首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic activity in the photosphere and chromosphere of the M dwarf EY Dra is studied and possible correlations between the two are investigated using photometric observations in the V and R bands and optical and near infrared spectroscopy. The longitudinal spot configuration in the photosphere is obtained from the V band photometry, and the chromospheric structures are investigated using variations in the Hα line profile and observations of the Paschen β line. The shape of the V band light‐curve indicates two active regions on the stellar surface, about 0.4 in phase apart. The spectroscopic observations show enhanced Hα emission observed close to the phases of the photometrically detected starspots. This could indicate chromospheric plages associated with the photospheric starspots. Some indications of prominence structures are also seen. The chromospheric pressure is limited to log mTR < –4 based on the non‐detection of emission in the Paschen β wavelength region. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We present more than 1000‐day long photometry of EY Draconis in BV (RI)C passbands. The changes in the light curve are caused by the spottedness of the rotating surface. Modelling of the spotted surface shows that there are two large active regions present on the star on the opposite hemispheres. The evolution of the surface patterns suggests a flip‐flop phenomenon. Using Fourier analysis, we detect a rotation period of Prot = 0.45875 d, and an activity cycle with P ≈ 350 d, similar to the 11‐year long cycle of the Sun. This cycle with its year‐long period is the shortest one ever detected on active stars. Two bright flares are also detected and analysed (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We have observed EY Draconis with the 60‐cm telescope of Konkoly Observatory in Budapest for 64 nights. In the first observing season the star produced a stable light curve for more than 60 stellar rotations, however, the light curves observed in the next season and the spot modelling show clear evidence of the evolution of the spotted stellar surface. The changes of the maximum brightness level suggests the existence of a longer period of about 300 days, which seems to be confirmed by the ROTSE archival data. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
LO Peg is a young main‐sequence star of spectral type K3. With its equatorial rotation velocity of 65 km s–1 it is amongst the ultra‐fast rotators. Its high equatorial rotation velocity and rapidly changing surface activity features make it an important object in terms of both stellar activity and the evolution of stellar rotation and angular momentum. Since its discovery as a variable star, it has mostly been subject to spectral surface mapping studies such as Doppler Imaging, while there have been very few photometric studies on it. This paper aims to present the first long‐term photometric observations and its results covering the years between 2003 and 2009. The UBVR Johnson wide band photometric data showed that the surface activity structures of LO Peg vary in timescales changing between days and months, and parallel to this, the mean, maximum and minimum brightness and amplitudes change dramatically between years and sometimes even within the same observation season. Long‐term changes in system brightness and colours, both characteristic features of active stars, were also seen in this ultra‐fast young star. The active longitudes, which has a life time of ∼1.3 years and an activity cycle period of ∼4.8 years for LO Peg were estimated (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present newly discovered magnetic cycles of two late‐type and long‐period SB1 systems: 12 Cam and 29 Dra. The long‐term photometry study revealed the presence of magnetic multiperiodic cycles on both stars, namely 14.8 and 8.5 yr for 12 Cam and 20.3, 11.1, and 7.6 yr for 29 Dra. Furthermore, the modelling of the V ‐band light curves revealed the existence of two active longitudes on 12 Cam and probably on 29 Dra as well. Both stars show changes of rotational period. The 12 Cam is the slowest rotating star whose activity cycle has been determined. The activity cycles determined by us allow us to extend to the slower rotation regime and to improve the significance of the empirical relation between rotation period and magnetic cycle length (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We use minimal empirical modelling techniques to interpret recent (2006–2007) photometry and spectroscopy of AB Dor. We compare, in particular, broadband (B and V) maculation effects with emission features in high‐resolution Ca II K‐line spectroscopy. We also compare emission effects in the Ca II Kand Hα lines observed at different rotational phases. We refer to a broader multiwavelength campaign, of