首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Coudé feed of the vacuum telescope (aperture D = 65 cm) at the Big Bear Solar Observatory (BBSO) is currently completely remodelled to accommodate a correlation tracker and a high‐order Adaptive Optics (AO) system. The AO system serves two imaging magnetograph systems located at a new optical laboratory on the observatory's 2nd floor. The InfraRed Imaging Magnetograph (IRIM) is an innovative magnetograph system for near‐infrared (NIR) observations in the wavelength region from 1.0 μm to 1.6 μm. The Visible‐light Imaging Magnetograph (VIM) is basically a twin of IRIM for observations in the wavelength range from 550 nm to 700 nm. Both instruments were designed for high spatial and high temporal observations of the solar photosphere and chromosphere. Real‐time data processing is an integral part of the instruments and will enhance BBSO's capabilities in monitoring solar activity and predicting and forecasting space weather.  相似文献   

2.
Today the Sun has a regular magnetic cycle driven by a dynamo action. But how did this regular cycle develop? How do basic parameters such as rotation rate, age, and differential rotation affect the generation of magnetic fields? Zeeman Doppler imaging (ZDI) is a technique that uses high‐resolution observations in circularly polarised light to map the surface magnetic topology on stars. Utilising the spectropolarimetric capabilities of future large solar telescopes it will be possible to study the evolution and morphology of the magnetic fields on a range of Sun‐like stars from solar twins through to rapidly‐rotating active young Suns and thus study the solar magnetic dynamo through time. In this article I discuss recent results from ZDI of Sun‐like stars and how we can use night‐time observations from future solar telescopes to solve unanswered questions about the origin and evolution of the Sun's magnetic dynamo (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Upcoming large solar telescopes will offer the possibility of unprecedented high resolution observations. However, during periods of non‐ideal seeing such measurements are impossible and alternative programs should be considered to best use the available observing time. We present a synoptic program, currently carried out at the Istituto Ricerche Solari Locarno (IRSOL), to monitor turbulent magnetic fields employing the differential Hanle effect in atomic and molecular lines. This program can be easily adapted for the use at large telescopes exploring new science goals, nowadays impossible to achieve with smaller telescopes. The current, interesting scientific results prove that such programs are worthwhile to be continued and expanded in the future. We calculate the approximately achievable spatial resolution at a large telescope like ATST for polarimetric measurements with a noise level below 5 × 10‐5 and a temporal resolution which is sufficient to explore variations on the granular scale. We show that it would be important to optimize the system for maximal photon throughput and to install a high‐speed camera system to be able to study turbulent magnetic fields with unprecedented accuracy (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We explore the use of remapping techniques to improve the efficiency of highly multiplexed fibre systems for astronomical spectroscopy. This is particularly important for the implementation of diverse field spectroscopy (DFS) using highly multiplexed monolithic fibre systems (MFS). DFS allows arbitrary distributions of target regions to be addressed to optimize observing efficiency when observing complex, clumpy structures such as protoclusters which will be increasingly accessible to extremely large telescopes. We show how the adoption of various types of remapping between the input and output of an MFS can allow contiguous regions of spatial elements to be selected using only simple switch arrays. Finally, we show how this compares in efficiency with integral-field and multi-object spectroscopy by simulations using artificial and real catalogues of objects. With the adoption of these mapping strategies, DFS outperforms other techniques when addressing a range of realistic target distributions. These techniques are also applicable to biomedical science and were in fact inspired by it.  相似文献   

