首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
1996年9月观测到海尔-波普彗星的一次喷发,这次喷发持续了几天,在9月10日和11日分别观测到彗星的二个球状喷出物,并测得其投影喷出速度约为100m/s,其后喷出物演变为巨大的喷流.  相似文献   

2.
Qian  Bochen  Tao  Jun  Gu  Minfeng 《Earth, Moon, and Planets》2000,88(2):61-74
We report the observation of an outburst of comet Hale–Bopp (C/1995 O1) happened on September 10–11, 1996, carried by the 1.56 m telescope of Shanghai Astronomical Observatory. Two ejecta were found in CCD images during the outburst. According to the positions of ejecta, we discuss the motion of the ejecta considering dust particles are subjected to the gravity and the Solar radiation pressure, and conclude that the mean radii of dust grains in the ejecta were about submicron-sized. So the observed X-ray emission are most likely produced by small size particles scattering the Solar X-ray. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
IntroductionCometHale Bopp(Hale,1 995 )isanextremelybrightcomet.Ithasbeenactivewhendiscov eryat 7AUfromtheSun(Sekanina ,1 996 ) .Thelocalizedejectionofdustandgasproducedcom plexcomastructurethatcanbeusedtostudytheejectionspeedandnucleusrotationperiod .Fur thermore…  相似文献   

4.
Abstract— A model for an impact ejecta landform peculiar to Saturn's moon Titan is presented. Expansion of the ejecta plume from moderate‐sized craters is constrained by Titan's thick atmosphere. Much of the plume is collimated along the incoming bolide's trajectory, as was observed for plumes from impacts on Jupiter of P/Shoemaker‐Levy‐9, but is retained as a linear, diagonal ejecta cloud, unlike on Venus where the plume “blows out.” On Titan, the blowout is suppressed because the vertically‐extended atmosphere requires a long wake to reach the vacuum of space, and the modest impact velocities mean plume expansion along the wake is slow enough to allow the wake to close off. Beyond the immediate ejecta blanket around the crater, distal ejecta is released into the atmosphere from an oblique line source: this material is winnowed by the zonal wind field to form streaks, with coarse radar‐bright particles transported less far than fine radar‐dark material. Thus, the ejecta form two distinct streaks faintly reminiscent of dual comet tails, a sharply W‐E radar‐dark one, and a less swept and sometimes comma‐shaped radar‐bright one.  相似文献   

5.
The OSIRIS cameras on the Rosetta spacecraft observed Comet 9P/Tempel 1 from 5 days before to 10 days after it was hit by the Deep Impact projectile. The Narrow Angle Camera (NAC) monitored the cometary dust in 5 different filters. The Wide Angle Camera (WAC) observed through filters sensitive to emissions from OH, CN, Na, and OI together with the associated continuum. Before and after the impact the comet showed regular variations in intensity. The period of the brightness changes is consistent with the rotation period of Tempel 1. The overall brightness of Tempel 1 decreased by about 10% during the OSIRIS observations. The analysis of the impact ejecta shows that no new permanent coma structures were created by the impact. Most of the material moved with . Much of it left the comet in the form of icy grains which sublimated and fragmented within the first hour after the impact. The light curve of the comet after the impact and the amount of material leaving the comet ( of water ice and a presumably larger amount of dust) suggest that the impact ejecta were quickly accelerated by collisions with gas molecules. Therefore, the motion of the bulk of the ejecta cannot be described by ballistic trajectories, and the validity of determinations of the density and tensile strength of the nucleus of Tempel 1 with models using ballistic ejection of particles is uncertain.  相似文献   

6.
使用上海天文台的1.56m望远镜和Series200CCD照相机发现HaleBopp彗星于1996年4月21日至4月23日期间有一次爆发,4月22日彗星星等比前一天增亮了02等,但一天后其亮度又大致恢复原来的亮度.这段时间内,彗头的半强度处的直径也有相应的变化.  相似文献   

