首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We discuss the problem of using stellar kinematics of early-type galaxies to constrain the orbital anisotropies and radial mass profiles of galaxies. We demonstrate that compressing the light distribution of a galaxy along the line of sight produces approximately the same signature in the line-of-sight velocity profiles as radial anisotropy. In particular, fitting spherically symmetric dynamical models to apparently round, isotropic face-on flattened galaxies leads to a spurious bias towards radial orbits in the models, especially if the galaxy has a weak face-on stellar disc. Such face-on stellar discs could plausibly be the cause of the radial anisotropy found in spherical models of intermediate luminosity ellipticals such as NGC 2434, 3379 and 6703.
In the light of this result, we use simple dynamical models to constrain the outer mass profiles of a sample of 18 round, early-type galaxies. The galaxies follow a Tully–Fisher relation parallel to that for spiral galaxies, but fainter by at least 0.8 mag ( I -band) for a given mass. The most luminous galaxies show clear evidence for the presence of a massive dark halo, but the case for dark haloes in fainter galaxies is more ambiguous. We discuss the observations that would be required to resolve this ambiguity.  相似文献   

2.
We exclude hydrogen-burning stars, of any mass above the hydrogen-burning limit and any metallicity, as significant contributors to the massive haloes deduced from rotation curves to dominate the outer parts of spiral galaxies. We present and analyse images of four nearly edge-on bulgeless spiral galaxies (UGC 711, NGC 2915, UGC 12426, UGC 1459) obtained with ISOCAM (The CAMera instrument on board the Infrared Space Observatory ) at 14.5 and 6.75 μm. Our sensitivity limit for detection of any diffuse infrared emission associated with the dark haloes in these galaxies is a few tens of μJy per 6 × 6 arcsec2 pixel, with this limit currently set by remaining difficulties in modelling the non-linear behaviour of the detectors. All four galaxies show zero detected signal from extended non-disc emission, consistent with zero halo-like luminosity density distribution. The 95 per cent upper limit on any emission, for NGC 2915 in particular, allows us to exclude very low mass main-sequence stars ( M  > 0.08 M⊙) and young brown dwarfs (≲1 Gyr) as significant contributors to dark matter in galactic haloes. Combining our results with those of the Galactic microlensing surveys, which exclude objects with M  < 0.01 M⊙, excludes almost the entire possible mass range of compact baryonic objects from contributing to Galactic dark matter.  相似文献   

3.
We study the formation of galaxies in a Λ cold dark matter (ΛCDM) universe using high-resolution hydrodynamical simulations with a multiphase treatment of gas, cooling and feedback, focusing on the formation of discs. Our simulations follow eight isolated haloes similar in mass to the Milky Way and extracted from a large cosmological simulation without restriction on spin parameter or merger history. This allows us to investigate how the final properties of the simulated galaxies correlate with the formation histories of their haloes. We find that, at   z = 0  , none of our galaxies contains a disc with more than 20 per cent of its total stellar mass. Four of the eight galaxies nevertheless have well-formed disc components, three have dominant spheroids and very small discs, and one is a spheroidal galaxy with no disc at all. The   z = 0  spheroids are made of old stars, while discs are younger and formed from the inside-out. Neither the existence of a disc at   z = 0  nor the final disc-to-total mass ratio seems to depend on the spin parameter of the halo. Discs are formed in haloes with spin parameters as low as 0.01 and as high as 0.05; galaxies with little or no disc component span the same range in spin parameter. Except for one of the simulated galaxies, all have significant discs at   z ≳ 2  , regardless of their   z = 0  morphologies. Major mergers and instabilities which arise when accreting cold gas is misaligned with the stellar disc trigger a transfer of mass from the discs to the spheroids. In some cases, discs are destroyed, while in others, they survive or reform. This suggests that the survival probability of discs depends on the particular formation history of each galaxy. A realistic ΛCDM model will clearly require weaker star formation at high redshift and later disc assembly than occurs in our models.  相似文献   

4.
We use high-quality optical rotation curves of nine low-luminosity disc galaxies to obtain the velocity profiles of the surrounding dark matter haloes. We find that they increase linearly with radius at least out to the edge of the stellar disc, implying that, over the entire stellar region, the density of the dark halo is about constant.
The properties of the mass structure of these haloes are similar to those found for a number of dwarf and low surface brightness galaxies, but provide a more substantial evidence of the discrepancy between the halo mass distribution predicted in the cold dark matter scenario and those actually detected around galaxies. We find that the density law proposed by Burkert reproduces the halo rotation curves, with halo central densities ( ρ 0∼1–4×10−24 g cm−3) and core radii ( r 0∼5–15 kpc) scaling as ρ 0∝ r 0−2/3.  相似文献   

