首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Inflow kinematics at the inner Lagrangian point L1, gas compressibility, and physical turbulent viscosity play a fundamental role on accretion disc dynamics and structure in a close binary (CB). Physical viscosity supports the accretion disc development inside the primary gravitational potential well, developing the gas radial transport, converting mechanical energy into heat. The Stellar‐Mass‐Ratio (SMR) between the compact primary and the secondary star (M1/M2) is also effective, not only in the location of the inner Lagrangian point, but also in the angular kinematics of the mass transfer and in the geometry ofthe gravitational potential wells. In this work we pay attention in particular to the role ofthe SMR, evaluating boundaries, separating theoretical domains in compressibility‐viscosity graphs where physical conditions allow a well‐bound disc development, as a function ofmass transfer kinematic conditions. In such domains, the lower is the gas compressibility (the higher the polytropic index γ), the higher is the physical viscosity (α) requested. In this work, we show how the boundaries of such domains vary as a function of M1/M2. Conclusions as far as dwarf novae outbursts are concerned, induced by mass transfer rate variations, are also reported. The smaller M1/M2, the shorter the duration of the active‐to‐quiet and vice‐versa transitional phases. Time‐scales are of the order of outburst duration of SU Uma, OY Car, Z Cha and SS Cyg‐like objects. Moreover, conclusions as far as active‐quiet‐active phenomena in a CB, according to viscous‐thermal instabilities, in accordance to such domains, are also reported (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We present spectroscopy of the eclipsing recurrent nova U Sco. The radial velocity semi-amplitude of the primary star was found to be     from the motion of the wings of the He  ii λ 4686-Å emission line. By detecting weak absorption features from the secondary star, we find its radial velocity semi-amplitude to be     . From these parameters, we obtain a mass of     for the white dwarf primary star and a mass of     for the secondary star. The radius of the secondary is calculated to be     , confirming that it is evolved. The inclination of the system is calculated to be     , consistent with the deep eclipse seen in the light-curves. The helium emission lines are double-peaked, with the blueshifted regions of the disc being eclipsed prior to the redshifted regions, clearly indicating the presence of an accretion disc. The high mass of the white dwarf is consistent with the thermonuclear runaway model of recurrent nova outbursts, and confirms that U Sco is the best Type Ia supernova progenitor currently known. We predict that U Sco is likely to explode within ∼700 000 yr.  相似文献   

3.
The second known outburst of the WZ Sge type dwarf nova GW Lib was observed in 2007 April. We have obtained unique multiwavelength data of this outburst which lasted ∼26 days. The American Association of Variable Star Observers ( AAVSO ) recorded the outburst in the optical, which was also monitored by Wide Angle Search for Planets , with a peak V magnitude of ∼8. The outburst was followed in the ultraviolet and X-ray wavelengths by the Swift ultraviolet/optical and X-ray telescopes. The X-ray flux at optical maximum was found to be three orders of magnitude above the pre-outburst quiescent level, whereas X-rays are normally suppressed during dwarf nova outbursts. A distinct supersoft X-ray component was also detected at optical maximum, which probably arises from an optically thick boundary layer. Follow-up Swift observations taken 1 and 2 years after the outburst show that the post-outburst quiescent X-ray flux remains an order of magnitude higher than the pre-outburst flux. The long interoutburst time-scale of GW Lib with no observed normal outbursts support the idea that the inner disc in GW Lib is evacuated or the disc viscosity is very low.  相似文献   

4.
The 2006 outburst of GK Persei differed significantly at optical and ultraviolet (UV) wavelengths from typical outbursts of this object. We present multiwavelength (X-ray, UV and optical) Swift and AAVSO data, giving unprecedented broad-band coverage of the outburst, allowing us to follow the evolution of the longer-than-normal 2006 outburst across these wavelengths. In the optical and UV we see a triple-peaked morphology with maximum brightness ∼1.5 mag lower than in previous years. In contrast, the peak hard X-ray flux is the same as in previous outbursts. We resolve this dichotomy by demonstrating that the hard X-ray flux only accounts for a small fraction of the total energy liberated during accretion, and interpret the optical/UV outburst profile as arising from a series of heating and cooling waves traversing the disc, caused by its variable density profile.  相似文献   

5.
We report on the discovery of a 25.5-min superhump period for the suspected helium dwarf nova system KL Draconis in a high state. The presence of superhumps combined with the previously observed helium spectrum and large-amplitude photometric variations confirm that KL Dra is an AM CVn system similar to CR Bootis, V803 Cen and CP Eridani. We also find a low-state photometric period at 25.0 min that we suggest may be the orbital period. With this assumption, we estimate   q =0.075  ,   M 1=0.76 M  and   M 2=0.057 M  .  相似文献   