7.
We report on the Hubble Space Telescope program to observe periodic Comet 9P/Tempel 1 in conjunction with NASA's Deep Impact Mission. Our objectives were to study the generation and evolution of the coma resulting from the impact and to obtain wide-band images of the visual outburst generated by the impact. Two observing campaigns utilizing a total of 17 HST orbits were carried out: the first occurred on 2005 June 13-14 and fortuitously recorded the appearance of a new, short-lived fan in the sunward direction on June 14. The principal campaign began two days before impact and was followed by contiguous orbits through impact plus several hours and then snapshots one, seven, and twelve days later. All of the observations were made using the Advanced Camera for Surveys (ACS). For imaging, the ACS High Resolution Channel (HRC) provides a spatial resolution of 36 km (16 km pixel−1) at the comet at the time of impact. Baseline images of the comet, made prior to impact, photometrically resolved the comet's nucleus. The derived diameter, 6.1 km, is in excellent agreement with the 6.0±0.2 km diameter derived from the spacecraft imagers. Following the impact, the HRC images illustrate the temporal and spatial evolution of the ejecta cloud and allow for a determination of its expansion velocity distribution. One day after impact the ejecta cloud had passed out of the field-of-view of the HRC.  相似文献   

8.
BOEHNHARDT  H.  BIRKLE  K.  FIEDLER  A.  JORDA  L.  THOMAS  N.  PESCHKE  S.  RAUER  H.  SCHULZ  R.  SCHWEHM  G.  TOZZI  G.  WEST  R. 《Earth, Moon, and Planets》1997,78(1-3):179-187
In 1996 comet Hale-Bopp exhibited a porcupine-like coma with straight jets of dust emission from several active regions on the nucleus. The multi-jet coma geometry developed during the first half of 1996. While the jet orientation remained almost constant over months, the relative intensity of the jets changed with time. By using the embedded fan model of Sekanina and Boehnhardt (1997a) the jet pattern of comet Hale-Bopp in 1996 can be interpreted as boundaries of dust emission cones (fans) from four — possibly five — active regions on the nucleus (for a numerical modelling see part II of the paper by Sekanina and Boehnhardt, 1997b). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Gopalswamy  N.  Cyr  O.C. St.  Kaiser  M.L.  Yashiro  S. 《Solar physics》2001,203(1):149-163
We report on a coronal shock wave inferred from the metric type II burst of 13 January 1996. To identify the shock driver, we examined mass motions in the form of X-ray ejecta and white-light coronal mass ejections (CMEs). None of the ejections could be considered fast (> 400 km s–1) events. In white light, two CMEs occurred in quick succession, with the first one associated with X-ray ejecta near the solar surface. The second CME started at an unusually large height in the corona and carried a dark void in it. The first CME decelerated and stalled while the second one accelerated, both in the coronagraph field of view. We identify the X-ray ejecta to be the driver of the coronal shock inferred from metric type II burst. The shock speed reported in the Solar Geophysical Data (1000–2000 km s–1) seems to be extremely large compared to the speeds inferred from X-ray and white-light observations. We suggest that the MHD fast-mode speed in the inner corona could be low enough that the X-ray ejecta is supermagnetosonic and hence can drive a shock to produce the type II burst.  相似文献   

10.
在1996年8月5日——1997年5月15日对Hale-Bopp彗星进行了照相观测,多次观测到Hale-Bopp彗星彗核的小规模分裂,喷流,壳层结构及彗发的膨胀现象。  相似文献   

11.
X-ray fluxes observed from comet C/1996 B2 (Hyakutake) are readily explained in terms of scattering by carbonaceous particles with radii of several tens of Angstroms. A few tenths of a megatonne of such particles appear to have been present in the cometary coma on March 26–28 1996.  相似文献   

12.
Images of comet Hyakutake (C/1996 B2) are analyzed in conjunction with solar wind data from spacecraft to determine the relationship between solar wind conditions and plasma tail morphology. The disconnection event (DE) on March 25, 1996 is analyzed with the aid of data from the IMP-8 and WIND Earth-orbiting spacecraft and the DE is found to be correlated with a crossing of the heliospheric current sheet. The comet was within of Earth at the time of the DE and data from IMP-8 and WIND show no high-speed streams, significant density enhancements or shocks.The latitudinal variation in the appearance and orientation of the plasma tail are interpreted based on results from the Ulysses spacecraft. In the polar solar wind region, the comet has a relatively undisturbed appearance, no DEs were observed, and the orientation of the plasma tail was consistent with a higher solar wind speed. In the equatorial solar wind region, the comet's plasma tail had a disturbed appearance, a major DE was observed, and the orientation of the plasma tail was consistent with a lower solar wind speed. The boundary between the equatorial and polar regions crossed by comet Hyakutake in April 1996 was near 30°N (ecliptic) or 24°N (solar) latitude.  相似文献   

