首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In this paper, we present simulation results of a ground-layer correction adaptive optics system (GLAO), based on four laser guide stars and a single deformable mirror. The goal is to achieve a seeing improvement over an 8-arcmin field of view, in the near-infrared (from 1.06 to 2.2 μm). We show results on the scaling of this system (number of subapertures, frame rates), and the required number of tip-tilt stars. We investigate the use for GLAO of both sodium and Rayleigh guide stars. We also show that if the lasers can be repositioned, the performance of the adaptive optics can be tailored to the astronomical observations.  相似文献   

5.
We introduce a novel concept to sense the wavefront for adaptive optics purposes in astronomy using a conventional laser beacon. The concept we describe involves treating the light scattered in the mesospheric sodium layer as if it comes from multiple rings located at infinity. Such a concept resembles an inverse Bessel beam and is particularly suitable for multi-conjugated adaptive optics on extremely large telescopes. In fact, as the sensing process uses light apparently coming from infinity, some problems linked to the finite distance and vertical extent of the guide source are solved. Since such a technique is able to sense a wavefront solely in the radial direction, we propose furthermore a novel wavefront sensor by combining the inverse Bessel beam approach with the recently introduced z -invariant technique for a pseudo-infinite guide star sensor.  相似文献   

6.
The new 1.5‐m German solar telescope GREGOR at the Observatorio del Teide, Tenerife, is equipped with an integrated adaptive optics system. Although partly still in the commissioning phase, the system is already being used used for most science observations. It is designed to provide diffraction‐limited observations in the visible‐light regime for seeing better than 1.2″. We describe the AO system including the optical design, software, wavefront reconstruction, and performance (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We give a short overview of the Adaptive Optics (AO) and Multi‐conjugate Adaptive Optics (MCAO) system of the planned 4 m European Solar Telescope (EST). The optimization process of the AO / MCAO parameters is shown, including the parameters and layout of the Shack‐Hartmann wavefront sensor setup and the DMs. We show the expected performance of the AO and MCAO system (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
9.
10.
11.
This paper describes the general characteristics of raw data from fiber‐fed spectrographs in general and fiber‐fed IFUs in particular. The different steps of the data reduction are presented, and the techniques used to address the unusual characteristics of these data are described in detail. These techniques have been implemented in a specialized software package, R3D, developed to reduce fiber‐based integral field spectroscopy (IFS) data. The package comprises a set of command‐line routines adapted for each of these steps, suitable for creating pipelines. The routines have been tested against simulations, and against real data from various integral field spectrographs (PMAS, PPAK, GMOS, VIMOS and INTEGRAL). Particular attention is paid to the treatment of cross‐talk. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Adaptive optics (AO), which provides diffraction limited imaging over a field-of-view (FOV), is a powerful technique for solar observation. In the tomographic approach, each wavefront sensor (WFS) is looking at a single reference that acts as a guide star. This allows a 3D reconstruction of the distorted wavefront to be made. The correction is applied by one or more deformable mirrors (DMs). This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. With the assistance of the MAOS software package, we consider the tomography errors and WFS aliasing errors, and focus on how the performance of a solar telescope (pointing toward zenith) is related to atmospheric anisoplanatism. We theoretically quantify the performance of the to- mographic solar AO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope in a 10" - 80" diameter FOV by only employing one DM conjugated to the telescope pupil. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the AO system by selecting two atmospheric models that differ mainly in terms of atmospheric prop- erties at ground level, and present the optimum DM conjugate altitudes for different observation sites.  相似文献   

13.
Analytical theory is combined with extensive numerical simulations to compare different flavours of centroiding algorithms: thresholding, weighted centroid, correlation, quad cell (QC). For each method, optimal parameters are defined in function of photon flux, readout noise and turbulence level. We find that at very low flux the noise of QC and weighted centroid leads the best result, but the latter method can provide linear and optimal response if the weight follows spot displacements. Both methods can work with average flux as low as 10 photons per subaperture under a readout noise of three electrons. At high-flux levels, the dominant errors come from non-linearity of response, from spot truncations and distortions and from detector pixel sampling. It is shown that at high flux, centre of gravity approaches and correlation methods are equivalent (and provide better results than QC estimator) as soon as their parameters are optimized. Finally, examples of applications are given to illustrate the results obtained in the paper.  相似文献   

14.
15.
A high‐order Adaptive Optical (AO) system for the 65 cm vacuum telescope of the Big Bear Solar Observatory (BBSO) is presented. The Coudé‐exit of the telescope has been modified to accommodate the AO system and two imaging magnetograph systems for visible‐light and near infrared (NIR) observations. A small elliptical tip/tilt mirror directs the light into an optical laboratory on the observatory's 2nd floor just below the observing floor. A deformable mirror (DM) with 77 mm diameter is located on an optical table where it serves two wave‐front sensors (WFS), a correlation tracker (CT) and Shack‐Hartman (SH) sensor for the high‐order AO system, and the scientific channels with the imaging magnetographs. The two‐axis tip/tilt platform has a resonance frequency around 3.3 kHz and tilt range of about 2 mrad, which corresponds to about 25″ in the sky. Based on 32 × 32 pixel images, the CT detects image displacements between a reference frame and real‐time frames at a rate of 2 kHz. High‐order wave‐front aberrations are detected in the SH WFS channel from slope measurements derived from 76 sub‐apertures, which are recorded with 1,280 × 1,024 pixel Complex Metal Oxide Semiconductor (CMOS) camera manufactured by Photobit camera. In the 4 × 4 pixel binning mode, the data acquisition rate of the CMOS device is more than 2 kHz. Both visible‐light and NIR imaging magnetographs use Fabry‐Pérot etalons in telecentric configurations for two‐dimensional spectro‐polarimetry. The optical design of the AO system allows using small aperture prefilters, such as interference or Lyot filters, and 70 mm diameter Fabry‐Pérot etalons covering a field‐of‐view (FOV) of about 180″ × 180″.  相似文献   