6.
The standstill luminosity in Z Cam systems   总被引:1,自引:0,他引:1  
We consider accretion discs in close binary systems. We show that the heating of a disc at the impact point of the accretion stream contributes significantly to the local energy budget at its outer edge. As a result, the thermal balance relation between local accretion rate and surface density (the 'S-curve') changes; the critical mass transfer rate above which no dwarf nova outbursts occur can be up to 40 per cent smaller than without impact heating. Standstills in Z Cam systems thus occur at smaller mass transfer rates than otherwise expected, and are fainter than the peak luminosity during the dwarf nova phase as a result.  相似文献   

7.
Variability on all time scales between seconds and decades is typical for cataclysmic variables (CVs). One of the brightest and best studied CVs is TT Ari, a nova‐like variable which belongs to the VY Scl subclass, characterized by occasional low states in their light curves. It is also known as a permanent superhumper at high state, revealing “positive” (PS > P0) as well as “negative” (PS < P0) superhumps, where PS is the period of the superhump and P0 the orbital period. TT Ari was observed by the Canadian space telescope MOST for about 230 hours nearly continuously in 2007, with a time resolution of 48 seconds. Here we analyze these data, obtaining a dominant “negative” superhump signal with a period PS = 0.1331 days and a mean amplitude of 0.09 mag. Strong flickering with amplitudes up to 0.2 mag and peak‐to‐peak time scales of 15–20 minutes is superimposed on the periodic variations. We found no indications for significant quasi‐periodic oscillations with periods around 15 minutes, reported by other authors. We discuss the known superhump behaviour of TTAri during the last five decades and conclude that our period value is at the upper limit of all hitherto determined “negative” superhump periods of TTAri, before and after the MOST run. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We report on time-resolved photometry carried out during the 1995 short outburst and the 1997 long outburst in the eclipsing dwarf nova DV UMa. The revised orbital period is 0.0858526172 (67) d. We detected gigantic superhumps with an amplitude of ∼0.6 mag in the mid-phase of the 1997 outburst, revealing the SU UMa nature of DV UMa. The superhump period is 0.0887 (4) d. The superhumps became less clear during the late phase of the superoutburst, and we found two possible periods of 0.0885 (15) and 0.0764 (15). During both outbursts, the eclipse was wide and shallow near the maximum, and then became narrower and deeper, which is qualitatively well explained by the current disc instability theory.  相似文献   

9.
During re-processing and analysis of the entire ROSAT Wide Field Camera (WFC) pointed observations data base, we discovered a serendipitous, off-axis detection of the cataclysmic variable SW UMa at the onset of its 1997 October superoutburst. Although long outbursts in this SU UMa-type system are known to occur every ∼ 450 d, none had ever been previously observed in the extreme ultra-violet (EUV) by ROSAT . The WFC observations began just ≈13 hr after the optical rise was detected. With a peak count rate of ∼ 4.5 count s−1 in the S1 filter, SW UMa was temporarily the third brightest object in the sky in this waveband. Over the next ≈19 hr the measured EUV flux dropped to < 2 count s−1, while the optical brightness remained essentially static at m v∼11 . Similar behaviour has also been recently reported in the EUV light curve of the related SU UMa-type binary OY Car during superoutburst, as reported by Mauche & Raymond. In contrast, U Gem-type dwarf novae show no such early EUV dip during normal outbursts. Therefore, this feature may be common in superoutbursts of SU UMa-like systems. We expand on ideas first put forward by Osaki and Mauche & Raymond and offer an explanation for this behaviour by examining the interplay between the thermal and tidal instabilities that affect the accretion discs in these systems.  相似文献   

10.
We present a numerical scheme for the evolution of an accretion disc through a dwarf nova outburst. We introduce a time-varying artificial viscosity into an existing smoothed particle hydrodynamics code optimized for two- and three-dimensional simulations of accretion discs. The technique gives rise to coherent outbursts and can easily be adapted to include a complete treatment of thermodynamics. We apply a two-dimensional isothermal scheme to the system SS Cygni, and present a wide range of observationally testable results.  相似文献   

