首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photographs of the corona in the continuum spectrum (580–700 nm) have been obtained with a doublet camera (F=4m) through rotating sector polarizers with the vibrational directions oriented radially and tangentially to the solar limb. Isophotes of the total emission and its polarized component, as well as diagrams giving the degree of polarization for the (K+F)-corona and the electron corona proper (P K), have been plotted up to the distance of 1R from the limb. In some inner regions the polarizationP K exceeds the highest value possible for Thomson scattering under the given conditions. The reality of this anomally is dubious; systematic photometrical errors may account for it. Three-dimensional forms of 15 different coronal rays have been ascertained by comparing the course of polarization along the rays to the family of Baumach curves. The rays are found to deflect substantially from the radial directions out of the plane of the sky. Mean values of the coronal brightness and polarization versus the distance from the Sun have been determined. Contrary to well-known models (Van de Hulst) the mean polarization of the electron corona (P K) decreases with distance after reaching the maximum (50%) at (1.4–1.6)R from the Sun's centre. This decrease can be explained by deflection of the streamers from radial directions.  相似文献   

2.
3.
We describe the technique and results of modelling the solar radio emission during the maximum phase of the solar eclipse of March 29, 2006 on the RATAN-600. The aim of modelling is to refine the brightness temperature of the solar corona at the distances up to two solar radii from the center of the optical disk of the Sun. We obtained the distribution of brightness temperature in the vicinity of the coronal hole above the solar North Pole at the wavelength of 13 cm. The results of modelling showed that brightness temperatures of the coronal hole at the distances greater than 1.02 RC (here RC is the radius of the optical disk of the Sun) is substantially lower than the expected average brightness temperature of a typical coronal hole, and that of the quiescent Sun (below 30000 K) at the wavelength of 13 cm. The classical Baumbach-Allen formula for electron density in a spherically symmetric corona agrees with the results of observations starting at distances of (1.4–1.5) RC.  相似文献   

4.
The nonlinear propagation of Alfvén waves on open solar magnetic flux tubes is considered. The flux tubes are taken to be vertical and axisymmetric, and they are initially untwisted. The Alfvén waves are time-dependent axisymmetric twists. Their propagation into the chromosphere and corona is investigated by solving numerically a set of nonlinear time-dependent equations, which couple the Alfvén waves into motions parallel to the initial magnetic field (motion in the third coordinate direction is artificially suppressed). The principal conclusions are: (1) Alfvén waves can steepen into fast shocks in the chromosphere. These shocks can pass through the transition region into the corona, and heat the corona. (2) As the fast shocks pass through the transition region, they produce large-velocity pulses in the direction transverse to B o. The pulses typically have amplitudes of 60 km s–1 or so and durations of a few tens of seconds. Such features may have been observed, suggesting that the corona is in fact heated by fast shocks. (3) Alfvén waves exhibit a strong tendency to drive upward flows, with many of the properties of spicules. Spicules, and the observed corrugated nature of the transition region, may therefore be by-products of magnetic heating of the corona. (4) It is qualitatively suggested that Alfvén waves may heat the upper chromosphere indirectly by exerting time-dependent forces on the plasma, rather than by directly depositing heat into the plasma.  相似文献   