5.
We compute two-point correlation functions and measure the shear signal due to galaxy–galaxy lensing for 80 000 optically identified and 5700 radio-loud active galactic nuclei (AGN) from Data Release 4 of the Sloan Digital Sky Survey. Halo occupation models are used to estimate halo masses and satellite fractions for these two types of AGN. The large sample size allows us to separate AGN according to the stellar mass of their host galaxies. We study how the halo masses of optical and radio AGN differ from those of the parent population at fixed   M *  . Halo masses deduced from clustering and from lensing agree satisfactorily. Radio AGN are found in more massive haloes than optical AGN: in our samples, their mean halo masses are  1.6 × 1013  and  8 × 1011  h −1 M  , respectively. Optical AGN follow the same relation between stellar mass and halo mass as galaxies selected without regard to nuclear properties, but radio-loud AGN deviate significantly from this relation. The dark matter haloes of radio-loud AGN are about twice as massive as those of control galaxies of the same stellar mass. This boost is independent of radio luminosity, and persists even when our analysis is restricted to field galaxies. The large-scale gaseous environment of the galaxy clearly plays a crucial role in producing observable radio emission. The dark matter halo masses that we derive for the AGN in our two samples are in good agreement with recent models in which feedback from radio AGN becomes dominant in haloes where gas cools quasi-statically.  相似文献   

6.
On the nature of superoutbursts in dwarf novae   总被引:1,自引:0,他引:1  
We determine a crucial feature of the dark halo density distribution from the fact that the luminous matter dominates the gravitational potential at about one disc scalelength R d, but at the optical edge     the dark matter has already become the main component of the galaxy density. From the kinematics of 137 spirals we find that the dark matter halo density profiles are self-similar at least out to R opt and show core radii much larger than the corresponding disc scalelengths. The luminous regions of spirals consist of stellar discs embedded in dark haloes with roughly constant density. This invariant dark matter profile is very difficult to reconcile with the fundamental properties of the density distribution of cold dark matter haloes. With respect to previous work, the present evidence is obtained by means of a robust method and for a large and complete sample of normal spirals.  相似文献   

7.
We present new models for the formation of disc galaxies that improve upon previous models by following the detailed accretion and cooling of the baryonic mass, and by using realistic distributions of specific angular momentum. Under the assumption of detailed angular momentum conservation, the discs that form have density distributions that are more centrally concentrated than an exponential. We examine the influence of star formation, bulge formation, and feedback on the outcome of the surface brightness distributions of the stars. Low angular momentum haloes yield disc galaxies with a significant bulge component and with a stellar disc that is close to exponential, in good agreement with observations. High angular momentum haloes, on the other hand, produce stellar discs that are much more concentrated than an exponential, in clear conflict with observations. At large radii, the models reveal distinct truncation radii in both the stars and the cold gas. The stellar truncation radii result from our implementation of star formation threshold densities, and are in excellent agreement with observations. The truncation radii in the density distribution of the cold gas reflect the maximum specific angular momentum of the gas that has cooled. We find that these truncation radii occur at H  i surface densities of roughly 1 M pc−2, in conflict with observations. We examine various modifications to our models, including feedback, viscosity, and dark matter haloes with constant-density cores, but show that the models consistently fail to produce bulge less discs with exponential surface brightness profiles. This signals a new problem for the standard model of disc formation: if the baryonic component of the protogalaxies out of which disc galaxies form has the same angular momentum distribution as the dark matter, discs are too compact.  相似文献   

8.
We study the formation of tidal tails in pairs of merging disc galaxies with structural properties motivated by current theories of cold dark matter (CDM) cosmologies. In a recent study, Dubinski, Mihos & Hernquist showed that the formation of prominent tidal tails can be strongly suppressed by massive and extended dark haloes. For the large halo-to-disc mass ratio expected in CDM cosmologies their sequence of models failed to produce strong tails like those observed in many well-known pairs of interacting galaxies. In order to test whether this effect can constrain the viability of CDM cosmologies, we construct N ‐body models of disc galaxies with structural properties derived in analogy to the recent analytical work of Mo, Mao & White. With a series of self-consistent collisionless simulations of galaxy–galaxy mergers we demonstrate that even the discs of very massive dark haloes have no problems developing long tidal tails, provided the halo spin parameter is large enough. For our class of models, the halo-to-disc mass ratio is not a good indicator of the ability to produce tails. Instead, the relative size of disc and halo or, alternatively, the ratio of circular velocity to local escape speed at the half mass radius of the disc is a more useful criterion. This result holds in all CDM models. While tidal tails can provide useful information on the structure of galaxies, it thus appears unlikely that they are able to constrain the values of the cosmological parameters within these models.  相似文献   

