首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article introduces the new Indian 2 m telescope which has been designed by MT Mechatronics in a detailed conceptual design study for the Indian Institute of Astrophysics, Bangalore. We describe the background of the project and the science goals which shall be addressed with this telescope. NLST is a solar telescope with high optical throughput and will be equipped with an integrated Adaptive Optics system. It is optimized for a site with the kind of seeing and wind conditions as they are expected at a lake site in the Himalayan mountains. The telescope can also be used for certain night time applications. We also give the scientific rationale for this class of telescope (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The integration and verification phase of the GREGOR telescope reached an important milestone with the installation of the interim 1 m SolarLite primary mirror. This was the first time that the entire light path had seen sunlight. Since then extensive testing of the telescope and its subsystems has been carried out. The integration and verification phase will culminate with the delivery and installation of the final 1.5 m Zerodur primary mirror in the summer of 2010. Observatory level tests and science verification will commence in the second half of 2010 and in 2011. This phase includes testing of the main optics, adaptive optics, cooling and pointing systems. In addition, assuming the viewpoint of a typical user, various observational modes of the GREGOR Fabry‐Pérot Interferometer (GFPI), the Grating Infrared Spectrograph (GRIS), and high‐speed camera systems will be tested to evaluate if they match the expectations and science requirements. This ensures that GREGOR will provide high‐quality observations with its combination of (multi‐conjugate) adaptive optics and advanced post‐focus instruments. Routine observations are expected for 2012 (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The NST (New Solar Telescope), a 1.6 m clear aperture, off‐axis telescope, is in its commissioning phase at Big Bear Solar Observatory (BBSO). It will be the most capable, largest aperture solar telescope in the US until the 4 m ATST (Advanced Technology Solar Telescope) comes on‐line late in the next decade. The NST will be outfitted with state‐of‐the‐art scientific instruments at the Nasmyth focus on the telescope floor and in the Coudé Lab beneath the telescope. At the Nasmyth focus, several filtergraphs already in routine operation have offered high spatial resolution photometry in TiO 706 nm, Hα 656 nm, G‐band 430 nm and the near infrared (NIR), with the aid of a correlation tracker and image reconstruction system. Also, a Cryogenic Infrared Spectrograph (CYRA) is being developed to supply high signal‐to‐noise‐ratio spectrometry and polarimetry spanning 1.0 to 5.0 μm. The Coudé Lab instrumentation will include Adaptive Optics (AO), InfraRed Imaging Magnetograph (IRIM), Visible Imaging Magnetograph (VIM), and Fast Imaging Solar Spectrograph (FISS). A 308 sub‐aperture (349‐actuator deformable mirror) AO system will enable nearly diffraction limited observations over the NST's principal operating wavelengths from 0.4 μm through 1.7 μm. IRIM and VIM are Fabry‐Pérot based narrow‐band tunable filters, which provide high resolution two‐dimensional spectroscopic and polarimetric imaging in the NIR and visible respectively. FISS is a collaboration between BBSO and Seoul National University focussing on chromosphere dynamics. This paper reports the up‐to‐date progress on these instruments including an overview of each instrument and details of the current state of design, integration, calibration and setup/testing on the NST (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this review, we look back upon the literature, which had the GREGOR solar telescope project as its subject including science cases, telescope subsystems, and post‐focus instruments. The articles date back to the year 2000, when the initial concepts for a new solar telescope on Tenerife were first presented at scientific meetings. This comprehensive bibliography contains literature until the year 2012, i.e., the final stages of commissioning and science verification. Taking stock of the various publications in peer‐reviewed journals and conference proceedings also provides the “historical” context for the reference articles in this special issue of Astronomische Nachrichten/Astronomical Notes (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
This contribution to the series of GREGOR inauguration articles addresses the history of the GREGOR telescope. It was obvious since a long time that the study of the atmospheric dynamics on the Sun needs telescopes with a large aperture. So the first plans to replace the 40 years old Gregory‐Coudé Telescope, with its 45 cm primary mirror, by a large, 1.5‐meter telescope date back to 1997. After a positive review of the project by the Deutsche Forschungsgemeinschaft in 2000, the large financial support started in 2000. Unfortunately, the new technology of the Cesic mirrors was not yet ripe to produce the large primary mirror with this light‐weight material. So, the project was much delayed. After recollecting for the reader several dates, I also go through some properties of GREGOR. I recall the aims of the project and discuss difficulties and ways to realise the intentions (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
7.
This article describes the considerations which led to the current optical design of the new 1.5 m solar telescope GREGOR. The result is Gregorian design with two real foci in the optical train. The telescope includes a relay optic with a pupil image used by a high order adaptive optics system (AO). The optical design is described in detail and performance characteristics are given. Finally we show some verification results which prove that – without atmospheric effects – the completed telescope reaches a diffraction limited performance (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Equipped with a suitable optical relay system, telescopes employing low-cost fixed primary mirrors could point and track while delivering high-quality images to a fixed location. Such an optical tracking system would enable liquid-mirror telescopes to access a large area of sky and employ infrared detectors and adaptive optics. Such telescopes could also form the elements of an array in which light is combined either incoherently or interferometrically. Tracking of an extended field requires correction of all aberrations including distortion, field curvature and tilt. A specific design is developed that allows a 10-m liquid-mirror telescope to track objects for as long as 30 min and to point as far as 4° from the zenith, delivering a distortion-free diffraction-limited image to a stationary detector, spectrograph or interferometric beam combiner.  相似文献   