16.
Integral field spectrographs are major instruments with which to study the mechanisms involved in the formation and the evolution of early galaxies. When combined with multi-object spectroscopy, those spectrographs can behave as machines used to derive physical parameters of galaxies during their formation process. Up to now, there has been only one available spectrograph with multiple integral field units, i.e. FLAMES/GIRAFFE on the European Southern Observatory (ESO) Very Large Telescope (VLT). However, current ground-based instruments suffer from a degradation of their spatial resolution due to atmospheric turbulence. In this article we describe the performance of FALCON, an original concept of a new-generation multi-object integral field spectrograph with adaptive optics for the ESO VLT. The goal of FALCON is to combine high angular resolution (0.25 arcsec) and high spectral resolution  ( R > 5000)  in the J and H bands over a wide field of view  (10 × 10 arcmin2)  in the VLT Nasmyth focal plane. However, instead of correcting the whole field, FALCON will use multi-object adaptive optics (MOAO) to perform the adaptive optics correction locally on each scientific target. This requires us then to use atmospheric tomography in order to use suitable natural guide stars for wavefront sensing. We will show that merging MOAO and atmospheric tomography allows us to determine the internal kinematics of distant galaxies up to z ≈ 2 with a sky coverage of 50 per cent, even for objects observed near the Galactic pole. The application of such a concept to extremely large telescopes seems therefore to be a very promising way to study galaxy evolution from z = 1 to redshifts as high as z = 7.  相似文献   

17.
MUSE, the Multi-Unit Spectroscopic Explorer, is an adaptive optics (AO)-assisted Integral Field Spectrograph, currently in the Preliminary Design Phase as a second generation instrument for the VLT. MUSE will feature two modes, each with an associated AO mode. The first mode is the wide field mode, mainly aiming at the study of high redshift galaxies. For this mode, the AO system has to deliver an improvement of at least a factor of two over the full 1′ × 1′ field of view. The second mode, the narrow field mode, aims at the high-resolution spectroscopy of nearby extended objects, for example, galaxies and globular clusters. For this mode, the AO system will have to deliver near-diffraction limited performance over a small field of view. In this paper, we discuss the trade-offs in the current design of GALACSI – the MUSE AO system – and illustrate with a number of simulations the expected performance in the wide- and narrow field modes.  相似文献   

18.
Current projects for large telescopes demand a proper knowledge of atmospheric turbulence to design efficient adaptive optics systems in order to reach large Strehl ratios. However, the proper characterization of the turbulence above a particular site requires long-term monitoring. Because of the lack of long-term information on turbulence, high-altitude winds (in particular winds at the 200 mbar pressure level) were proposed as a parameter for estimating the total turbulence at a particular site, with the advantage of records of winds going back several decades. We present the first complete study of atmospheric adaptive optics parameters above the Teide Observatory (Canary Islands, Spain) in relation to wind speed. On-site measurements of   C 2 N ( h )  profiles (more than 20 200 turbulence profiles) from G-SCIDAR (Generalized Scintillation Detection and Ranging) observations and wind vertical profiles from balloons have been used to calculate the seeing, the isoplanatic angle and the coherence time. The connection of these parameters to wind speeds at ground and at 200 mbar pressure level are shown and discussed. Our results confirm the well-known high quality of the Canary Islands astronomical observatories.  相似文献   

19.
Fast guiding may improve the images delivered by telescopes. It may be implemented fairly cheaply and offers an upgrade path to smaller telescopes, which will make them more useful in the 8-m era. However, the detailed performance of a fast guiding system must depend on many parameters and this makes it difficult to assess its precise scientific benefits. This paper provides a comprehensive mathematical framework for calculating the performance of fast guiding systems. A range of models has been calculated that illustrates the benefits for telescopes of various sizes in various wavelength ranges. Three measures of performance have been examined: FWHM, 50 per cent encircled energy diameter and energy concentration in a 0.35-arcsec aperture. Typical gains over natural seeing are found to be in the 20 to 40 per cent range at useful levels of sky coverage. Other things being equal, small telescopes do not benefit as much as large ones from fast guiding. The sensitivity of these benefits to assumptions has also been examined, and this highlights the need to operate in the correct wavelength range for the aperture in question. The largest perturbations to ideal models are likely to be the result of telescope windshake and the outer scale of turbulence. If there is appreciable windshake, fast guiding will yield larger benefits than expected from the natural seeing. A short outer scale (a few hundred metres) will, however, lose most of the gains.  相似文献   

20.
Slope Detection and Ranging (SLODAR) is a technique for the measurement of the vertical profile of atmospheric optical turbulence strength. Its main applications are astronomical site characterization and real-time optimization of imaging with adaptive optical correction. The turbulence profile is recovered from the cross-covariance of the slope of the optical phase aberration for a double star source, measured at the telescope with a wavefront sensor (WFS). Here, we determine the theoretical response of a SLODAR system based on a Shack–Hartmann WFS to a thin turbulent layer at a given altitude, and also as a function of the spatial power spectral index of the optical phase aberrations. Recovery of the turbulence profile via fitting of these theoretical response functions is explored. The limiting resolution in altitude of the instrument and the statistical uncertainty of the measured profiles are discussed. We examine the measurement of the total integrated turbulence strength (the seeing) from the WFS data and, by subtraction, the fractional contribution from all turbulence above the maximum altitude for direct sensing of the instrument. We take into account the effects of noise in the measurement of wavefront slopes from centroids and the form of the spatial structure function of the atmospheric optical aberrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号