5.
The photometry of coronal colour negatives is carried out. The films were obtained at the March 7, 1970 and July 10, 1972 eclipses. A distribution of the coronal brightness in the red (635 nm), green (545 nm), and blue (455 nm) wavelength intervals up to distances of (6–7)R is deduced (Figure 1). Colour indexes of the corona (the emission ratio red/blue - C rb and green/blue - C gb) have been obtained. We assume C rb = C gb = 1 in the inner corona (2R ). The maximum of colour indexes of the 1970 corona are at the distances of about 4R (C rb 1.9 and C gb 1.7). A slight reddening within the limits of the errors was found in the 1972 corona.There is a correlation between colour indexes and diffuse external reinforcements (RED) brightness. The analysis of the results leads to the conclusion that RED consists of dust grains with radii 1 m. RED brightness is evaluated to be 4 × 10-10 B . There is 1 grain of dust in the elementary volume with cross section of 1 cm2 along the line of sight. The intensity of dust emission in wavelength interval 10 m deduced by the authors is approximately 1 W cm-2 s m–1. That is in agreement with Mankin et al. (1974) and Léna et al. (1974) observations. The whole dust mass of RED is 1% of the coronal gas mass contained within RED region. The dust grain number density is about 10-11 cm-3.Determinations of the colour of the solar corona have been made by a number of scientists (Tikhov, 1940, 1957; Allen, 1946; Blackwell, 1952; Michard, 1956; Sharonov, 1958; Nay et al., 1961). The corona colour was found to be somewhat redder than the Sun's. However this question is not finally settled to date.  相似文献   

6.
We study the sources and components of the solar-wind spatial stream structure at the maximum of the solar cycle 23. In our analysis, we use several independent sets of experimental data: radio-astronomical observations of scattered radiation from compact sources with the determination of the distance from the Sun to the inner boundary of the transonic-flow transition region (Rin); calculated data on the magnetic-field intensity and structure in the solar corona, in the solar-wind source region, obtained from optical measurements of the photospheric magnetic-field intensity at the Stanford Solar Observatory (USA); and observations of the white-light corona with the LASCO coronograph onboard the SOHO spacecraft. We show that at the solar maximum, low-speed streams with a transition region located far from the Sun dominate in the solar-wind structure. A correlation analysis of the location of the inner boundary Rin and the source-surface magnetic-field intensity |B R | on a sphere R=2.5RS (RS is the solar radius) has revealed the previously unknown lowest-speed streams, which do not fit into the regular relationship between the parameters Rin and |B R |. In the white-light corona, the sources of these streams are located near the dark strip, a coronal region with a greatly reduced density; the nonstandard parameters of the streams probably result from the interaction of several discrete sources of different types.  相似文献   

7.
The scattering of radiowaves in the outer solar corona is discussed. Results are given of the decametric wave observations. In the theoretical analysis both regular refraction and the gradients in the electron density fluctuations are considered. The theory is in satisfactory agreement with the experimental data. From their comparison the ratio n=(l r /l t ) is deduced of the correlation scales in the radial (l r )and transverse directions. This value is not equal to the ratio of the observed distribution dimensions. The frequency dependence of the angular spectrum rms width is not λ2 at longer wavelengths. At small separations from the Sun, however, the rms angular size cannot serve as the only characteristic of the spectrum, the latter being non-Gaussian. Referred to in the paper as the Ukr. IRE.  相似文献   

8.
The 1968 Abastumani Astrophysical Observatory Solar Eclipse Expedition obtained photographic records of the polarization and intensity of the solar corona on September 22 from a site of the South Urals (Western Siberia). A photometric study of the corona was carried out. Polarization has been computed both in a total corona and in some of its streamers. The coronal intensity I k and I F components are separated. Electron concentrations and temperatures are computed.  相似文献   

9.
The heating of the solar corona has been a fundamental astrophysical issue for over sixty years. Over the last decade in particular, space-based solar observatories (Yohkoh, SOHO and TRACE) have revealed the complex and often subtle magnetic-field and plasma interactions throughout the solar atmosphere in unprecedented detail. It is now established that any energy release mechanism is magnetic in origin - the challenge posed is to determine what specific heat input is dominating in a given coronal feature throughout the solar cycle. This review outlines a range of possible magnetohydrodynamic (MHD) coronal heating theories, including MHD wave dissipation and MHD reconnection as well as the accumulating observational evidence for quasi-periodic oscillations and small-scale energy bursts occurring in the corona. Also, we describe current attempts to interpret plasma temperature, density and velocity diagnostics in the light of specific localised energy release. The progress in these investigations expected from future solar missions (Solar-B, STEREO, SDO and Solar Orbiter) is also assessed.Received: 6 February 2003, Published online: 14 November 2003 Correspondence to: R. W. Walsh  相似文献   