9.
The design and characteristics of the Broad‐Band Imager (BBI) of GREGOR are described. BBI covers the visible spectral range with two cameras simultaneously for a large field and with critical sampling at 390 nm, and it includes a mode for observing the pupil in a Foucault configuration. Samples of first‐light observations are shown (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
11.
In the future, optical stellar interferometers will provide true images thanks to larger number of telescopes and to advanced cophasing subsystems. These conditions are required to have sufficient resolution elements (resel) in the image and to provide direct images in the hypertelescope mode. It has already been shown that hypertelescopes provide snapshot images with a significant gain in sensitivity without inducing any loss of the useful field of view for direct imaging applications. This paper aims at studying the properties of the point spread functions of future large arrays using the hypertelescope mode. Numerical simulations have been performed and criteria have been defined to study the image properties. It is shown that the choice of the configuration of the array is a trade-off between the resolution, the halo level and the field of view. A regular pattern of the array of telescopes optimizes the image quality (low halo level and maximum encircled energy in the central peak), but decreases the useful field of view. Moreover, a non-redundant array is less sensitive to the space aliasing effect than a redundant array.  相似文献   

12.
This article describes the use of the telescope output Stokes vector measured during a polarization calibration to infer the properties of mirrors in the telescope itself. Polarization calibrations performed at the National Solar Observatory Dunn Solar Telescope are used to demonstrate this technique (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
付玉  袁沭  金振宇  刘忠 《天文学报》2023,64(1):8-84
望远镜的仪器偏振是影响太阳磁场测量的重要因素,为了获得精确的太阳磁场信息,对大型太阳望远镜光学系统进行偏振优化设计非常必要.针对8 m中国巨型太阳望远镜(Chinese Giant Solar Telescope, CGST)的偏振设计需求,提出了基于四镜偏振补偿结构的望远镜折轴光学系统设计方案.基于偏振光线追迹方法,分析了该方案仪器偏振在望远镜光瞳和视场上的分布特性以及视场分布特性随望远镜运动和波长的变化.结果表明,在HeI 1.083μm和FeI 1.565μm磁敏谱线所在的近红外波段, CGST仪器偏振满足2×10-4测量精度要求的“无偏振视场”为0.91′,而在可见光波段该“无偏振视场”为0.5′.  相似文献   

14.
A high‐order Adaptive Optical (AO) system for the 65 cm vacuum telescope of the Big Bear Solar Observatory (BBSO) is presented. The Coudé‐exit of the telescope has been modified to accommodate the AO system and two imaging magnetograph systems for visible‐light and near infrared (NIR) observations. A small elliptical tip/tilt mirror directs the light into an optical laboratory on the observatory's 2nd floor just below the observing floor. A deformable mirror (DM) with 77 mm diameter is located on an optical table where it serves two wave‐front sensors (WFS), a correlation tracker (CT) and Shack‐Hartman (SH) sensor for the high‐order AO system, and the scientific channels with the imaging magnetographs. The two‐axis tip/tilt platform has a resonance frequency around 3.3 kHz and tilt range of about 2 mrad, which corresponds to about 25″ in the sky. Based on 32 × 32 pixel images, the CT detects image displacements between a reference frame and real‐time frames at a rate of 2 kHz. High‐order wave‐front aberrations are detected in the SH WFS channel from slope measurements derived from 76 sub‐apertures, which are recorded with 1,280 × 1,024 pixel Complex Metal Oxide Semiconductor (CMOS) camera manufactured by Photobit camera. In the 4 × 4 pixel binning mode, the data acquisition rate of the CMOS device is more than 2 kHz. Both visible‐light and NIR imaging magnetographs use Fabry‐Pérot etalons in telecentric configurations for two‐dimensional spectro‐polarimetry. The optical design of the AO system allows using small aperture prefilters, such as interference or Lyot filters, and 70 mm diameter Fabry‐Pérot etalons covering a field‐of‐view (FOV) of about 180″ × 180″.  相似文献   

15.
In this paper, we present simulation results of a ground-layer correction adaptive optics system (GLAO), based on four laser guide stars and a single deformable mirror. The goal is to achieve a seeing improvement over an 8-arcmin field of view, in the near-infrared (from 1.06 to 2.2 μm). We show results on the scaling of this system (number of subapertures, frame rates), and the required number of tip-tilt stars. We investigate the use for GLAO of both sodium and Rayleigh guide stars. We also show that if the lasers can be repositioned, the performance of the adaptive optics can be tailored to the astronomical observations.  相似文献   

16.
17.
18.
19.
一个巨型望远镜方案   总被引:4,自引:0,他引:4  
提出一个有特色的巨型望远镜(FGT)方案.其主镜口径为30米,主焦比为1.2,由1095块圆环形子镜构成.采用地平式装置.光学系统包括Nasmyth系统、折轴(Coude)系统和一个大视场系统.提出一个由4个镜面组成的新的Nasmyth系统,在约10′的视场范围内像斑小于爱里斑,达到衍射极限.比传统的Nasmyth系统的衍射极限视场大得多.可在这样的大视场内同时作好几个小区域的衍射极限的观测.当由Nasmyth系统转换到折轴系统和大视场系统时,采用主动光学技术改变子镜的面形、倾斜和平移,产生一个新的主镜面形,使折轴系统和大视场系统都能得到很好的像质.大视场系统的视场直径25′,场曲轻微,并有可能校正大气色散.给出了子镜面形和位置的公差,并讨论了望远镜的装置和结构,方案中的特色和创新对未来大望远镜的研制有普遍意义.  相似文献   

20.
The new 1.5‐m German solar telescope GREGOR at the Observatorio del Teide, Tenerife, is equipped with an integrated adaptive optics system. Although partly still in the commissioning phase, the system is already being used used for most science observations. It is designed to provide diffraction‐limited observations in the visible‐light regime for seeing better than 1.2″. We describe the AO system including the optical design, software, wavefront reconstruction, and performance (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号