共查询到20条相似文献,搜索用时 0 毫秒
1.
M. Henze W. Pietsch F. Haberl G. Sala M. Hernanz D. Hatzidimitriou A. Rau D.H. Hartmann J. Greiner M. Orio H. Stiele M.J. Freyberg 《Astronomische Nachrichten》2010,331(2):193-196
Classical novae (CNe) have recently been reported to represent the major class of supersoft X‐ray sources (SSSs) in the central area of our neighbouring galaxy M 31. This paper presents a review of results from recent X‐ray observations of M 31 with XMM‐Newton and Chandra. We carried out a dedicated optical and X‐ray monitoring program of CNe and SSSs in the central area ofM 31. We discovered the first SSSs in M 31 globular clusters (GCs) and their connection to the very first discovered CN in a M 31 GC. This result may have an impact on the CN rate in GCs. Furthermore, in our optical and X‐ray monitoring data we discovered the CN M3 1N 2007‐11a, which shows a very short SSS phase of 29–52 days. Short SSS states (durations ≤ 100 days) of CNe indicate massive white dwarfs (WDs) that are candidate progenitors of supernovae type Ia. In the case of M31N 2007‐11a, the optical and X‐ray light curves suggest a binary containing a WD with MWD > 1.0 M⊙. Finally, we present the discovery of the SSS counterpart of the CN M31N 2006‐04a. The X‐ray light curve of M31N 2006‐04a shows short‐time variability, which might indicate an orbital period of about 2 hours (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
2.
F. Di Mille M. Orio S. Ciroi A. Bianchini P. Rafanelli T. Nelson 《Astronomische Nachrichten》2010,331(2):197-200
We report results of a spectrophotometric survey of novae in M 31. The observations were carried out using the TNG at La Palma and the 1.82 m telescope of the INAF/OAPD at Asiago observatory. Low resolution spectra of the novae, obtained mainly in the early decline phase, allow us to classify the objects following the Tololo scheme (Williams 1992) (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
3.
H. Stiele W. Pietsch F. Haberl V. Burwitz D. Hatzidimitriou J. Greiner 《Astronomische Nachrichten》2010,331(2):212-217
To investigate the transient nature of supersoft sources (SSSs) in M 31, we compared SSS candidates ofthe XMM‐Newton Deep Survey, ROSAT PSPC surveys and the Chandra catalogues in the same field. We found 40 SSSs in the XMM‐Newton observations. While 12 of the XMM‐Newton sources were brighter than the limiting flux of the ROSAT PSPC survey, only two were detected with ROSAT ∼10 yr earlier. Five correlate with recent optical novae which explains why they were not detected by ROSAT. The remaining 28 XMM‐Newton SSSs have fluxes below the ROSAT detection threshold. Nevertheless we found one correlation with a ROSAT source, which had significantly larger fluxes than during the XMM‐Newton observations. Ten of the XMM‐Newton SSSs were detected by Chandra with <1– ∼6yr between the observations. Five were also classified as SSSs by Chandra. Of the 30 ROSAT SSSs three were confirmed with XMM‐Newton, while for 11 sources other classifications are suggested. Of the remaining 16 sources one correlates with an optical nova. Of the 42 Chandra very‐soft sources five are classified as XMM‐Newton SSSs, while for 22 we suggest other classifications. Of the remaining 15 sources, nine are classified as transient by Chandra, one of them correlates with an optical nova. These findings underlined the high variability of the sources of this class and the connection between SSSs and optical novae. Only three sources, were detected by all three missions as SSSs. Thus they are visible for more than a decade, despite their variability (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
4.
Detection of X‐rays from classical novae, both in outburst and post‐outburst, provides unique and crucial information about the explosion mechanism. Soft X‐rays reveal the hot white dwarf photosphere, whenever hydrogen (H) nuclear burning is still on and expanding envelope is transparent enough, whereas harder X‐rays give information about the ejecta and/or the accretion flow in the reborn cataclysmic variable. The duration of the supersoft X‐ray emission phase is related to the turn‐off of the classical nova, i.e., of the H‐burning on top of the white dwarf core. A review of X‐ray observations is presented, with a special emphasis on the implications for the duration of post‐outburst steady H‐burning and its theoretical explanation. The particular case of recurrent novae (both the “standard” objects and the recently discovered ones) will also be reviewed, in terms of theoretical feasibility of short recurrence periods, as well as regarding implications for scenarios of type Ia supernovae (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
5.