which these optical data were a part, involving X‐ray and microwave observations to be published later. The broadband light curves are characterized by one outstanding macula, whereas the emission lines suggest 4 possible main chromospheric activity sites (‘faculae’). These appear at a similar latitude and with comparable size to the main umbra, but there are significant displacements in longitude. However, one strong facular concentration near phase zero may have a physical relationship to the main macula. The derived longitudes of these features would have been affected by differential rotation operating over the several months between the spectroscopic and photometric observations, but the difference of at least ∼30° between facula and umbra appears too great to allow their coincidence. The possibility of a large bipolar surface structure is considered, keeping in mind the bipolar character of solar activity centres: the activity of rapidly rotating cool stars being generally compared with that of the Sun, scaled up by a few orders of magnitude. Observed microwave activity may link to this same main photospheric and chromospheric centre picked up by the optical analysis. Characterization of macular and facular contributions in stellar activity sites would be improved with a closer timing of observations and higher signal to noise ratios in emission line data (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We present recent results from optical photometric and spectroscopic observations of the pre‐main sequence star V1184 Tau (CB 34V). The star is associated with the Bok globule CB 34 and was considered as a FUOR candidate in previous studies. Our photometric data obtained from October 2000 to April 2003 show that the stellar brightness varies with an amplitude of about 0.m 5 (I ), but from August 2003 the photometric behavior of the star has changed dramatically. Three deep brightness minima (ΔI ∼ 4m.2) were observed during the past two years. The analysis of available photometric data suggests that V1184 Tau shows two types of variability produced (1) by rotation of large cool spotted surface and (2) by occultation from circumstellar clouds of dust or from features of a circumstellar disk. The behavior of the VI index indicates that the star becomes redder towards minimum light, but from a certain turning point (V ∼ 18m.2) it gets bluer and is fading further. Five medium dispersion optical spectra of V1184 Tau were obtained in the period 2001–2004. Signi.cant changes in the profile and strength of the emission lines in the spectrum of V1184 Tau were found. During minimum light the equivalent width of the Hα emission line increases from 4 Å to 9 Å. The [O I] lines (λλ 6003, 6363 Å) are also seen in emission while the sodium doublet keeps its absorption strength and equivalent width. The possibility to reconstruct the historical light curve of V1184 Tau using photographical plate archives is brie.y discussed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We present a new inversion code that reconstructs the stellar surface spot configuration from the light curve of a rotating star. Our code employs a method that uses the truncated least‐squares estimation of the inverse problem's objects principal components. We use spot filling factors as the unknown objects. Various test cases that represent a rapidly‐rotating K subgiant are used for the forward problem. Tests are then performed to recover the artificial input map and include data errors and input‐parameter errors. We demonstrate the robustness of the solution to false input parameters like photospheric temperature, spot temperature, gravity, inclination, unspotted brightness and different spot distributions and we also demonstrate the insensitivity of the solution to spot latitude. Tests with spots peppered over the entire stellar surface or with phase gaps do not produce fake active longitudes. The code is then applied to ten years of V and I ‐band light curve data of the spotted sub‐giant HD291095. A total of 22 light curves is presented. We find that for most of the time its spots were grouped around two active longitudes separated on average by 180°. Switches of the dominant active region between these two longitudes likely occurred about every 3.15±0.23 years while the amplitude modulation of the brightness occurred with a possible period of 3.0±0.15 years. For the first time, we found evidence that the times of the activity flips coincide with times of minimum light as well as minimum photometric amplitude, i.e. maximum spottedness. From a comparison with simultaneous Doppler images we conclude that the activity flips likely take place near the rotational pole of the star. