首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
The newly discovered periodic comet P/2004 A1 (LONEOS) is found to have experienced a recent capture into its present orbit, following a close approach to Saturn in 1992 to within 0.032 AU. This induced orbital change transfered the comet into an orbit tangent to that of Jupiter, which will, after a close passage in 2026, gain control by further decoupling it from the influence of Saturn. A long‐term orbital investigation yields support that the comet is on its first sojourn into the inner solar system. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Comet C/1853 E1 (Secchi) has a hyperbolic orbit with eccentricity 1.01060 and perihelion outside of the Earth's orbit. Integrating the orbit with barycentric coordinates backwards to 50000 AU, the approximate edge of the Oort cloud, shows that the orbit remains hyperbolic. This is still true even if plutoids additional to Pluto are included in the integration. Nor does including Galactic tidal and disc effects and possible nongravitational forces change the orbit to a high eccentricity ellipse. Although certain factors, such as unknown massive plutoids, gravitational effects by interstellar gas clouds, or unmodelled nongravitational forces operating on the comet, could change this situation, the tentative conclusion that the origin of this comet is extrasolar remains the one most consistent with the observations (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
A new orbit for comet C/1858 L1 (Donati), based on 1036 observations in α and 971 in σ made between 7 June 1858 and 5 March 1859, is calculated using iteratively reweighted least squares. Residuals were weighted by the Welsch weighting function. The orbit represents a high eccentricity ellipse, e = 0.996265, with large semi‐major axis, a = 154.8612 AU, and long period, P = 1927.22 yr. The residuals are relatively random, a 10.7% chance of being random, but with a slight indication of possible nongravitational forces influencing the motion. The comet will not return until the year 3759, when it will pass 0.8442 AU from the Earth. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We present a continuation of our numerical study on planetary systems with similar characteristics to the Solar System. This time we examine the influence of three giant planets on the motion of terrestrial-like planets in the habitable zone (HZ). Using the Jupiter–Saturn–Uranus configuration we create similar fictitious systems by varying Saturn’s semi-major axis from 8 to 11 AU and increasing its mass by factors of 2–30. The analysis of the different systems shows the following interesting results: (i) Using the masses of the Solar System for the three giant planets, our study indicates a maximum eccentricity (max-e) of nearly 0.3 for a test-planet placed at the position of Venus. Such a high eccentricity was already found in our previous study of Jupiter–Saturn systems. Perturbations associated with the secular frequency g 5 are again responsible for this high eccentricity. (ii) An increase of the Saturn-mass causes stronger perturbations around the position of the Earth and in the outer HZ. The latter is certainly due to gravitational interaction between Saturn and Uranus. (iii) The Saturn-mass increased by a factor 5 or higher indicates high eccentricities for a test-planet placed at the position of Mars. So that a crossing of the Earth’ orbit might occur in some cases. Furthermore, we present the maximum eccentricity of a test-planet placed in the Earth’ orbit for all positions (from 8 to 11 AU) and masses (increased up to a factor of 30) of Saturn. It can be seen that already a double-mass Saturn moving in its actual orbit causes an increase of the eccentricity up to 0.2 of a test-planet placed at Earth’s position. A more massive Saturn orbiting the Sun outside the 5:2 mean motion resonance (a S  ≥9.7 AU) increases the eccentricity of a test-planet up to 0.4.  相似文献   