W. Pietsch 《Astronomische Nachrichten》2008,329(2):170-173
First studies of the X‐ray source population of M 31 were performed with the Einstein Observatory and ROSAT. High resolution Chandra Observatory images not only spatially resolved the center area but also supernova remnants (SNRs) in the galaxy. Source catalogues of restricted areas were presented with high astrometric accuracy. Also luminosity function studies and studies of individual sources based on Chandra and XMM‐Newton observations led to a better knowledge of the X‐ray source population. An XMM‐Newton source catalog based on archival observations revealed more than 850 sources down to a 0.2–4.5 keV luminosity of 1035 erg s–1. EPIC hardness ratios as well as informations from earlier X‐ray, optical, and radio catalogues were used to distinguish between different source classes (SNRs, supersoft sources (SSSs), X‐ray binaries (XRBs), globular cluster sources within M 31, and foreground stars and objects in the background). However, many sources could only be classified as “hard”. These sources may either be XRBs or Crab‐like SNRs in M 31 or background sources. Two of the globular cluster sources could be identified as low mass XRBs with a neutron star as compact object as they showed type I X‐ray bursts. Many of the SSSs were identified as optical novae. Inspired by these results an XMM‐Newton survey of the entire D25 disk of M 31 and a dedicated program to monitor X‐ray counterparts of optical novae in M 31 was started. We discuss implications for further nearby galaxy studies. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
6.
M. J. Darnley † M. F. Bode E. Kerins A. M. Newsam J. An P. Baillon V. Belokurov S. Calchi Novati B. J. Carr M. Crézé N. W. Evans Y. Giraud-Héraud A. Gould P. Hewett Ph. Jetzer J. Kaplan S. Paulin-Henriksson S. J. Smartt Y. Tsapras M. Weston 《Monthly notices of the Royal Astronomical Society》2006,369(1):257-271
7.
We present a spatial analysis of the soft X‐ray and Hα emissions from the outflow of the starburst galaxy M82. We find that the two emissions are tightly correlated on various scales. The O VII triplet of M82, as resolved by X‐ray grating observations of XMM‐Newton, is dominated by the forbidden line, inconsistent with the thermal prediction. The O VII triplet also shows some spatial variations. We discuss three possible explanations for the observed O VII triplet, including the charge exchange at interfaces between the hot outflow and neutral cool gas, a collisional non‐equilibrium‐ionization recombining plasma, and resonance scattering (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
8.
F. Haberl 《Astronomische Nachrichten》2010,331(2):239-240
The workshop “Supersoft X‐ray Sources – New Developments” brought together observers and theoretician to discuss the present status and unsolved problems of supersoft source research. A large part of the workshop was devoted to optical novae and their supersoft state. Large samples of supersoft X‐ray sources were presented from nearby galaxies, as well as extensive monitoring campaigns ofbright individual sources. The theoretical modelling oflight curves and high‐resolution X‐ray spectra are well underway, but details are often not yet understood (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
9.
We present the results of a search for UV and optical counterparts of the SSS population in M 31. We find that out of the 56 sources we included in our search, 16 are associated with regions of ongoing or recent star formation. We discuss two particularly interesting sources that are identified optically as early type stars, one of which displayed long term X‐ray evolution similar to that observed in classical novae. We discuss the physical origin of supersoft X‐rays in these and the other SSS in young regions, and their possible link to the so‐called “prompt” component of the Type Ia supernova population (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
10.
Super Soft Source (SSS) spectra are powered by nuclear burning on the surface of a white dwarf. The released energy causes a radiatively‐driven wind that leads to a radially extended atmosphere around the white dwarf. Significant blue shifts in photospheric absorption lines are found in the spectra of novae during their SSS phase, being an evidence of continued mass loss in this phase. We present spherically symmetric PHOENIX models that account for the expansion of the ejecta. A comparison to a plane parallel, hydrostatic atmosphere model demonstrates that the mass loss can have a significant impact on the model spectra. The dynamic model yields less pronounced absorption edges, and harder X‐ray spectra are the result. Therefore, lower effective temperatures are needed to explain the observed spectra. Although both types of models are yet to be fine‐tuned in order to accurately determine best fit parameters, the implications on the chemical abundances are going in opposite directions. With the expanding models the requirement for strong depletion of the crucial elements that cause these edges is now avoidable (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
11.