9.
We investigate the correlation of star formation quenching with internal galaxy properties and large-scale environment (halo mass) in empirical data and theoretical models. We make use of the halo-based group catalogue of Yang and collaborators, which is based on the Sloan Digital Sky Survey. Data from the Galaxy evolution explorer are also used to extract the recent star formation rate. In order to investigate the environmental effects, we examine the properties of 'central' and 'satellite' galaxies separately. For central galaxies, we are unable to conclude whether star formation quenching is primarily connected with halo mass or stellar mass, because these two quantities are themselves strongly correlated. For satellite galaxies, a nearly equally strong dependence on halo mass and stellar mass is seen. We make the same comparison for five different semi-analytic models based on three independently developed codes. We find that the models with active galactic nuclei feedback reproduce reasonably well the dependence of the fraction of central red and passive galaxies on halo mass and stellar mass. However, for satellite galaxies, the same models badly overproduce the fraction of red/passive galaxies and do not reproduce the empirical trends with stellar mass or halo mass. This satellite overquenching problem is caused by the too-rapid stripping of the satellites' hot gas haloes, which leads to rapid strangulation of star formation.  相似文献   

10.
We investigate the dynamical effects of a molecular cloud complex with a mass ∼ 107 M and a size ∼ a few 100 pc on the vertical distribution of stars and atomic hydrogen gas in a spiral galactic disc. Such massive complexes have now been observed in a number of spiral galaxies. The extended mass distribution in a complex, with an average mass density 6 times higher than the Oort limit, is shown to dominate the local gravitational field. This results in a significant redistribution or clustering of the surrounding disc components towards the mid-plane, with a resulting decrease in their vertical scaleheights.
The modified, self-consistent stellar density distribution is obtained by solving the combined Poisson equation and the force equation along the z -direction for an isothermal stellar disc on which the complex is imposed. The effect of the complex is strongest at its centre, where the stellar mid-plane density increases by a factor of 2.6 and the vertical scaleheight decreases by a factor of 3.4 compared with the undisturbed stellar disc. A surprising result is the large radial distance of ∼ 500 pc from the complex centre over which the complex influences the disc; this is due to the extended mass distribution in a complex. The complex has a comparable effect on the vertical distribution of the atomic hydrogen gas in the galactic disc. This 'pinching' or constraining effect should be detectable in the nearby spiral galaxies, as for example has been done for NGC 2403 by Sicking. Thus the gravitational field of a complex results in local corrugations of the stellar and H  i vertical scaleheights, and the galactic disc potential is highly non-uniform on scales of the intercomplex separation of ∼ 1 kpc.  相似文献   

11.
We use oblate axisymmetric dynamical models including dark haloes to determine the orbital structure of intermediate mass to massive early-type galaxies in the Coma galaxy cluster. We find a large variety of orbital compositions. Averaged over all sample galaxies the unordered stellar kinetic energy in the azimuthal and the radial direction are of the same order, but they can differ by up to 40 per cent in individual systems. In contrast, both for rotating and non-rotating galaxies the vertical kinetic energy is on average smaller than in the other two directions. This implies that even most of the rotating ellipticals are flattened by an anisotropy in the stellar velocity dispersions. Using three-integral axisymmetric toy models, we show that flattening by stellar anisotropy maximizes the entropy for a given density distribution. Collisionless disc merger remnants are radially anisotropic. The apparent lack of strong radial anisotropy in observed early-type galaxies implies that they may not have formed from mergers of discs unless the influence of dissipational processes was significant.  相似文献   

12.
Hydrodynamical simulations of galaxy formation in spatially flat cold dark matter (CDM) cosmologies with and without a cosmological constant (Λ) are described. A simple star formation algorithm is employed and radiative cooling is allowed only after redshift z =1 so that enough hot gas is available to form large, rapidly rotating stellar discs if angular momentum is approximately conserved during collapse. The specific angular momenta of the final galaxies are found to be sensitive to the assumed background cosmology. This dependence arises from the different angular momenta contained in the haloes at the epoch when the gas begins to collapse and the inhomogeneity of the subsequent halo evolution. In the Λ-dominated cosmology, the ratio of stellar specific angular momentum to that of the dark matter halo (measured at the virial radius) has a median value of ∼0.24 at z =0. The corresponding quantity for the Λ=0 cosmology is over three times lower. It is concluded that the observed frequency and angular momenta of disc galaxies pose significant problems for spatially flat CDM models with Λ=0 but may be consistent with a Λ-dominated CDM universe.  相似文献   