5.
《Icarus》1986,65(1):37-50
In the planet X model periodic comet showers are associated with passages of the planet's perihelion and aphelion points through a primordial disk of comets believed to lie beyond the orbit of Neptune. A strong feature of this model is that the required orbital elements and mass of planet X are consistent with independently predicted values based on the residuals in the motions of Uranus and Neptune. Here we present a more extensive analysis of the model taking into account the fact that only those comets scattered directly into the zones of influence of Saturn and Jupiter can contribute to a shower whose duration is consistent with observation (≲ 15 myr). These requirements impose a minimum planetary inclination of ≈25°, which in turn restricts the semimajor axis to be ≲100 AU. A fraction of the comets scattered directly into the zones of influence of Uranus and Neptune will evolve on time scales of ∼108 years into the steady state flux of short-period comets. We find that the absolute numbers of shower and steady state are comparable and compatible with the known terrestrial cratering rate, assuming the existence of long-lived extinct comet cores. Canonical planet X model parameters, deduced in part from the scattering dynamics analysis, are: semimajor axis ≈80 AU, eccentricity ≈0.3, inclination ≈45°, and mass ≈5m. An analysis is given which suggests that planet X, in its present orbit, can create the requisite density gradient of comets near perihelion and aphelion during the lifetime of the Solar System. The required inclination of planet X's orbit (≳25°) may explain the failure of previous surveys to discover the planet as its present latitude is not likely to be near the ecliptic. It it exists, the best immediate hope of finding planet X is the ongoing IRAS search in the 100-μm band and the full sky optical survey by Shoemaker and Shoemaker. Independent of the question of periodic comet showers, the existence of planet X and the comet disk can readily explain the origin of the steady state flux of short-period comets over a wide range of parameters.  相似文献   

6.
The Solar System Odyssey mission uses modern-day high-precision experimental techniques to test the laws of fundamental physics which determine dynamics in the solar system. It could lead to major discoveries by using demonstrated technologies and could be flown within the Cosmic Vision time frame. The mission proposes to perform a set of precision gravitation experiments from the vicinity of Earth to the outer Solar System. Its scientific objectives can be summarized as follows: (1) test of the gravity force law in the Solar System up to and beyond the orbit of Saturn; (2) precise investigation of navigation anomalies at the fly-bys; (3) measurement of Eddington’s parameter at occultations; (4) mapping of gravity field in the outer solar system and study of the Kuiper belt. To this aim, the Odyssey mission is built up on a main spacecraft, designed to fly up to 13 AU, with the following components: (a) a high-precision accelerometer, with bias-rejection system, measuring the deviation of the trajectory from the geodesics, that is also giving gravitational forces; (b) Ka-band transponders, as for Cassini, for a precise range and Doppler measurement up to 13 AU, with additional VLBI equipment; (c) optional laser equipment, which would allow one to improve the range and Doppler measurement, resulting in particular in an improved measurement (with respect to Cassini) of the Eddington’s parameter. In this baseline concept, the main spacecraft is designed to operate beyond the Saturn orbit, up to 13 AU. It experiences multiple planetary fly-bys at Earth, Mars or Venus, and Jupiter. The cruise and fly-by phases allow the mission to achieve its baseline scientific objectives [(1) to (3) in the above list]. In addition to this baseline concept, the Odyssey mission proposes the release of the Enigma radio-beacon at Saturn, allowing one to extend the deep space gravity test up to at least 50 AU, while achieving the scientific objective of a mapping of gravity field in the outer Solar System [(4) in the above list].   相似文献   

7.
D.K. Yeomans 《Icarus》1981,47(3):492-499
The distribution of dust surrounding periodic comet Tempel-Tuttle has been mapped by analyzing the associated Leonid meteor shower data over the 902–1969 interval. The majority of dust ejected from the parent comet evolves to a position lagging the comet and outside the comet's orbit. The outgassing and dust ejection required to explain the parent comet's deviation from pure gravitational motion would preferentially place dust in a position leading the comet and inside the comet's orbit. Hence it appears that radiation pressure and planetary perturbations, rather than ejection processes, control the dynamic evolution of the Leonid particles. Significant Leonid meteor showers are possible roughly 2500 days before or after the parent comet reaches perihelion but only if the comet passes closer than 0.025 AU inside or 0.010 AU outside the Earth's orbit. Although the conditions in 1998–1999 are optimum for a significant Leonid meteor shower, the event is not certain because the dust particle distribution near the comet is far from uniform. As a by-product of this study, the orbit of comet Tempel-Tuttle has been redetermined for the 1366–1966 observed interval.  相似文献   