M. Kato 《Astronomische Nachrichten》2010,331(2):140-145
I review various phenomena associated with mass‐accreting white dwarfs (WDs) in the view of supersoft X‐ray sources. When the mass‐accretion rate is low (Ṁacc < a few × 10–7 M⊙yr–1), hydrogen nuclear burning is unstable and nova outbursts occur. A nova is a transient supersoft X‐ray source (SSS) in its later phase which timescale depends strongly on the WD mass. The X‐ray turn on/off time is a good indicator of the WD mass. At an intermediate mass‐accretion rate an accreting WD becomes a persistent SSS with steady hydrogen burning. For a higher mass‐accretion rate, the WD undergoes “accretion wind evolution” in which the WD accretes matter from the equatorial plane and loses mass by optically thick winds from the other directions. Two SSS, namely RX J0513‐6951 and V Sge, are corresponding objects to this accretion wind evolution. We can specify mass increasing WDs from light‐curve analysis based on the optically thick wind theory using multiwavelength observational data including optical, IR, and supersoft X‐rays. Mass estimates of individual objects give important information for the binary evolution scenario of type Ia supernovae (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
12.
13.
J.‐U. Ness 《Astronomische Nachrichten》2010,331(2):179-182
For several novae, a bright X‐ray source with a spectrum resembling the class of Super Soft X‐ray Sources (SSS) has been observed a few weeks to months after outburst. Novae are powered by explosive nuclear burning on the surface of a white dwarf, and enough energy is produced to power a radiatively driven wind. Owing to the evolution of the opacity of the ejecta, the observable spectrum gradually shifts from optical to soft X‐rays (SSS phase). It has sometimes been assumed that at the beginning of the SSS phase no more mass loss occurs. However, high‐resolution X‐ray spectra of some novae have shown highly blue‐shifted absorption lines, indicating a significant expansion. In this paper, I show that all novae that have been observed with X‐ray gratings during their SSS phase show significant blue shifts. I argue that all models that attempt to explain the X‐ray bright SSS phase have to accommodate the continued expansion of the ejecta (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
14.
M. Povi A.M. Prez García M. Snchez‐Portal A. Bongiovanni J. Cepa M. Fernndez Lorenzo M.A. Lara‐Lpez J. Gallego A. Ederoclite I. Mrquez J. Masegosa E. Alfaro H. Castaeda J.I. Gonzlez‐Serrano J.J. Gonzlez 《Astronomische Nachrichten》2013,334(3):288-299
Luminosity functions are one of the most important observational clues when studying galaxy evolution over cosmic time. In this paper we present the X‐ray luminosity functions for X‐ray detected AGN in the SXDS and GWS fields. The limiting fluxes of our samples are 9.0 ×10–15 and 4.8 ×10–16 erg cm–2 s–1 in the 0.5–7.0 keV band in the two fields, respectively. We carried out analysis in three X‐ray bands and in two redshift intervals up to z ≤ 1.4. Moreover, we derive the luminosity functions for different optical morphologies and X‐ray types. We confirm strong luminosity evolution in all three bands, finding the most luminous objects at higher redshift. However, no signs of density evolution are found in any tested X‐ray band. We obtain similar results for compact and early‐type objects. Finally, we observe the “Steffen effect”, where X‐ray type‐1 sources are more numerous at higher luminosities in comparison with type‐2 sources. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
15.
R. Lallement 《Astronomische Nachrichten》2012,333(4):347-350
Charge‐transfer (CT) X‐ray emission may occur at interfaces between a partially neutral gas and gas possessing high ions, provided there is a relative motion between those two phases. The CTX surface brightness from distant objects must be taken into account if it is not far below other “classical” emission sources, especially the thermal emission from the hot phase. I discuss those conditions and potential spectroscopic or photometric diagnostics. I also mention potential indirect effects of the CT reactions by means of pickup ion production, acceleration and subsequent modification of interface and plasma properties (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
16.
