首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Using a sample of 454 Mira light curves from the ASAS survey we study the shape of the light variations in this kind of variable stars. Opposite to earlier studies, we choose a general approach to identify any deviation from a sinusoidal light change. We find that about 30% of the studied light curves show a significant deviation from the sinusoidal reference shape. Among these stars two characteristic light curve shapes of comparable frequency could be identified. Some hint for a connection between atmospheric chemistry and light curve shape was found, but beside that no or only very weak relations between light curve shape and other stellar parameters seem to exist (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We aim to compare properties of early‐type post‐asymptotic giant‐branch (post‐AGB) stars, including normal first‐time B‐type post‐AGB stars, and extreme helium stars (EHes). Hipparcos photometry for 12 post‐AGB stars and 7 EHe stars has been analyzed; 5 post‐AGB stars are clearly variable. The Hipparcos data are not sufficiently sensitive to detect variability in any of the EHes. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We investigate the question whether there is a real difference in the light change between stars classified as semiregular (SRV) or irregular (Lb) variables by analysing photometric light curves of 12 representatives of each class. Using Fourier analysis we try to find a periodic signal in each light curve and determine the S/N of this signal. For all stars, independent of their variability class we detect a period above the significance threshold. No difference in the measured S/N between the two classes could be found. We propose that the Lb stars can be seen as an extension of the SRVs towards shorter periods and smaller amplitudes. This is in agreement with findings from other quantities which also showed no marked difference between the two classes (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
XMM‐Newton and Chandra have boosted our knowledge about the X‐ray emission of early‐type stars (spectral types OB and Wolf‐Rayet). However, there are still a number of open questions that need to be addressed in order to fully understand the X‐ray spectra of these objects. Many of these issues require high‐resolution spectroscopy or monitoring of a sample of massive stars. Given the moderate X‐ray brightness of these targets, rather long exposure times are needed to achieve these goals. In this contribution, we review our current knowledge in this field and present some hot topics that could ideally be addressed with XMM‐Newton over the next decade. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Ultra‐cool dwarf variability studies have matured into a multi‐wavelength, multi‐method probe of ultra‐cool atmospheres. They have the unique potential to address the question of heterogeneity on the ultra‐cool dwarf surface. The constraints on the models that we can gain though time‐sensitive observations are however hampered by the weak signal detected so far, and the limitations of current atmospheric models, otherwise quite successful, to predict dynamical, or even static 2‐D atmosphere characteristics. Here I review the situation of the ultra‐cool dwarf variability studies: possible sources of variability; methods, their limitations and their results; tentative interpretation and prospects. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The semi‐regular variable star RU Vulpeculae (RU Vul) is being observed visually since 1935. Its pulsation period and amplitude are declining since ∼1954. A leading hypothesis to explain the period decrease in asymptotic giant branch (AGB) stars such as RU Vul is an ongoing flash of the He‐burning shell, also called a thermal pulse (TP), inside the star. In this paper, we present a CCD photometric light curve of RU Vul, derive its fundamental parameters, and test if the TP hypothesis can describe the observed period decline. We use CCD photometry to determine the present‐day pulsation period and amplitude in three photometric bands, and high‐resolution optical spectroscopy to derive the fundamental parameters. The period evolution of RU Vul is compared to predictions by evolutionary models of the AGB phase. We find that RU Vul is a metal‐poor star with a metallicity [M/H] = –1.59 ± 0.05 and an effective surface temperature of Teff = 3634 ± 20 K. The low metallicity of RU Vul and its kinematics indicate that it is an old, low‐mass member of the thick disc or the halo population. The present day pulsation period determined from our photometry is ∼108 d, the semiamplitude in the V ‐band is 0.39 ± 0.03 mag. The observed period decline is found to be well matched by an evolutionary AGB model with stellar parameters comparable to those of RU Vul. We conclude that the TP hypothesis is in good agreement with the observed period evolution of RU Vul. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We present preliminary results of our X‐shooter survey in star forming regions. In this contribution we focus on subsamples of young stellar and sub‐stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X‐shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low‐mass (VLM) and sub‐stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X‐shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near‐IR, avoiding ambiguities due to possible YSO variability (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
9.