8.
The perturbed motion of comet Halley and comet Mackholz 1 1986 VIII was investigated within a time interval of about 20 millennia. The minimal distance of 0.043 AU between P/Halley and Venus may occur on April 4, 4868 AD. The distance of 0.036 AU between P/Halley and Jupiter will take place on April 1, 6616 AD. The orbit of P/Machholz 1 crosses the orbits of Mercury and Venus eight times, that of the Earth six or eight times, and the orbit of Mars four times per a period of advance of the argument of perihelion. A distance of about 0.06 AU between P/Machholz 1 and the Earth may take place in August 2576 AD and 5751 AD and in February 4770 AD. The minimal comet-Earth distance of 0.035 AU occurs on September 14, 5971 AD. The closest encounter between P/Machholz 1 and Jupiter at the distance of 0.098 AU may be in May 4499 AD. These results may be considered as a forecast of possible collisions.  相似文献   

9.
The perturbed motion of comet Halley and comet Mackholz 1 1986 VIII was investigated within a time interval of about 20 millennia. The minimal distance of 0.043 AU between P/Halley and Venus may occur on April 4, 4868 AD. The distance of 0.036 AU between P/Halley and Jupiter will take place on April 1, 6616 AD.The orbit of P/Machholz 1 crosses the orbits of Mercury and Venus eight times, that of the Earth six or eight times, and the orbit of Mars four times per a period of advance of the argument of perihelion. A distance of about 0.06 AU between P/Machholz 1 and the Earth may take place in August 2576 AD and 5751 AD and in February 4770 AD. The minimal comet-Earth distance of 0.035 AU occurs on September 14, 5971 AD. The closest encounter between P/Machholz 1 and Jupiter at the distance of 0.098 AU may be in May 4499 AD. These results may be considered as a forecast of possible collisions.  相似文献   

10.
The object P/2010 TO20 LINEAR-Grauer, discovered at a heliocentric distance of over 5 AU, and at first classified as a Trojan, is now believed to be a comet. This paper reports special observations of the object that have allowed a significant refinement of its orbit and investigation of its dynamic evolution. It is shown that P/2010 TO20 LINEAR-Grauer is not a Trojan yet demonstrates unusual dynamic features. In particular, the object moves in a temporary satellite orbit relative to Jupiter over the observation interval. The comet has been in the Hill sphere for about two years and has made one revolution around the planet. The jovicentric distance function has two minima, and the smallest distance is 0.075 AU. Our estimates show that, with a probability of 0.76, the comet is likely to move in a Jupiter family orbit with a perihelion distance of less than 2.5 AU. The average time for such a transition is around forty thousand years.  相似文献   

11.
《Icarus》1986,65(1):1-12
The tidal gravitational field of the Galaxy directed into the galactic plane changes the angular momentum of comets in the Oort cloud. For comet orbits with semimajor axis greater than 2 × 104 AU, the change of angular momentum in one orbit is sufficient to bring comets from the Oort cloud into the visible region, causing the infall of “new” comets. The limiting size orbit is weakly dependent on the angle between the major axis of the comet orbit and the galactic plane. The flux of comets into the inner Solar System caused by the galactic tidal field will be continuous and nearly isotropic. This effect appears to exclude any determination of the trajectories of passing stars by analysis of the angular distribution of new comets. The production of intense comet showers by the tidal field of a solar companion or of an interstellar cloud is considered. We show that the direction of a solar companion cannot be found from the present distribution of observable comets. The frequency of comet showers induced by encounters with interstellar clouds is found to be much lower than that from passing stars, and the tidal fields of interstellar clouds are not strong enough to cause comet showers of sufficient intensity to result in Earth impacts.  相似文献   

12.
Jack D. Drummond 《Icarus》1982,49(1):143-153
A compilation of theoretical meteor radiants is presented for all numbered (through 2525) asteroids which approach the Earth's orbit to within 0.20 AU. On the basis of orbital similarity, asteroids associated with current meteor streams and Prairie Network fireballs are listed; plausible associations with medieval fireball radiants are also given. The best defunct comet candidates in terms of meteoric evidence appear to be 2101 Adonis and 2201 1947XC. Asteroids which may be either extinct comets or perturbed main belt asteroids accompanied by collisional debris (represented by fireballs) are 1917 Cuyo, 2202 Pele, 2061 Anza, and 2340 Hathor. 1566 Icarus and 1981 Midas are the only asteroids whose orbits approach to less than 0.07 AU of the Earth's orbit, have a northern radiant, and still show no certain meteoric activity. The majority of Atens, Apollos, and Amors do not pass sufficiently close (<0.07 AU) to the Earth's orbit for a reasonable expectation of meteoric activity, or have radiants south of ?20° declination, requiring southern hemisphere observations.  相似文献   

