similar variability in sea ice concentration was found in the North Atlantic sector during MJO phases 2 and 6 and Siberian sector during MJO phases 1 and 5, also supported by corresponding anomalies in surface wind. (3) The MJO modulates Arctic sea ice regionally, often resulting in dipole-shaped patterns of variability between anomaly centers. These results provide an important first look at intraseasonal variability of sea ice in the Arctic.  相似文献   

10.
Ground based measurements which were carried out in the Northern Sahel in southern Tunisia showed the following results:
  1. The albedo difference between ground and protected land is about 10%, half of the amount Charney (1975) used in his model.
  2. Bare soil is always warmer during times of bright sunshine than vegetated soil, which is in agreement with Jackson and Idso (1975). Temperature differences in excess of the 10 °C were observed between plants and the surrounding soil.
  3. For bare soil, the surface temperature increases with declining albedo. However the opposite holds true for plants. Here, when lowering the albedo, a decrease in temperature was found.
  4. In a sand dune field, the surface temperature depends strongly on the exposure. Surface temperature differences of 8 °C were observed for slopes of different exposures for measurements carried out around noon.
  相似文献   

11.
12.
Extratropical North Atlantic cooling has been tied to droughts over the Sahel in both paleoclimate observations and modeling studies. This study, which uses an atmospheric general circulation model (GCM) coupled to a slab ocean model that simulates this connection, explores the hypothesis that the extratropical North Atlantic cooling causes the Sahel droughts via an atmospheric teleconnection mediated by tropospheric cooling. The drying is also produced in a regional climate model simulation of the Sahel when reductions in air temperature (and associated geopotential height and humidity changes) from the GCM simulation are imposed as the lateral boundary conditions. This latter simulation explicitly demonstrates the central role of tropospheric cooling in mediating the atmospheric teleconnection from extratropical North Atlantic cooling. Diagnostic analyses are applied to the GCM simulation to infer teleconnection mechanisms. An analysis of top of atmosphere radiative flux changes diagnosed with a radiative kernel technique shows that extratropical North Atlantic cooling is augmented by a positive low cloud feedback and advected downstream, cooling Europe and North Africa. The cooling over North Africa is further amplified by a reduced greenhouse effect from decreased atmospheric specific humidity. A moisture budget analysis shows that the direct moisture effect and monsoon weakening, both tied to the ambient cooling and resulting circulation changes, and feedbacks by vertical circulation and evaporation augment the rainfall reduction. Cooling over the Tropical North Atlantic in response to the prescribed extratropical cooling also augments the Sahel drying. Taken together, they suggest a thermodynamic pathway for the teleconnection. The teleconnection may also be applicable to understanding the North Atlantic influence on Sahel rainfall over the twentieth century.  相似文献   

13.
A composite analysis of Northern Hemisphere’s mid-winter tropospheric anomalies under the conditions of strong and weak stratospheric polar vortex was performed on NCEP/NCAR reanalysis data from 1948 to 2013 considering, as additional grouping criteria, the coincidental states of major seasonally relevant climate phenomena, such as El Niño-Southern Oscillation (ENSO), Quasi Biennial Oscillation and strong volcanic eruptions. The analysis reveals that samples of strong polar vortex nearly exclusively occur during cold ENSO states, while a weak polar vortex is observed for both cold and warm ENSO. The strongest tropospheric and near-surface anomalies are found for warm ENSO and weak polar vortex conditions, suggesting that internal tropospheric circulation anomalies related to warm ENSO constructively superpose on dynamical effects from the stratosphere. Additionally, substantial differences are found between the continental winter warming patterns under strong polar vortex conditions in volcanically-disturbed and volcanically-undisturbed winters. However, the small-size samples obtained from the multi-compositing prevent conclusive statements about typical patterns, dominating effects and mechanisms of stratosphere-troposphere interaction on the seasonal time scale based on observational/reanalysis data alone. Hence, our analysis demonstrates that patterns derived from observational/reanalysis time series need to be taken with caution as they not always provide sufficiently robust constraints to the inferred mechanisms implicated with stratospheric polar vortex variability and its tropospheric and near-surface signature. Notwithstanding this argument, we propose a limited set of mechanisms that together may explain a relevant part of observed climate variability. These may serve to define future numerical model experiments minimizing the sample biases and, thus, improving process understanding.  相似文献   