13.
We present new Planetary Nebula Spectrograph observations of the ordinary elliptical galaxy NGC 4494, resulting in positions and velocities of 255 planetary nebulae out to seven effective radii (25 kpc). We also present new wide-field surface photometry from MMT/Megacam, and long-slit stellar kinematics from VLT/FORS2. The spatial and kinematical distributions of the planetary nebulae agree with the field stars in the region of overlap. The mean rotation is relatively low, with a possible kinematic axis twist outside  1 R e  . The velocity dispersion profile declines with radius, though not very steeply, down to  ∼70 km s−1  at the last data point.
We have constructed spherical dynamical models of the system, including Jeans analyses with multi-component Λ cold dark matter (CDM) motivated galaxies as well as logarithmic potentials. These models include special attention to orbital anisotropy, which we constrain using fourth-order velocity moments. Given several different sets of modelling methods and assumptions, we find consistent results for the mass profile within the radial range constrained by the data. Some dark matter (DM) is required by the data; our best-fitting solution has a radially anisotropic stellar halo, a plausible stellar mass-to-light ratio and a DM halo with an unexpectedly low central density. We find that this result does not substantially change with a flattened axisymmetric model.
Taken together with other results for galaxy halo masses, we find suggestions for a puzzling pattern wherein most intermediate-luminosity galaxies have very low concentration haloes, while some high-mass ellipticals have very high concentrations. We discuss some possible implications of these results for DM and galaxy formation.  相似文献   

14.
In the generic CDM cosmogony, dark-matter haloes emerge too lumpy and centrally concentrated to host observed galactic discs. Moreover, discs are predicted to be smaller than those observed. We argue that the resolution of these problems may lie with a combination of the effects of protogalactic discs, which would have had a mass comparable to that of the inner dark halo and be plausibly non-axisymmetric, and of massive galactic winds, which at early times may have carried off as many baryons as a galaxy now contains. A host of observational phenomena, from quasar absorption lines and intracluster gas through the G-dwarf problem, point to the existence of such winds. Dynamical interactions will homogenize and smooth the inner halo, and the observed disc will be the relic of a massive outflow. The inner halo expanded after absorbing energy and angular momentum from the ejected material. Observed discs formed at the very end of the galaxy formation process, after the halo had been reduced to a minor contributor to the central mass budget and strong radial streaming of the gas had died down.  相似文献   

15.
In this paper, we investigate the star formation and chemical evolution of damped Lyman α systems (DLAs) based on the disc galaxy formation model developed by Mo, Mao & White. We propose that the DLAs are the central galaxies of less-massive dark haloes present at redshifts z ∼3, and they should inhabit haloes of moderately low circular velocity. The empirical Schmidt law of star formation rates, and closed box model of chemical evolution that an approximation known as instantaneous recycling is assumed, are adopted. In our models, when the predicted distribution of metallicity for DLAs is calculated, two cases are considered. One is that, using the closed-box model, empirical Schmidt law and star formation time, the distribution of metallicity can be directly calculated. The other is that, when the simple gravitational instability of a thin isothermal gas disc as first discussed by Toomre is considered, the star formation occurs only in the region where the surface density of gas satisfies the critical value, not everywhere of a gas disc. In this case, we first obtain the region where the star formation can occur by assuming that the disc has a flat rotation curve and rotational velocity is equal to the circular velocity of the surrounding dark matter halo, and then calculate the metallicity distribution as in case one. We assume that star formation in each DLA lasts for a period of 1 Gyr from redshifts z =3. There is only one output parameter in our models, i.e. the stellar yield, which relates to the time of star formation history and is obtained by normalizing the predicted distribution of metallicity to the mean value of 1/13 Z as presented by Pettini et al.. The predicted metallicity distribution is consistent with the current (rather limited) observational data. A random distribution of galactic discs is taken into account.  相似文献   

16.
We compute the specific angular momentum distributions for a sample of low-mass disc galaxies observed by Swaters. We compare these distributions to those of dark matter haloes obtained by Bullock et al. from high-resolution N -body simulations of structure formation in a ΛCDM universe. We find that although the disc mass fractions are significantly smaller than the universal baryon fraction, the total specific angular momenta of the discs are in good agreement with those of dark matter haloes. This suggests that discs form out of only a small fraction of the available baryons, but yet manage to draw most of the available angular momentum. In addition we find that the angular momentum distributions of discs are clearly distinct from those of the dark matter; discs lack predominantly both low and high specific angular momenta. Understanding these findings in terms of a coherent picture for disc formation is challenging. Cooling, feedback and stripping, which are the main mechanisms to explain the small disc mass fractions found, seem unable to simultaneously explain the angular momentum distributions of the discs. In fact, it seems that the baryons that make up the discs must have been born out of angular momentum distributions that are clearly distinct from those of ΛCDM haloes. However, the dark and baryonic mass components experience the same tidal forces, and it is therefore expected that they should have similar angular momentum distributions. Therefore, understanding the angular momentum content of disc galaxies remains an important challenge for our picture of galaxy formation.  相似文献   