10.
During a balloon flight in France on September 13, 1971, at altitude 32 000 m, the solar corona was cinematographed from 2 to 5R during 5 hr, with an externally occulted coronagraph.Motions in coronal features, when they occur, exhibit deformations of structures with velocities not exceeding a few 10 km s–1; several streamers were often involved simultaneously; these variations are compatible with magnetic changes or sudden reorganizations of lines of forces.Intensity and polarization measurements give the electron density with height in the quiet corona above the equator. Electron density gradient for one of the streamers gives a temperature of 1.6 × 106 K and comparisons with the on-board Apollo 16 coronal observation of 31 July, 1971 are compatible with the extension of this temperature up to 25 R bd.Three-dimensional structures and localizations of the streamers are deduced from combined photometry, polarimetry and ground-based K coronametry. Three of the four coronal streamers analysed have their axis bent with height towards the direction of the solar rotation, as if the upper corona has a rotation slightly faster than the chromosphere.  相似文献   

11.
Lewis  D.J.  Simnett  G.M. 《Solar physics》2001,200(1-2):75-89
We present data obtained from the Large Angle Spectrometric Coronagraph (LASCO) aboard the Solar and Heliospheric Observatory spacecraft (SOHO). We compare the rotation of the white-light corona as seen during a period approaching the maximum of the solar 11-year activity cycle with that observed in a previous study made at solar minimum (Lewis et al., 1999). We find no fundamental difference in the rotation characteristics and again find the white-light corona to be radially rigid. The rotation has been observed at altitudes from 2.5 R to beyond 15 R and as predicted in the previous study, the greater level of complexity in the coronal structures and their relatively rapid evolution has not allowed periods to be determined as accurately as at solar minimum. Our best estimate of the mean synodic rotation period during the period of study (7 March 1999 to 6 March 2000) is 27.5±0.3 days. This is consistent with the relatively small scale structures associated with the surface activity imposing their rotation signature on an otherwise axisymmetric background corona. The short-lived nature of the small scale coronal morphologies at this epoch has made a thorough analysis of the latitudinal variation difficult, although we again find some evidence for the white light corona's increased latitudinal rigidity when compared to the underlying photosphere. However, we again note how projection effects create difficulties in confirming the exact degree of rigidity in the corona at these altitudes and a very simple coronal model is used to highlight how the appearance of lower latitude features in projection can contaminate the coronal signal observed at other latitudes. We also note evidence for a sudden and apparently fundamental change to the global coronal morphology on the approach to solar maximum and suggest this may represent the time beyond which the classical solar dipole ceases to dominate the coronal field.  相似文献   

12.
It has been shown by Molodensky (1973), that precise measurements of the position of the plane of polarization in the corona may allow us to observe overthermal electrons in the solar corona. For such measurements during the eclipse of 10 July 1972, a method based on the photographic recordings of the corona by means of a cineset and with an automatically rotating polaroid has been developed. A technique has also been developed for determining the position of the plane of polarization by means of isophotes obtained with polarization filters. This technique uses the photometric data for determining phase shifts between the apparent intensity variation curve and a similar curve expressing the rotation phase of the polaroid. The results of the measurements for h/r =0.5 to 0.9 allow us to conclude that:
  1. The plane of polarization (E-vector position) coincides very exactly with the tangential direction in the region of N-W limb. The maximum deviations of this plane amounts to 1–1.5°, and the mean-square deviations in this region amount to ~0,3° at h/R ≈1. This coronal region was the least active one and there were no spots there.
  2. The corona near the E limb consisted of two ‘fans’ divided by a thin beam. In that region some deviations of the plane of polarizarion from the tangential direction were revealed. Those deviations were of the order of 3°. During the time of the eclipse there were some groups of spots behind the E limb (but close to this limb). The observed deviations were apparently connected with those groups.
  3. Calculations have been made of the turn of the plane of polarization caused by an inhomogeneity in the radiation field from the photosphere and due to the presence of spots. The effect qualitatively coincided with that shown by the measurements.
  相似文献   