In this paper, we develop a spectral differential technique with which the dynamical mass of low‐mass companions can be found. This method aims at discovering close companions to late‐type stars by removing the stellar spectrum through a subtraction of spectra obtained at different orbital phases and discovering the companion spectrum in the difference spectrum in which the companion lines appear twice (positive and negative signal). The resulting radial velocity difference of these two signals provides the true mass of the companion, if the orbital solution for the radial velocities of the primary is known. We select the CO line region in the K band for our study, because it provides a favourable star‐to‐companion brightness ratio for our test case GJ 1046, an M2V dwarf with a low‐mass companion that most likely is a brown dwarf. Furthermore, these lines remain largely unblended in the difference spectrum so that the radial velocity amplitude of the companion can be measured directly. Only if the companion rotates rapidly and has a small radial velocity due to a high mass, does blending occur for all lines so that our approach fails. We also consider activity of the host star, and show that the companion difference flux can be expected to have larger amplitude than the residual signal from the active star so that stellar activity does not inhibit the determination of the companion mass. In addition to determining the companion mass, we restore the single companion spectrum from the difference spectrum using singular value decomposition. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Charge exchange occurs between charged ions with enough energy to overcome Coulomb repulsion, a condition satisfied for collisions at velocities like those of the winds driven from hot stars by radiation pressure. X‐ray line ratios in some hot stars are inconsistent with those expected from thermal plasmas excited by electron impact. Ion‐ion interactions including charge exchange might be responsible instead if high‐velocity collisions between ions are enabled by the presence of a magnetic field in the wind, suggesting a possible alternative mechanism to the widely accepted instability‐driven shock model. The nature of a plasma in charge‐exchange equilibrium is yet to be determined (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The first CCD photometric investigation of the open cluster NGC 7296 up to now was performed within the narrow band Δa photometric system, which enables us to detect peculiar objects. A deeper investigation of that cluster followed, using the standard BV R ‐Bessel filter set. The age and E (BV ) was determined independently to log t = 8.0 ± 0.1 and 0.15 ± 0.02, respectively by using Δa and broadband photometry. In total five Be/Ae objects and two metal‐weak stars showing significant negative Δa ‐values as well as one classical chemically peculiar star could be identified within that intermediate age open cluster. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The Herbig Ae/Be stars are intermediate mass pre‐main sequence stars that bridge the gap between the low mass T Tauri stars and the Massive Young Stellar Objects. In this mass range, the acting star forming mechanism switches from magnetically controlled accretion to an as yet unknown mechanism, but which is likely to be direct disk accretion onto the star. We observed a large sample of Herbig Ae/Be stars with X‐shooter to address this issue from a multi‐wavelength perspective. It is the largest such study to date, not only because of the number of objects involved, but also because of the large wavelength coverage from the blue to the near‐infrared. This allows many accretion diagnostics to be studied simultaneously. By correlating the various properties with mass, temperature and age, we aim to determine where and whether the magnetically controlled mass accretion mechanism halts and the proposed direct disk accretion takes over. Here, we will give an overview of the background, present some observations and discuss our initial results. We will introduce a new accretion diagnostic for the research of Herbig Ae/Be stars, the HeI 1.083 μm line (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
Variability studies are an important tool to investigate key properties of stars and brown dwarfs. From photometric monitoring we are able to obtain information about rotation and magnetic activity, which are expected to change in the mass range below 0.3 solar masses, since these fully convective objects cannot host a solar‐type dynamo. On the other hand, spectroscopic variability information can be used to obtain a detailed view on the accretion process in very young objects. In this paper, we report about our observational efforts to analyse the variability and rotational evolution of young brown dwarfs and very low‐mass stars. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We have investigated the characteristics of the distribution of neutron exposures (“DNE” hereafter) in the He-shell nucleosynthesis regions in the model of s-process nucleosynthesis in low-mass AGB (Asymptotic Giant Branch) stars in 13C radiatively burning conditions. The result indicates that although the DNE obtained with this model is still approximately exponential, like those of the previous convective s-process scenarios, the relation between the neutron exposure Δτ of each pulse and the mean neutron exposure τ0 is no longer τ0 = Δτ/ln r, rather, it is now approximately τ0 = Δτ/ ln{q[1.0020 + 0.6602(r  q) + 4.6125(r  q)2 10.8962(r  q)3+ 13.9138(r  q)4]} (r is the overlap factor, q is the mass ratio of the 13C shell to the He shell). This formula unifies the stellar model of radiative s-process with the classical model from the angle of DNE.  相似文献   

16.