What are the origins of the soft X‐ray line emission from non‐AGN galaxies? XMM‐Newton RGS spectra of nearby non‐AGN galaxies (including starforming ones: M82, NGC 253, M51, M83, M61, NGC 4631, M94, NGC 2903, and the Antennae galaxies, as well as the inner bulge of M31) have been analyzed. In particular, the Kα triplet of O VII shows that the resonance line is typically weaker than the forbidden and/or inter‐combination lines. This suggests that a substantial fraction of the emission may not arise directly from optically thin thermal plasma, as commonly assumed, and may instead originate at its interface with neutral gas via charge exchange. This latter origin naturally explains the observed spatial correlation of the emission with various tracers of cool gas in some of the galaxies. However, alternative scenarios, such as the resonance scattering by the plasma and the relic photo‐ionization by AGNs in the recent past, cannot be ruled out, at least in some cases, and are being examined. Such X‐ray spectroscopic studies are important to the understanding of the relationship of the emission to various high‐energy feedback processes in galaxies (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
17.
We review the most important findings on AGN physics and cosmological evolution as obtained by extragalactic X‐ray surveys and associated multiwavelength observations. We briefly discuss the perspectives for future enterprises and in particular the scientific case for an extremely deep (2–3 Ms) XMM survey. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
18.
C. Motch 《Astronomische Nachrichten》2008,329(2):166-169
The landscape of Galactic X‐ray sources made of accreting binaries, isolated objects and active stellar coronae has been significantly modified by the advent of the Chandra, XMM‐Newton and INTEGRAL satellites. New types of relatively low X‐ray luminosity X‐ray binaries have been unveiled in the Galactic disc, while deep observations of the central regions have revealed large numbers of X‐ray binaries of so far poorly constrained nature. Because of the high spatial resolution needed and faint X‐ray luminosities generally emitted, studying the dependency of the X‐ray source composition with parent stellar population, Galactic disc, bulge, nuclear bulge, etc., is only practicable in our Galaxy. The evolutionary links between low LX X‐ray binaries and classical X‐ray luminous accreting systems are still open in many cases. In addition, the important question of the nature of the compact sources contributing to the Galactic ridge hard X‐ray emission remains unresolved. We review the most important results gathered by XMM‐Newton over the last years in this domain and show how future observations could be instrumental in addressing several of these issues. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
19.
The three major large-scale, diffuse γ-ray structures of the Milky Way are the Galactic disk,a bulge-like GeV excess towards the Galactic center, and the Fermi bubble. Whether such structures can also be present in other normal galaxies remains an open question. M31, as the nearest massive normal galaxy, holds promise for spatially-resolving the γ-ray emission. Based on more than 8 years of Fermi-LAT observations, we use(1) disk,(2) bulge, and(3) disk-plus-bulge templates to model the spatial distribution of the γ-ray emission from M31. Among these, the disk-plus-bulge template delivers the best-fit, in which the bulge component has a TS value 25.7 and a photon-index of 2.57 ± 0.17, providing strong evidence for a centrally-concentrated γ-ray emission from M31, that is analogous to the Galactic center excess. The total0.2–300 GeV γ-ray luminosity from this bulge component is(1.16 ± 0.14) × 1038 erg s-1, which would require ~ 1.5 × 105 millisecond pulsars, if they were the dominant source. We also search for a Fermi bubble-like structure in M31 using the full dataset(pass8), but no significant evidence has been found.In addition, a likelihood analysis using only photons with the most accurate reconstructed direction(i.e.,PSF3-only data) reveals a 4.8 σ point-like source located at ~10 kpc to the northwest of the M31 disk, with a luminosity of(0.97 ± 0.27) × 1038 erg s-1 and a pho@ton-$i·nd3 ex of 2.31 ± 0.18. Lacking a counterpart on the southeast side of the disk, the relation between this point-like source and a bubble-like structure remains elusive. 相似文献
20.
P. Ranalli 《Astronomische Nachrichten》2012,333(4):369-372
Charge‐exchange (CE) emission produces features which are detectable with the current X‐ray instrumentation in the brightest near galaxies. We describe these aspects in the observed X‐ray spectra of the star forming galaxies M82 and NGC 3256, from the Suzaku and XMM‐Newton telescopes. Emission from both ions (O, C) and neutrals (Mg, Si) is recognised. We also describe how microcalorimeter instrumentation on future missions will improve CE observations (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献