17.
We investigate the dynamical response, in terms of disc size and rotation velocity, to mass loss by supernovae in the evolution of spiral galaxies. A thin baryonic disc having the Kuzmin density profile embedded in a spherical dark matter halo having a density profile proposed by Navarro, Frenk & White is considered. For the purpose of comparison, we also consider the homogeneous and   r −1  profiles for dark matter in a truncated spherical halo. Assuming for simplicity that the dark matter distribution is not affected by mass-loss from discs and the change of baryonic disc matter distribution is homologous, we evaluate the effects of dynamical response in the resulting discs. We found that the dynamical response only for an adiabatic approximation of mass-loss can simultaneously account for the rotation velocity and disc size as observed particularly in dwarf spiral galaxies, thus reproducing the Tully–Fisher relation and the size versus magnitude relation over the full range of magnitude. Furthermore, we found that the mean specific angular momentum in discs after the mass-loss becomes larger than that before the mass-loss, suggesting that the mass-loss would most likely occur from the central disc region where the specific angular momentum is low.  相似文献   

18.
We have studied the stability of finite gaseous discs, against large-scale perturbations, under the influence of spherical, massive haloes. A surface-density distribution consistent with the observed spiral-tracer profiles in disc galaxies is considered for the disc. We find that growing eigenmodes with both ‘trailing’ and ‘leading’ spirals exist in ‘cold’ discs for a wide range of values of the halo mass and its radius. The amplification rates of the unstable modes reduce as the ratio of the mass of the halo to the mass of the disc is increased. A uniform halo is not very effective towards stabilizing the disc against these modes. The results from the present study are consideredvis-a-vis previous studies on the global modes of self-gravitating discs.  相似文献   

19.
Hubble Space Telescope images of two early-type galaxies harbouring both nuclear and outer stellar discs are studied in detail. By means of a photometric decomposition, the images of NGC 4342 and 4570 are analysed and the photometric properties of the nuclear discs investigated. We find a continuity of properties in the parameter space defined by the central surface brightness μ0 and the scalelength R d of discs in spirals, S0s and embedded discs in ellipticals, in the sense that the nuclear discs extend the observed disc properties even further towards smaller scalelengths and brighter central surface brightnesses. When including the nuclear discs, disc properties span more than four orders of magnitude in both scalelength and central surface brightness. The nuclear discs studied here are the smallest and brightest stellar discs known, and as such, they are as extreme in their photometric properties as Malin I, when compared with typical galactic discs that obey Freeman's law. We discuss a possible formation scenario in which the double-disc structure observed in these galaxies has been shaped by now dissolved bars. Based on the fact that the black holes known to exist in some of these galaxies have masses comparable to those of the nuclear discs, we explore a possible link between the black holes and the nuclear discs.  相似文献   

20.
The time-scale for galaxies within merging dark matter haloes to merge with each other is an important ingredient in galaxy formation models. Accurate estimates of merging time-scales are required for predictions of astrophysical quantities such as black hole binary merger rates, the build-up of stellar mass in central galaxies and the statistical properties of satellite galaxies within dark matter haloes. In this paper, we study the merging time-scales of extended dark matter haloes using N -body simulations. We compare these results to standard estimates based on the Chandrasekhar theory of dynamical friction. We find that these standard predictions for merging time-scales, which are often used in semi-analytic galaxy formation models, are systematically shorter than those found in simulations. The discrepancy is approximately a factor of 1.7 for M sat/ M host≈ 0.1 and becomes larger for more disparate satellite-to-host mass ratios, reaching a factor of ∼3.3 for M sat/ M host≈ 0.01. Based on our simulations, we propose a new, easily implementable fitting formula that accurately predicts the time-scale for an extended satellite to sink from the virial radius of a host halo down to the halo's centre for a wide range of M sat/ M host and orbits. Including a central bulge in each galaxy changes the merging time-scale by ≲10 per cent. To highlight one concrete application of our results, we show that merging time-scales often used in the literature overestimate the growth of stellar mass by satellite accretion by ≈40 per cent, with the extra mass gained in low mass ratio mergers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号