13.
H. Scholl 《Icarus》1979,40(3):345-349
We integrated Chiron's orbit numerically from 6000 bc to ad 18,000. Since Chiron often approaches Saturn closely, <1 AU, the evolution of Chiron's orbit obtained by an accurate integration is only of statistical significance. Slightly different starting values may yield a completely different orbit. Therefore, a cloud of nine variational orbits surrounding Chiron's orbit was also integrated numerically in order to get an idea about possible evolutionary paths. The calculations support the conjecture of S. Oikawa and E. Everhart [Astron. J.84, 134 (1979)] that the dynamical evolution of Chiron's orbit is with a certain statistical probability similar to orbits of short-period comets.  相似文献   

14.
We consider a model of the in situ Oort cloud which is isotropic with a random distrihution of perihelia directions and angular momenta. The energy distribution adopted has a continuous range of values appropriate for long-period (>200 yr) comets. Only the tidal torque of the Galaxy is included as a perturbation of comet orbits and it is approximated to be that due to a quasi-steady state distribution of matter with disk-like symmetry. The time evolution of all orbital elements can be analytically obtained for this case. In particular, the change in the perihelion distance per orbit and its dependence on other orbital elements is readily found. We further make the assumption that a comet whose perihelion distance was beyond 15 AU during its last passage through the Solar System would have orbit parameters that are essentially unchanged by planetary perturbations. Conversely, if the prior passage was inside 15 AU we assume that planetary perturbations would have removed the comet from the in situ energy distribution accessible by the galactic tide. Comets which had their perihelia changed from beyond 15 AU to within 5 AU in a single orbit are taken to be observable. We are able to track the evolution of 106 comets as they are made observable by the galactic tidal touque. Detailed results are obtained for the predicted distribution of new (0 < 1/ < 10–4 AU–1) comets. Further, correlations between orbital elements can be studied. We present predictions of observed distributions and compare them with the random in situ results as well as with the actual observed distributions of class I comets. The predictions are in reasonable agreement with actual observations and, in many cases, are significantly different from random when perihelia directions are separated into galactic northern and southern hemispheres. However the well-known asymmetry in the north-south populations of perihelia remains to be explained. Such an asymmetry is consistent with the dominance of tidal torques today if a major stochastic event produced it in the past since tidal torques are unable to cause the migration of perihelia across the latitude barriers ±26°.6 in the disk model.  相似文献   

15.
One of the two planetary cornerstone missions of the European Space Agency is the Rosetta mission to comet 67P/Churyumov-Gerasimenko. Rosetta is a rendezvous mission with a comet nucleus, which combines an Orbiter with a Lander. It will monitor the evolution of the comet nucleus and the coma as a function of increasing and decreasing solar flux input along the comet’s pre- and post-perihelion orbit. Different instrumentations will be used in parallel, from multi-wavelength spectrometry to in-situ measurements of coma and nucleus composition and physical properties. Rosetta will go in orbit around the nucleus of its target comet 67P/Churyumov-Gerasimenko, when it is still far from the Sun and accompany the comet along its way to perihelion and beyond. In addition the Rosetta Lander Philae will land on the nucleus surface, before the comet is too active to permit such a landing (i.e. at around r = 3 AU) and examine the surface and subsurface composition of the comet nucleus as well as its physical properties.  相似文献   