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We report on observations of transit events of the transiting planets XO‐1b and TrES‐1 with a 25 cm telescope of the University Observatory Jena. With the transit timings for XO‐1b from all 50 available XO, SuperWASP, Transit Light Curve (TLC)‐Project‐ and Exoplanet Transit Database (ETD)‐data, including our own I ‐band photometry obtained in March 2007, we find that the orbital period is P = (3.941501 ± 0.000001) d, a slight change by ∼3 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we present new R ‐band photometry of two transits of TrES‐1. With the help of all available transit times from literature this allows us to refine the estimate of the orbital period: P = (3.0300722 ± 0.0000002) d. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We present the results of our investigation of the geometrical and physical parameters of the W UMa‐type binary V404 Peg from analysis of CCD (BVRI) light curves and radial velocity data. The photometric data were obtained during 2010 at Ankara University Observatory (AUO). Light and radial velocity observations were analyzed simultaneously by using the well‐known Wilson‐Devinney (2007 revision) code to obtain absolute and geometrical parameters. Our solution indicates that V404 Peg is an A‐type overcontact binary with a mass ratio of q = 0.243 and an overcontact degree of f = 32.1 %. Combining our light curves with the radial velocity curves from Maciejewski & Ligeza (2004), we determined the absolute parameters of this system as follows: a = 2.672 R, M1 = 1.175 M, M2 = 0.286 M, R1 = 1.346 R, and R2 = 0.710 R. Finally, we discuss the evolutionary condition of the system (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We present and analyze long‐term optical photometric measurements of the three active stars V2253 Oph, IT Com and IS Vir. All three systems are single‐lined spectroscopic binaries with an early K giant as primary component but in different stages of orbital‐rotational synchronization. Our photometry is supplemented by 2MASS and WISE near‐IR and mid‐IR magnitudes and then used to obtain more accurate effective temperatures and extinctions. For V2253 Oph and IT Com, we found their spectral energy distributions consistent with pure photospheric emission. For IS Vir, we detect a marginal mid‐IR excess which hints towards a dust disk. The orbital and rotational planes of IT Com appear tobe coplanar, contrary to previous findings in the literature. We apply a multiple frequency analysis technique to determine photometric periods, and possibly changes of periods, ranging from days to decades. New rotational periods of 21.55±0.03 d, 65.1±0.3 d, and 23.50±0.04 d were determined for V2253 Oph, IT Com, and IS Vir, respectively. Splitting of these periods led to tentative detections of differential surface rotations of δP/P ≈ 0.02 for V2253 Oph and 0.07 for IT Com. Using a time‐frequency technique based on short‐term Fourier transforms we present evidence of cyclic light variations of length ≈ 10 yr for V2253 Oph and 5–6 yr for IS Vir. A single flip‐flop event has been observed for IT Com of duration 2–3 yr. Its exchange of the dominant active longitude had happened close to a time of periastron passage, suggesting some response of the magnetic activity from the orbital dynamics. The 21.55‐d rotational modulation of V2253 Oph showed phase coherence also with the orbital period, which is 15 times longer than the rotational period, thus also indicating a tidal feedback with the stellar magnetic activity. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
New CCD light curves of the recently detected eclipsing variable GSC 4589‐2999 were obtained and analysed using the Wilson‐Deninney code. Spectroscopic observations of the system allowed the spectral classification of the components and the determination of their radial velocities. The physical properties and absolute parameters of the components and an updated ephemeris of the system are given (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We report on observations of several transit events of the transiting planet TrES‐2 obtained with the Cassegrain‐Teleskop‐Kamera at the University Observatory Jena. Between March 2007 and November 2008 ten different transits and almost a complete orbital period were observed. Overall, in 40 nights of observation 4291 exposures (in total 71.52 h of observation) of the TrES‐2 parent star were taken. With the transit timings for TrES‐2 from the 34 events published by the TrES‐network, the Transit Light Curve project and the Exoplanet Transit Database plus our own ten transits, we find that the orbital period is P = (2.470614 ± 0.000001) d, a slight change by ∼0.6 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we found a second dip after the transit which could either be due to a blended variable star or occultation of a second star or even an additional object in the system. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
15.
16.