5.
Accurate measurements of Stokes IQUV in spectral lines is required for precise reconstruction of stellar magnetic field geometries with Zeeman‐Dopper imaging. Spectral Zeeman features are intrinsically weak and subjected to a number of instrumental uncertainties. The aim of this work is to study the details of the instrumental uncertainties in the Stokes IQUV measurements in spectral lines and ways of their reduction. We make a practical comparison of the polarimetric performances of two high‐resolution échelle spectropolarimeters, namely SOFIN at the NOT, and HARPS at ESO. We show the residual spectra for both instruments to characterize the cross‐talk between the observed Stokes parameters. We employ a self‐calibrating least‐squares fit to eliminate some of the polarization uncertainties to derive the full Stokes vector from stellar spectra (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We lay out the scientific rationale for and present the instrumental requirements of a high‐resolution adaptiveoptics Echelle spectrograph with two full‐Stokes polarimeters for the Large Binocular Telescope (LBT) in Arizona. Magnetic processes just like those seen on the Sun and in the space environment of the Earth are now well recognized in many astrophysical areas. The application to other stars opened up a new field of research that became widely known as the solarstellar connection. Late‐type stars with convective envelopes are all affected by magnetic processes which give rise to a rich variety of phenomena on their surface and are largely responsible for the heating of their outer atmospheres. Magnetic fields are likely to play a crucial role in the accretion process of T‐Tauri stars as well as in the acceleration and collimation of jet‐like flows in young stellar objects (YSOs). Another area is the physics of active galactic nucleii (AGNs) , where the magnetic activity of the accreting black hole is now believed to be responsible for most of the behavior of these objects, including their X‐ray spectrum, their notoriously dramatic variability, and the powerful relativistic jets they produce. Another is the physics of the central engines of cosmic gamma‐ray bursts, the most powerful explosions in the universe, for which the extreme apparent energy release are explained through the collimation of the released energy by magnetic fields. Virtually all the physics of magnetic fields exploited in astrophysics is somehow linked to our understanding of the Sun's and the star's magnetic fields. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In this review, we look back upon the literature, which had the GREGOR solar telescope project as its subject including science cases, telescope subsystems, and post‐focus instruments. The articles date back to the year 2000, when the initial concepts for a new solar telescope on Tenerife were first presented at scientific meetings. This comprehensive bibliography contains literature until the year 2012, i.e., the final stages of commissioning and science verification. Taking stock of the various publications in peer‐reviewed journals and conference proceedings also provides the “historical” context for the reference articles in this special issue of Astronomische Nachrichten/Astronomical Notes (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The NST (New Solar Telescope), a 1.6 m clear aperture, off‐axis telescope, is in its commissioning phase at Big Bear Solar Observatory (BBSO). It will be the most capable, largest aperture solar telescope in the US until the 4 m ATST (Advanced Technology Solar Telescope) comes on‐line late in the next decade. The NST will be outfitted with state‐of‐the‐art scientific instruments at the Nasmyth focus on the telescope floor and in the Coudé Lab beneath the telescope. At the Nasmyth focus, several filtergraphs already in routine operation have offered high spatial resolution photometry in TiO 706 nm, Hα 656 nm, G‐band 430 nm and the near infrared (NIR), with the aid of a correlation tracker and image reconstruction system. Also, a Cryogenic Infrared Spectrograph (CYRA) is being developed to supply high signal‐to‐noise‐ratio spectrometry and polarimetry spanning 1.0 to 5.0 μm. The Coudé Lab instrumentation will include Adaptive Optics (AO), InfraRed Imaging Magnetograph (IRIM), Visible Imaging Magnetograph (VIM), and Fast Imaging Solar Spectrograph (FISS). A 308 sub‐aperture (349‐actuator deformable mirror) AO system will enable nearly diffraction limited observations over the NST's principal operating wavelengths from 0.4 μm through 1.7 μm. IRIM and VIM are Fabry‐Pérot based narrow‐band tunable filters, which provide high resolution two‐dimensional spectroscopic and polarimetric imaging in the NIR and visible respectively. FISS is a collaboration between BBSO and Seoul National University focussing on chromosphere dynamics. This paper reports the up‐to‐date progress on these instruments including an overview of each instrument and details of the current state of design, integration, calibration and setup/testing on the NST (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
10.
Two‐dimensional spectrograms were obtained with the Vacuum Tower Telescope, Tenerife, in order to study small‐scale structures and faculae on the Sun. Using the speckle reconstruction method, we obtain high‐resolution images and wavelength scans. Magnetic fields can be studied from Stokes V profiles, and velocity maps are gained by the Doppler shift of the center of gravity of Stokes I. Here some results about small‐scale structures and their magnetic fields are shown.  相似文献   

11.
The 1.5 m telescope GREGOR opens a new window to the understanding of solar small‐scale magnetism. The first light instrumentation includes the Gregor Fabry Pérot Interferometer (GFPI), a filter spectro‐polarimeter for the visible wavelength range, the GRating Infrared Spectro‐polarimeter (GRIS) and the Broad‐Band Imager (BBI). The excellent performance of the first two instruments has already been demonstrated at the Vacuum Tower Telescope. GREGOR is Europe’s largest solar telescope and number 3 in the world. Its all‐reflective Gregory design provides a large wavelength coverage from the near UV up to at least 5 microns. The field of view has a diameter of 150″. GREGOR is equipped with a high‐order adaptive optics system, with a subaperture size of 10 cm, and a deformable mirror with 256 actuators. The science goals are focused on, but not limited to, solar magnetism. GREGOR allows us to measure the emergence and disappearance of magnetic flux at the solar surface at spatial scales well below 100 km. Thanks to its spectro‐polarimetric capabilities, GREGOR will measure the interaction between the plasma flows, different kinds of waves, and the magnetic field. This will foster our understanding of the processes that heat the chromosphere and the outer layers of the solar atmosphere. Observations of the surface magnetic field at very small spatial scales will shed light on the variability of the solar brightness (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The integration and verification phase of the GREGOR telescope reached an important milestone with the installation of the interim 1 m SolarLite primary mirror. This was the first time that the entire light path had seen sunlight. Since then extensive testing of the telescope and its subsystems has been carried out. The integration and verification phase will culminate with the delivery and installation of the final 1.5 m Zerodur primary mirror in the summer of 2010. Observatory level tests and science verification will commence in the second half of 2010 and in 2011. This phase includes testing of the main optics, adaptive optics, cooling and pointing systems. In addition, assuming the viewpoint of a typical user, various observational modes of the GREGOR Fabry‐Pérot Interferometer (GFPI), the Grating Infrared Spectrograph (GRIS), and high‐speed camera systems will be tested to evaluate if they match the expectations and science requirements. This ensures that GREGOR will provide high‐quality observations with its combination of (multi‐conjugate) adaptive optics and advanced post‐focus instruments. Routine observations are expected for 2012 (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
The methods of exact optics are here extended to cover the design of lens and mirror systems. Power series are given for the shapes of both Schmidt corrector plates and their complementary almost spherical mirrors. Their off-axis images are analysed.
A meniscus glass corrector extends the prime focus field of an f /3.333 reflector with subarcsecond images by a factor greater than 10.  相似文献   