13.
Systematic CCD photometry of Comet 1995 O1 (Hale-Bopp) began in early August 1995 shortly after its discovery (IAU Circular 6187) and continued until mid-November 1996. The light curve derived from a 34″ square centered on the nucleus shows clearly and objectively how the inner regions of the comet brightened during this 15 month period. Possible connections between sudden brightenings and reported outbursts are investigated. During the interval August–December 1995, the magnitude of the comet showed strong evidence of a periodicity of 20±5 days with a full amplitude of approximately 0.20 mag. It is noteworthy that this result spans both the period of 18 days suggested by Sekanina (1995, 1996) and the “superperiod” of 22±2 days reported by Jorda et al. (1997). However, in 1996 neither this periodicity nor any other could be detected with certainty in the photometric data.  相似文献   

14.
We have obtained optical spectrophotometry of the evolution of Comet 9P/Tempel 1 after the impact of the Deep Impact probe, using the Supernova Integral Field Spectrograph (SNIFS) at the UH 2.2-m telescope, as well as simultaneous optical and infrared spectra using the Lick Visible-to-Near-Infrared Imaging Spectrograph (VNIRIS). The spatial distribution and temporal evolution of the “violet band” CN (0-0) emission and of the 630 nm [OI] emission was studied. We found that CN emission centered on the nucleus increased in the 2 h after impact, but that this CN emission was delayed compared to the light curve of dust-scattered sunlight. The CN emission also expanded faster than the cloud of scattering dust. The emission of [OI] at 630 nm rose similarly to the scattered light, but then remained nearly constant for several hours after impact. On the day following the impact, both CN and [OI] emission concentrated on the comet nucleus had returned nearly to pre-impact levels. We have also searched for differences in the scattering properties of the dust ejected by the impact compared to the dust released under normal conditions. Compared to the pre-impact state of the comet, we find evidence that the color of the comet was slightly bluer during the post-impact rise in brightness. Long after the impact, in the following nights, the comet colors returned to their pre-impact values. This can be explained by postulating a change to a smaller particle size distribution in the ejecta cloud, in agreement with the findings from mid-infrared observations, or by postulating a large fraction of clean ice particles, or by a combination of these two.  相似文献   

15.
Lisse  C. M.  Fernández  Y. R.  A'hearn  M. F.  Kostiuk  T.  Livengood  T. A.  Käufl  H. U.  Hoffmann  W. F.  Dayal  A.  Ressler  M. E.  Hanner  M. S.  Fazio  G. G.  Hora  J. L.  Peschke  S. B.  Grün  E.  Deutsch  L. K. 《Earth, Moon, and Planets》1997,78(1-3):251-257
We present infrared imaging and photometry of the bright, giant comet C/1995 O1 (Hale-Bopp). The comet was observed in an extended infrared and optical observing campaign in 1996–1997. The infrared morphology of the comet was observed to change from the 6 to 8 jet “porcupine” structure in 1996 to the “pinwheel” structure seen in 1997; this has implications for the position of the rotational angular momentum vector. Long term light curves taken at 11.3 μm indicate a dust production rate that varies with heliocentric distance as ∶ r−1.4. Short term light curves taken at perihelion indicate a rotational periodicity of 11.3 hours and a projected dust outflow speed of ∶ 0.4 km s−1. The spectral energy distribution of the dust on October 31, 1996 is well modeled by a mixture of 70% silicaceous and 30% carbonaceous non-porous grains, with a small particle dominated size distribution like that seen for comet P/Halley (McDonnell et al., 1991), an overall dust production rate of 2 × 105 kg s−1, a dust-to-gas ratio of ∶5, and an albedo of 39%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Some past October Draconid shower meteoroids fell apart in a spray of fragments at the end of their trajectory before slowing down, from which it was concluded that these were among the most fragile meteoroids known. In those instances, the dust could not be reliably traced to a particular return of the parent comet 21P/Giaconini-Zinner. On October 8th, 2011, Earth was predicted to transverse the 1900 A.D. dust ejecta of the comet. In 1900, the comet’s perihelion distance first moved significantly inwards to the Sun and ejection conditions could have been unusual. An airborne observing campaign was organized, with several teams contributing imaging and spectrographic cameras to study the manner in which these meteoroids released the volatile element sodium during the ablation process in the Earth’s atmosphere. IMCCE, ESA, and the SETI Institute contributed spectrographic cameras based on low-light WATEC 902H2 Ultimate, low-light LCC1, and GenII XX1332 image intensified cameras. An outburst was observed, much as predicted. Despite a lack of bright meteors, a total of 15 Draconid spectra were recorded. All show evidence of an early release of sodium. The loss of sodium was observed to coincide with the formation of a distinct wake of fragments. The observations show that 21P/Giacobini-Zinner ejected fragile meteoroids during the return in 1900. Those grains may have lost some sodium even before impacting Earth.  相似文献   