13.
We consider two types of streamer structures observed in the solar atmosphere. Structures of the first type are medium-scale configurations with scale lengths comparable to the scale height in the corona, kT/mg = 100 thousand km, which appear as characteristic plasma structures in the shape of a dome surrounding the active region with thin streamers emanating from its top. In configurations of this type, gravity plays no decisive role in the mass distribution. The plasma density is constant on magnetic surfaces. Accordingly, the structure of the configurations is defined by the condition ψ = const, where ψ is the flux function of the magnetic field. Structures of the second type are large-scale configurations (coronal helmets, loops, and streamers), which differ from the above structures in that their scale lengths exceed the scale height in the corona. For them, gravity plays a decisive role; as a result, instead of the magnetic surfaces, the determining surface is BgradΦ = 0. We constructed three-dimensional images of these structures. Some of the spatial curves called “visible contours” of the Br = 0 surface are shown to be brightest in the corona. We assume that the helmet boundaries and polar plumes are such curves.  相似文献   

14.
M. Waldmeier 《Solar physics》1971,20(2):332-344
One of the most outstanding feature of solar activity in the decade 1959–1969 was a very strong asymmetry on the two hemispheres. On the northern hemisphere spots, faculae and prominences were more numerous and the white light corona was brighter than on the southern hemisphere. This happened as well in the main zone as in the polar zone. The green coronal line too was brighter on the northern hemisphere, but the intensity of the red line was asymmetric in the opposite sense. From this behaviour it follows that over the more active hemisphere the corona is denser and hotter. Between density N e and temperature T holds the relation: N e = 10–10 T 3. The real asymmetry was strengthened by a phase difference of the two hemispheres. This phase shift is subject to a long period that contains 8 eleven-year cycles. The intensity of the individual cycles follows the same long period. With low maxima of solar activity the northern hemisphere precedes, with high maxima the southern hemisphere (Figure 3).Astronomische Mitteilungen der Eidgenössischen Sternwarte Zürich, No. 302.  相似文献   

15.
It is generally believed that the heating of the solar corona is caused by waves originating in the photosphere and propagating into the corona where their energy is dissipated. The medium through which these waves propagate is in general permeated by magnetic fields complicating the behaviour of this propagation considerably. We have therefore analysed the wave motions in a plasma permeated by constant magnetic and gravitational fields. In general, three waves modes were found, which we called the + mode, –mode, and the Alfvén mode. Each mode was found to be strongly coupled to each of the three kinds of motion; acoustic, gravity, and hydromagnetic. However, the Alfvén mode was found to be separable from the dispersion relation, and therefore independent of compressibility and gravity. The local dispersion relation is derived and expressed in nondimensional form independent of the constants that describe a particular atmosphere. From the dispersion relation one can show that rising waves propagate either with a constant or a growing wave amplitude depending on the magnitudes and directions of the gravitational field, magnetic field, and the wave vector. The variation of the density with height is taken into account by a generalized W.K.B. method. Equations are found which give the height at which wave reflection occurs, giving the upper bound for possible wave propagation.Work supported by the National Aeronautics and Space Administration under Research Grant NGR-29-001-016.On leave of absence from the Desert Research Institute and Department of Physics, University of Nevada, Reno, Nevada, U.S.A.  相似文献   