We find that five sources listed in the new carbon star catalog are not really carbon-rich objects but oxygen-rich stars, because they all have the prominent 10μm silicate features in absorption and the 1612MHz OH maser emission or/and the SiO molecular features. These objects were considered as carbon stars in the catalog based only on their locations in the infrared two-color diagram. Therefore to use the infrared two-color diagram to distinguish carbon-rich stars from oxygenrich stars must be done with caution, because, in general, it has only a statistical meaning.  相似文献   

17.
Evolutionary and atmospheric models have become available for young ultralow‐mass objects. These models are being used to determine fundamental parameters from observational properties. TiO bands are used to determine effective temperatures in ultralow‐mass objects, and together with Na‐ and K‐lines to derive gravities at the substellar boundary. Unfortunately, model calibrations in (young) ultralow‐mass objects are rare. As a first step towards a calibration of synthetic spectral features, I show molecular bands of TiO, which is a main opacity source in late M‐dwarfs. The TiO ε ‐band at 8450 Å is systematically too weak. This implies that temperatures determined from that band are underestimated, and I discuss implications for determining fundamental parameters from high resolution spectra. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Abundance analysis of the cool extreme helium (EHe) star LSS 3378 is presented. The abundance analysis is done using local thermodynamic equilibrium (LTE) line formation and LTE model atmospheres constructed for EHe stars.
The atmosphere of LSS 3378 shows evidence of H-burning, He-burning, and s -process nucleosynthesis. The derived abundances of iron peak and α-elements indicate the absence of selective fractionation or any other processes that can distort chemical composition of these elements. Hence, the Fe abundance [log ε(Fe) = 6.1] is adopted as an initial metallicity indicator. The measured abundances of LSS 3378 are compared with those of R Coronae Borealis (RCB) stars and with rest of the EHe stars as a group.  相似文献   

19.
20.
Published data for large-amplitude asymptotic giant branch variables in the Large Magellanic Cloud (LMC) are re-analysed to establish the constants for an infrared ( K ) period–luminosity relation of the form   M K =ρ[log  P − 2.38]+δ  . A slope of  ρ=−3.51 ± 0.20  and a zero-point of  δ=−7.15 ± 0.06  are found for oxygen-rich Miras (if a distance modulus of 18.39 ± 0.05 is used for the LMC). Assuming this slope is applicable to Galactic Miras we discuss the zero-point for these stars using the revised Hipparcos parallaxes together with published very long baseline interferometry (VLBI) parallaxes for OH masers and Miras in globular clusters. These result in a mean zero-point of  δ=−7.25 ± 0.07  for O-rich Galactic Miras. The zero-point for Miras in the Galactic bulge is not significantly different from this value.
Carbon-rich stars are also discussed and provide results that are consistent with the above numbers, but with higher uncertainties. Within the uncertainties there is no evidence for a significant difference between the period–luminosity relation zero-points for systems with different metallicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号