16.
An analysis is presented for the photometric data on comet C/2013 A1 (Siding Spring) from observations at a large heliocentric distance (~4.1 AU). Comet C/2013 A1 (Siding Spring) displays intense activity despite the relatively large heliocentric distance. The morphology of the comet’s coma is analyzed. The following parameters are measured: the color indices V-R, the normalized spectral gradient of the reflectivity of the comet’s dust S', and the dust production rate Afρ. A numerical simulation is performed for the evolution of the comet’s orbit after a close encounter with Mars. The most probable values are obtained for the Keplerian orbital elements of the comet over a hundred-year period. The comet’s orbit remains nearly parabolic after passing the orbits of all the Solar System planets.  相似文献   

17.
This study analyzes the evolution of 2 × 105 orbits with initial parameters corresponding to the orbits of comets of the Oort cloud under the action of planetary, galactic, and stellar perturbations over 2 × 109 years. The dynamical evolution of comets of the outer (orbital semimajor axes a > 104 AU) and inner (5 × 103 < a (AU) < 104) parts of the comet cloud is analyzed separately. The estimates of the flux of “new” and long-period comets for all perihelion distances q in the planetary region are reported. The flux of comets with a > 104 AU in the interval 15 AU < q < 31 AU is several times higher than the flux of comets in the region q < 15 AU. We point out the increased concentration of the perihelia of orbits of comets from the outer cloud, which have passed several times through the planetary system, in the Saturn-Uranus region. The maxima in the distribution of the perihelia of the orbits of comets of the inner Oort cloud are located in the Uranus-Neptune region. “New” comets moving in orbits with a < 2 × 104 AU and arriving at the outside of the planetary system (q > 25 AU) subsequently have a greater number of returns to the region q < 35 AU. The perihelia of the orbits of these comets gradually drift toward the interior of the Solar System and accumulate beyond the orbit of Saturn. The distribution of the perihelia of long-period comets beyond the orbit of Saturn exhibits a peak. We discuss the problem of replenishing the outer Oort cloud by comets from the inner part and their subsequent dynamical evolution. The annual rate of passages of comets of the inner cloud, which replenish the outer cloud, in the region q < 1 AU in orbits with a > 104 AU (~ 5.0 × 10?14 yr?1) is one order of magnitude lower than the rate of passage of comets from the outer Oort cloud (~ 9.1 × 10?13 yr?1).  相似文献   

18.
Comet C/ 1857 D1 (d'Arrest) is one of a large number of comets with parabolic orbits. Given that there are sufficient observations of the comet, 299 in right ascension and 279 in declination, it proves possible to calculate a better orbit. The calculations are based on a 12th order predictor‐corrector method. The comet's orbit is highly elliptical, e = 0.99982 and, from calculated mean errors, statistically different from a parabola. The comet will not return for at least 44000 years and thus represents no immediate NEO threat (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Comet Grigg–Skjellerup must return to its perihelion on November 29, 2002. Before that, it will pass by Jupiter at a distance of 0.5 AU. A simulation of the meteor swarm that is related to this comet in origin has been made for 19 perihelia since 1907. Particles ejected from the nucleus at velocities ±40 m/s in the direction perpendicular to its radius vector are concentrated around the comet and do not approach the Earth, while for particles ejected at velocities ±60 m/s, conditions for the encounter with Jupiter are different; they approach Jupiter to a distance of 0.1 AU, then pass near the Earth's orbit at a distance of 0.01 AU. However, these particles have substantially different radiant coordinates and hardly form a flow of sufficient density.  相似文献   

20.
Comet outburst activity and the structure of solar wind streams were compared on the basis of Pioneer 10, 11, Vela 3 and IMP 7, 8 measurements at the heliocentric distance r ≈ 1–6 AU. It is shown that the solar wind velocity waves which are evolving into corotating shock waves beyond the Earth orbit may be responsible for comet outburst activity. The correlation between variations of comet outburst activity with heliocentric distance and the behavior of the solar wind velocity waves is established. The closeness of the characteristic times for the velocity waves and comet outburst activity (7–8 days at r = 1 AU) as well as the simultaneous growth of both the characteristic times with r are noted. The observed distribution of the comet outburst activity parameters during the 11-year cycle is also in good agreement with the phase distributions during the 11-year cycle of variations of the coronal hole areas and the rate of change of the sunspot area δS p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号