16.
The large-scale density structure of the white-light solar corona has been compared to the organization of the solar magnetic field as identified by the appearance of neutral lines in the photosphere in order to examine whether any consistent relationship exists between the two. Data from the High Altitude Observatory's Mk-III K-coronameter have been used to describe the coronal density structure, and observations from several sources, beginning with observations from the University of Hawaii Stokes Polarimeter have been used to establish the magnetic field distribution. Stanford magnetograms as well as the neutral line inferred from potential field models have also been examined. During the period covering Carrington rotations 1717 to 1736 brightness enhancements in the low corona tend to lie over the global neutral sheet identified in the photospheric magnetic field. The brightest of these enhancements, however, are associated with neutral lines through active regions. These associations are not 1-1, but do hold both in stable and evolving conditions of the corona. We find a significant number of long-lived neutral lines, including filaments seen in H, for which there are not coronal enhancements.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
We consider the adequacy of various solar coronal heating models. We show that the correlation between the intensity of the coronal Fe XIV 530.5 nm green line and the calculated magnetic field strength in the solar corona can be a useful tool for this purpose. We have established this correlation for coronal structures and magnetic fields of large spatial and temporal scales. The correlation found exhibits a strong dependence on both solar cycle phase and heliolatitude. The efficiency of a particular coronal heating mechanism is probably determined by the relative area occupied by low and high loops (including open structures). The direct current models based on slow field dissipation (DC) and the wave models based on Alfvén and magnetosonic wave dissipation (AC) are more efficient in the equatorial and polar zones, respectively.  相似文献   

18.
A model is presented which describes the 3-dimensional non-radial solar wind expansion between the Sun and the Earth in a specified magnetic field configuration subject to synoptically observed plasma properties at the coronal base. In this paper, the field is taken to be potential in the inner corona based upon the Mt. Wilson magnetograph observations and radial beyond a certain chosen surface. For plasma boundary conditions at the Sun, we use deconvoluted density profiles obtained from synopticK-coronameter brightness observations. The temperature is taken to be 2 × 106 K at the base of closed field lines and 1.6 x 106K at the base of open field lines. For a sample calculation, we employ data taken during the period of the 12 November 1966 eclipse. Although qualitative agreement with observations at 1 AU is obtained, important discrepancies emerge which are not apparent from spherically symmetric models or those models which do not incorporate actual observations in the lower corona. These discrepancies appear to be due to two primary difficulties - the rapid geometric divergence of the open field lines in the inner corona as well as the breakdown in the validity of the Spitzer heat conduction formula even closer to the Sun than predicted by radial flow models. These two effects combine to produce conductively dominated solutions and lower velocities, densities, and field strengths at the Earth than those observed. The traditional difficulty in solar wind theory in that unrealistically small densities must be assumed at the coronal base in order to obtain observed densities at 1 AU is more than compensated for here by the rapid divergence of field lines in the inner corona. For these base conditions, the value ofβ(ratio of gas pressure to magnetic pressure) is shown to be significantly greater than one over most of the lower corona - suggesting that, for the coronal boundary conditions used here, the use of a potential or force-free magnetic field configuration may not be justified. The calculations of this paper point to the directions where future research on solar-interplanetary modelling should receive priority:
  1. better models for the coronal magnetic field structure
  2. improved understanding of the thermal conductivity relevant for the solar wind plasma.
  相似文献   

19.
Measured values for the total intensity of the continuum and the ratio of integrated intensities I( 5694)/I/(5446) are used to estimate the fraction of electrons along the line of sight contributing to the excitation of Caxv. This estimate of electron density along with an estimate of the dimension of the emitting region are used to find a value of the abundance of Ca in the solar corona. The estimated abundance is logN Ca/N H = -4.35.  相似文献   

20.
Using the electron density n e as an independent variable agreement between the models of the convective zone, photosphere, chromosphere, corona and solar wind is obtained. As a base the known data about the mean models of the individual layers of the quiet Sun are taken (i.e. without taking account of inhomogeneities and deviations from spherical symmetry). The chromospheric region is the exclusion. Here the run of T e (n e ) is revised anew to provide a smooth transition from temperature minimum to the corona and to satisfy the observed intensity distribution in the shortwave radio emission spectrum.A plot of the gas density versus n e permits to get a clear representation about the rate of change of the degree of ionization x and to evaluate quickly the numerical values of x.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号