15.
16.
The new Solar telescope GREGOR is designed to observe small‐scale dynamic magnetic structures below a size of 70 km on the Sun with high spectral resolution and polarimetric accuracy. For this purpose, the polarimetric concept of GREGOR is based on a combination of post‐focus polarimeters with pre‐focus equipment for high precision calibration. The Leibniz‐Institute for Astrophysics Potsdam developed the GREGOR calibration unit which is an integral part of the telescope. We give an overview of the function and design of the calibration unit and present the results of extensive testing series done in the Solar Observatory “Einsteinturm” and at GREGOR (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The Cassegrain‐Teleskop‐Kamera (CTK‐II) and the Refraktor‐Teleskop‐Kamera (RTK) are two CCD‐imagers which are operated at the 25 cm Cassegrain and 20cm refractor auxiliary telescopes of the University Observatory Jena. This article describes the main characteristics of these instruments. The properties of the CCD‐detectors, the astrometry, the image quality, and the detection limits of both CCD‐cameras, as well as some results of ongoing observing projects, carried out with these instruments, are presented. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
A high‐order Adaptive Optical (AO) system for the 65 cm vacuum telescope of the Big Bear Solar Observatory (BBSO) is presented. The Coudé‐exit of the telescope has been modified to accommodate the AO system and two imaging magnetograph systems for visible‐light and near infrared (NIR) observations. A small elliptical tip/tilt mirror directs the light into an optical laboratory on the observatory's 2nd floor just below the observing floor. A deformable mirror (DM) with 77 mm diameter is located on an optical table where it serves two wave‐front sensors (WFS), a correlation tracker (CT) and Shack‐Hartman (SH) sensor for the high‐order AO system, and the scientific channels with the imaging magnetographs. The two‐axis tip/tilt platform has a resonance frequency around 3.3 kHz and tilt range of about 2 mrad, which corresponds to about 25″ in the sky. Based on 32 × 32 pixel images, the CT detects image displacements between a reference frame and real‐time frames at a rate of 2 kHz. High‐order wave‐front aberrations are detected in the SH WFS channel from slope measurements derived from 76 sub‐apertures, which are recorded with 1,280 × 1,024 pixel Complex Metal Oxide Semiconductor (CMOS) camera manufactured by Photobit camera. In the 4 × 4 pixel binning mode, the data acquisition rate of the CMOS device is more than 2 kHz. Both visible‐light and NIR imaging magnetographs use Fabry‐Pérot etalons in telecentric configurations for two‐dimensional spectro‐polarimetry. The optical design of the AO system allows using small aperture prefilters, such as interference or Lyot filters, and 70 mm diameter Fabry‐Pérot etalons covering a field‐of‐view (FOV) of about 180″ × 180″.  相似文献   

19.
The Sun is the only star for which individual surface features can be observed directly. For other stars, the properties of starspots, stellar rotation, stellar flares, etc, are derived indirectly via variation of star‐integrated spectral line profiles or their luminosity measurements. Solar disk‐integrated and disk‐resolved observations allow for investigations of the contribution of individual solar disk features to sun‐as‐a‐star spectra. Here, we provide a brief overview of three sun‐as‐a‐star programs, currently in operation, and describe recent improvements in observations and data reduction for the Integrated Sunlight Spectrometer (ISS), one of three instruments comprising the Synoptic Optical Long‐term Investigations of the Sun (SOLIS) system. Next, we discuss studies employing sun‐as‐a‐star observations (including Ca II K line as proxy for total unsigned magnetic flux and 2800 MHz radio flux) as well as the effects of flares on solar disk‐integrated spectra. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The GREGOR Fabry‐Pérot Interferometer (GFPI) is one of three first‐light instruments of the German 1.5‐meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated mounting. Thanks to its large‐format, high‐cadence CCD detectors with sophisticated computer hard‐ and software it is capable of scanning spectral lines with a cadence that is sufficient to capture the dynamic evolution of the solar atmosphere. The field‐of‐view (FOV) of 50″×38″is well suited for quiet Sun and sunspot observations. However, in the vector spectropolarimetric mode the FOV reduces to 25″×38″. The spectral coverage in the spectroscopic mode extends from 530–860 nm with a theoretical spectral resolution of R ≈250 000, whereas in the vector spectropolarimetric mode the wavelength range is at present limited to 580–660 nm. The combination of fast narrow‐band imaging and post‐factum image restoration has the potential for discovery science concerning the dynamic Sun and its magnetic field at spatial scales down to ∼50 km on the solar surface (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号