14.
This study investigates the global warming response of the Walker Circulation and the other zonal circulation cells (represented by the zonal stream function), in CMIP3 and CMIP5 climate models. The changes in the mean state are presented as well as the changes in the modes of variability. The mean zonal circulation weakens in the multi model ensembles nearly everywhere along the equator under both the RCP4.5 and SRES A1B scenarios. Over the Pacific the Walker Circulation also shows a significant eastward shift. These changes in the mean circulation are very similar to the leading mode of interannual variability in the tropical zonal circulation cells, which is dominated by El Niño Southern Oscillation variability. During an El Niño event the circulation weakens and the rising branch over the Maritime Continent shifts to the east in comparison to neutral conditions (vice versa for a La Niña event). Two-thirds of the global warming forced trend of the Walker Circulation can be explained by a long-term trend in this interannual variability pattern, i.e. a shift towards more El Niño-like conditions in the multi-model mean under global warming. Further, interannual variability in the zonal circulation exhibits an asymmetry between El Niño and La Niña events. El Niño anomalies are located more to the east compared with La Niña anomalies. Consistent with this asymmetry we find a shift to the east of the dominant mode of variability of zonal stream function under global warming. All these results vary among the individual models, but the multi model ensembles of CMIP3 and CMIP5 show in nearly all aspects very similar results, which underline the robustness of these results. The observed data (ERA Interim reanalysis) from 1979 to 2012 shows a westward shift and strengthening of the Walker Circulation. This is opposite to what the results in the CMIP models reveal. However, 75 % of the trend of the Walker Circulation can again be explained by a shift of the dominant mode of variability, but here towards more La Niña-like conditions. Thus in both climate change projections and observations the long-term trends of the Walker Circulation seem to follow to a large part the pre-existing dominant mode of internal variability.  相似文献   

15.
The 1907–2001 summer-to-summer surface air temperature variability in the eastern part of southern South America (SSA, partly including Patagonia) is analysed. Based on records from instruments located next to the Atlantic Ocean (36°S–55°S), we define indices for the interannual and interdecadal timescales. The main interdecadal mode reflects the late-1970s cold-to-warm climate shift in the region and a warm-to-cold transition during early 1930s. Although it has been in phase with the Pacific Decadal Oscillation (PDO) index since the 1960s, they diverged in the preceding decades. The main interannual variability index exhibits high spectral power at ~3.4 years and is representative of temperature variability in a broad area in the southern half of the continent. Eleven-years running correlation coefficients between this index and December-to-February (DJF) Niño3.4 show significant decadal fluctuations, out-of-phase with the running correlation with a DJF index of the Southern Annular Mode. The main interannual variability index is associated with a barotropic wavetrain-like pattern extending over the South Pacific from Oceania to SSA. During warm (cold) summers in SSA, significant anticyclonic (cyclonic) anomalies tend to predominate over eastern Australia, to the north of the Ross Sea, and to the east of SSA, whereas anomalous cyclonic (anticyclonic) circulation is observed over New Zealand and west of SSA. This teleconnection links warm (cold) SSA anomalies with dry (wet) summers in eastern Australia. The covariability seems to be influenced by the characteristics of tropical forcing; indeed, a disruption has been observed since late 1970s, presumably due to the PDO warm phase.  相似文献   

16.
Previous studies have revealed some common biases in coupled general circulation model’s simulations of the East Asian (EA) winter monsoon (EAWM), including colder surface air temperature and more winter precipitation over the EA region. In this study, we examined 41 fully coupled atmosphere–ocean models from fifth phase of the Coupled Model Intercomparison Project (CMIP5), which will be widely used in the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC), and address whether the current state-of-the-art CMIP5 models can characterise the climatology of the East Asian winter monsoon. We also compared the results with the models from third phase of CMIP, which was extensively used in the fourth assessment report of the IPCC. The results show that the cold surface air temperature (SAT) bias is lessened and the precipitation amount decreased with the current CMIP5 models. Moreover, the CMIP5 models performbetter at predicting surface winds and high-level jet streams than the CMIP3 models. Moreover, CMIP5 models show more model consistency in most EAWM parameters, and the interannual variability of the SAT is closer to the observations. We also examined the change in the radiation energy budget in the CMIP5 models and compared with CMIP3 models. Although the improvements are significant, deficiencies still exist in the simulation of the EAWM, e.g., the stronger EA major trough and the stronger zonal sea level pressure gradient.  相似文献   

17.
Subtropical and extratropical proxy records of wind field, sea level pressure (SLP), temperature and hydrological anomalies from South Africa, Australia/New Zealand, Patagonian South America and Antarctica were used to reconstruct the Indo-Pacific extratropical southern hemisphere sea-level pressure anomaly (SLPa) fields for the Medieval Climate Anomaly (MCA ~700–1350 CE) and transition to the Little Ice Age (LIA 1350–1450 CE). The multivariate array of proxy data were simultaneously evaluated against global climate model output in order to identify climate state analogues that are most consistent with the majority of proxy data. The mean SLP and SLP anomaly patterns derived from these analogues illustrate the evolution of low frequency changes in the extratropics. The Indo-Pacific extratropical mean climate state was dominated by a strong tropical interaction with Antarctica emanating from: (1) the eastern Indian and south-west Pacific regions prior to 1100 CE, then, (2) the eastern Pacific evolving to the central Pacific La Niña-like pattern interacting with a +ve SAM to 1300 CE. A relatively abrupt shift to –ve SAM and the central Pacific El Niño-like pattern occurred at ~1300. A poleward (equatorward) shift in the subtropical ridge occurred during the MCA (MCA–LIA transition). The Hadley Cell expansion in the Australian and Southwest Pacific, region together with the poleward shift of the zonal westerlies is contemporaneous with previously reported Hadley Cell expansion in the North Pacific and Atlantic regions, and suggests that bipolar climate symmetry was a feature of the MCA.  相似文献   