We present the long‐term multi‐colour photometry of MM Her which is one of the first members of the RS CVn‐type of eclipsing binary systems. We took advantage of its photometry‐spanning 33 years to evaluate its long‐term variation, which is caused by the evolution of the activity structures located on the surface of the cooler component. In this study we found that the long‐term variation in the brightness, colour, and amplitude of seasonal light curves over the years could be represented by two periods: one of which is of around 22.5 years, and is similar to all in this regard, but the other is a period value of about 9.5 years for the brightness variation, and of about 7.5 years for the variation in colour and amplitude. The analysis of the spot minimum phases gives a migration period of approximately 7.8 years. We also presented a new light curve analysis solution, and improved its light elements in this study. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
UBV measurements of early‐type stars, mostly eclipsing binaries, obtained at La Silla in the years 1990 to 1994 with the ESO 50 cm telescope are presented. Most of these data were already used in our individual studies of several binaries. Now all photometric measurements were reduced again with an advanced technique and are made available electronically. Our data for MY Ser have not yet been published; new light curve is given and solved. The result is that MY Ser is a contact binary, with very large fill‐out parameter. Also a light curve and its solution for V1051 Cen are provided, and the problem of the period of V871 Cen is pointed out. Besides binaries (and the comparison and check stars) data for several stars in southern H II regions are included. Extinction and transformation coefficients are given (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This paper presents extended analyses of β UMa (A0mA1 IV‐V), α Dra (A0 III), π Dra (A2 IIIs), and κ Cep (B9 III) which have previously been studied in this series. α Dra is a metal‐poor star while κ Cep has solar abundances. Both β UMa and π Dra are Am stars. Whenever possible, more accurate and precise gf values replace older values. High S/N (200+) and high dispersion Dominion Astrophysical Observatory spectrograms to the red of previously obtained spectra supplement the observations. The derived rotational velocities are 45, 25, 26, and 23 km s–1, respectively. These LTE fine analyses use the ATLAS9 and the WIDTH9 programs of R. L. Kurucz. The results of the extended and the previous analyses are in good agreement. Thus in the past decade a significant improvement in the system of gf values has not been achieved although for many lines there have been changes. The use of additional regions has increased the quality of some results (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We present and apply a new computer program named SpotModeL to analyze single and multiple bandpass photometric data of spotted stars. It is based on the standard analytical formulae from Budding and Dorren. The program determines the position, size, and temperature of up to three spots by minimizing the fit residuals with the help of the Marquardt‐Levenberg non‐linear least‐squares algorithm. We also expand this procedure to full time‐series analysis of differential data, just as real observations would deliver. If multi‐bandpass data are available, all bandpasses can be treated simultaneously and thus the spot temperature is solved for implicitly. The program may be downloaded and used by anyone. In this paper, we apply our code to an ≈23 year long photometric dataset of the spotted RS CVn giant IM Peg. We extracted and modelled 33 individual light curves, additionally, we fitted the entire V dataset in one run. The resulting spot parameters reflect the long term light variability and reveal two active longitudes on the substellar point and on the antipode. The radius and longitude of the dominant spot show variations with 29.8 and 10.4 years period, respectively. Our multicolour data suggests that the spot temperature is increasing with the brightening of the star. The average spot temperature from V, IC is 3550 ± 150 K or approximately 900 K below the effective temperature of the star.  相似文献   

20.
We present the first long‐term Johnson UBVR observations and comprehensive photometric analysis of the W UMa‐type eclipsing binary V2612 Oph. Observations in the time interval between 2003 and 2009 enabled us to reveal the seasonal and long‐term variations of the light curve. Hence, we found that the mean brightness level of the light curve shows a variation with a period of 6.7 years. Maximum and minimum brightness levels of the light curve exhibit a variation from year to year which we attribute to a solar‐like activity. The OC variation of eclipse timings of the system shows a decreasing parabolic trend and reveals a period decrease at a rate of P = 6.27×10‐7 day yr‐1 with an additional low‐amplitude sinusoidal variation that has a similar period as the long‐term brightness variations. Our light curve analysis shows that the system is a W‐subtype W UMa eclipsing binary. We calculated masses and radii of the primary and secondary components as M1 = 1.28 M, M2 = 0.37 M and R1 = 1.31 R, R2 = 0.75 R, respectively. The derived absolute photometric parameters allow us to calculate a distance of 140 pc, which confirms that the system is a foreground star in the sky field of the Galactic open cluster NGC 6633. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号