17.
Shiba  Y.  Shimoda  C.  Maruyama  T.  Okumura  S.  Tomita  M.  Murasawa  A.  Ohtsuka  K.  Tomioka  H.  Hidaka  E. 《Earth, Moon, and Planets》1997,77(1):47-54
Several Leonid fireballs were successfully photographed by the Japanese Fireball Network and by other observers in Japan on 16 November, 1996. A totals of seven of these were simultaneously observed from two or more stations, from which the orbital and physical data were deduced. The radiant of these fireballs were very small, only 0.1°, similar to that of the 1991 Perseids. The 1996 Leonids showed a lower magnitude distribution index similar to those obtained in the 1961 and 1965 Leonids. All of these showers occurred before perihelion passage of the parent comet. We conclude that we have already encountered the elongated front part of the dust trail of the Leonid parent comet, where the trail is probably composed of larger dust particles. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Between July 1996 and April 1997, 92 spectra of comet Hale-Bopp were obtained with the 6-meter BTA telescope of the SAO of the RAS at Mount Pastukhov. The spectra are two-dimensional, which allows one to determine the energy distribution for each emission along the slit and the energy distribution in wavelength for each individual position in the slit. From the 92 two-dimensional spectra covering the inner coma, detailed spectral maps of the total near-nuclear region of the comet are available for July 10, 11 and 12, 1996 and April 15, 1997. We propose an hypothesis about an unknown cometary species near λ = 620 nm in the spectrum obtained July 10, 1996. We also find an effect which may be caused by fluorescence of cometary dust. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The formation mechanism of layered ejecta craters on Mars has remained a topic of intense debate since their discovery. In this study, we perform a global morphological analysis of Martian layered ejecta craters using Thermal Emission Imaging System (THEMIS) images and Mars Orbiter Laser Altimeter (MOLA) data. The study focuses on the ejecta morphologies and well‐defined distal rampart characteristics associated with 9945 layered ejecta craters with a diameter greater than 1.5 km distributed across the entire Martian surface. Data analysis based on the new database provides new information on the distribution and morphological details of the three major layered ejecta morphologies (single layer ejecta [SLE], double layer ejecta [DLE], and multiple layer ejecta [MLE]). Global analysis is applied to the latitudinal distribution of characteristic parameters, including the ejecta mobility, lobateness values, and onset diameter. Our survey of the distribution and characteristics of layered ejecta craters reveals that strong correlations exist between ejecta mobility and latitude, and there is a latitudinal dependence of onset diameter. Our study of Martian layered ejecta craters provides more detailed information and insights of a connection between the layered ejecta morphologies and the subsurface volatiles.  相似文献   

20.
X-ray fluxes observed from comet C/1996 B2 (Hyakutake) are readily explained in terms of scattering by carbonaceous particles with radii of several tens of Angstroms. A few tenths of a megatonne of such particles appear to have been present in the cometary coma on March 26–28, 1996. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号