18.
Reducing the large uncertainties in current estimates of CO2 sources and sinks at regional scales (102–105 km2) is fundamental to improving our understanding of the terrestrial carbon cycle. Continuous high-precision CO2 concentration measurements on a tower within the planetary boundary layer contain information on regional carbon fluxes; however, its spatial representativeness is generally unknown. In this study, we developed a footprint model (Simple Analytical Footprint model based on Eulerian coordinates for scalar Concentration [SAFE-C]) and applied it to two CO2 concentration towers in central Canada: the East Trout Lake 106-m-tall tower (54°21′N, 104°59′W) and the Candle Lake 28-m-high tower (53°59′N, 105°07′W). Results show that the ETL tower’s annual concentration footprints were around 103–105 km2. The monthly footprint climatologies in summer were 1.5–2 times larger than in winter. The impacts of land surface carbon flux associated with heterogeneous distribution of vegetation types on the CO2 concentration measurements were different for the different heights, varied with a range of ±5 % to ±10 % among four heights. This study indicates that concentration footprint climatology analysis is important in interpreting the seasonal, annual and inter-annual variations of tower measured CO2 concentration data and is essential for comparing and scaling regional carbon flux estimates using top-down or bottom-up approaches.  相似文献   

19.
Exploring the characteristic of the extreme climatic events, especially future projection is considerably important in assessing the impacts of climatic change on hydrology and water resources system. We investigate the future patterns of climate extremes (2001–2099) in the Haihe River Basin (HRB) derived from Coupled General Circulation Model (CGCM) multimodel ensemble projections using the Bayesian Model Average (BMA) approach, under a range of emission scenarios. The extremes are depicted by three extreme temperature indices (i.e., frost days (FD), growing season length (GSL), and T min >90th percentile (TN90)) and five extreme precipitation indices (i.e., consecutive dry days (CDD), precipitation ≥10 mm (R10), maximum 5-day precipitation total (R5D), precipitation >95th percentile (R95T), and simple daily intensity index (SDII)). The results indicate frost days display negative trend over the HRB in the 21st century, particularly in the southern basin. Moreover, a greater season length and more frequent warm nights are also projected in the basin. The decreasing CDD, together with the increasing R10, R5D, R95T, and SDII in the 21st century indicate that the extreme precipitation events will increase in their intensity and frequency in the basin. Meanwhile, the changes of all eight extremes climate indices under A2 and A1B scenarios are more pronounced than in B1. The results will be of practical significance in mitigation of the detrimental effects of variations of climatic extremes and improve the regional strategy for water resource and eco-environment management, particularly for the HRB characterized by the severe water shortages and fragile ecological environment.  相似文献   

20.
This study investigates the persistence barrier phenomenon associated with positive Indian Ocean dipole (IOD) events during the various phases of its development. The results derived from three observational datasets (the Simple Ocean Data Assimilation, International Comprehensive Ocean–Atmosphere Data Set, and Extended Reconstructed Sea Surface Temperature) indicate that significant winter persistence barriers (WPBs) occur during IOD events, both in its growing and decaying phases. The simulation skill of the 14 models within the Coupled Model Intercomparison Project Phase 5 with respect to persistence barriers was also evaluated and compared with observational data. The results show that although most models were able to simulate the WPB reasonably well during the growing phase, only five models could capture the appropriate WPB during the decaying phase. Further analysis demonstrates that the zonal equatorial gradient of climatological sea surface temperature (SST) and zonal sea surface winds at the equator in the Indian Ocean are very weak in winter, which indicates that the coupling between ocean and atmosphere is weakest in winter and encourages a rapid variation of IOD events and a swift reduction of persistence, favoring the occurrence of WPBs; furthermore, a deep climatological thermocline in winter implies that the subsurface water temperature cannot influence SST readily, and the memory of the subsurface temperature cannot help SST to recover from the loss of persistence during this period, leading to the occurrence of WPBs. In addition, an analysis of the climatological conditions in the outputs from the 14 models shows that those models that can (cannot) capture the winter climatological conditions frequently simulate the WPBs appropriately (poorly). This confirms that the occurrence of the WPB for IOD events may be closely related to particular winter climatological conditions, indicating that the WPB is an inherent property of IOD events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号