11.
We present the first of two papers describing an in-depth study of multiwaveband phase-resolved spectroscopy of the unusual dwarf nova WZ Sge. In this paper we present an extensive set of Doppler maps of WZ Sge covering optical and infrared emission lines, and describe a new technique for studying the accretion discs of cataclysmic variables using ratioed Doppler maps. Applying the ratioed Doppler map technique to our WZ Sge data shows that the radial temperature profile of the disc is unlike that predicted for a steady state α disc. Time-averaged spectra of the accretion disc line flux (with the bright spot contribution removed) show evidence in the shapes of the line profiles for the presence of shear broadening in a quiescent non-turbulent accretion disc. From the positions of the bright spots in the Doppler maps of different lines, we conclude that the bright spot region is elongated along the ballistic stream, and that the density of the outer disc is low. The velocity of the outer edge of the accretion disc measured from the H α line is found to be 723±23 km s−1. Assuming that the accretion disc reaches to the 3:1 tidal resonance radius, we derive a value for the primary star mass of 0.82 M. We discuss the implications of our results on the present theories of WZ Sge type dwarf nova outbursts.  相似文献   

12.
We present a new mapping algorithm, the Accretion Stream Mapping (ASM), which uses the full phase-coverage of a light curve to derive spatially resolved intensity distributions along the accretion stream in magnetic cataclysmic variables of AM Herculis type (polars). The surface of the accretion stream is approximated as a 12-sided (duodecadon-shaped) tube. After successfully testing this method on artificial data we applied it to emission-line light curves of H β , H γ and He  ii λ 4686 of the bright eclipsing polar HU Aqr. We find hydrogen and helium line emission bright in the threading region of the stream where the stream couples on to magnetic field lines. It is particularly interesting that the stream is bright on the irradiated side facing the white dwarf, which highlights the interplay of collisional and radiative excitation/ionization.  相似文献   

13.
I review various phenomena associated with mass‐accreting white dwarfs (WDs) in the view of supersoft X‐ray sources. When the mass‐accretion rate is low (acc < a few × 10–7 M⊙yr–1), hydrogen nuclear burning is unstable and nova outbursts occur. A nova is a transient supersoft X‐ray source (SSS) in its later phase which timescale depends strongly on the WD mass. The X‐ray turn on/off time is a good indicator of the WD mass. At an intermediate mass‐accretion rate an accreting WD becomes a persistent SSS with steady hydrogen burning. For a higher mass‐accretion rate, the WD undergoes “accretion wind evolution” in which the WD accretes matter from the equatorial plane and loses mass by optically thick winds from the other directions. Two SSS, namely RX J0513‐6951 and V Sge, are corresponding objects to this accretion wind evolution. We can specify mass increasing WDs from light‐curve analysis based on the optically thick wind theory using multiwavelength observational data including optical, IR, and supersoft X‐rays. Mass estimates of individual objects give important information for the binary evolution scenario of type Ia supernovae (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We describe a spectroscopic survey designed to uncover an estimated ∼40 AM Canum Venaticorum (AM CVn) stars hiding in the photometric data base of the Sloan Digital Sky Survey. We have constructed a relatively small sample of about 1500 candidates based on a colour selection, which should contain the majority of all AM CVn binaries while remaining small enough that spectroscopic identification of the full sample is feasible.
We present the first new AM CVn star discovered using this strategy, SDSS J080449.49+161624.8, the ultracompact binary nature of which is demonstrated using high-time-resolution spectroscopy obtained with the Magellan telescopes at Las Campanas Observatory, Chile. A kinematic 'S-wave' feature is observed on a period   P orb= 44.5 ± 0.1 min  , which we propose is the orbital period, although the present data cannot yet exclude its nearest daily aliases.
The new AM CVn star shows a peculiar spectrum of broad, single-peaked helium emission lines with unusually strong series of ionized helium, reminiscent of the (intermediate) polars among the hydrogen-rich cataclysmic variables. We speculate that SDSS J0804+1616 may be the first magnetic AM CVn star. The accreted material appears to be enriched in nitrogen, to N/O ≳ 10 and N/C > 10 by number, indicating CNO cycle hydrogen burning, but no helium burning, in the prior evolution of the donor star.  相似文献   

15.
We present the results of 10 years of photometric CCD observations of the intermediate polar V709 Cas obtained by using different instruments during 2003–2013. We detected a new variability with a period of Pnew = 0.d016449979(5) which seems to be real. The spin variability is not clearly seen in all our data, so we are unable to study any evolution of the white dwarf rotation. From the best night (in 2010) we obtained a spin period of Pspin = 311.s8(5). We analyzed the orbital variability using (OC) analysis. We found no variations of the orbital period on a timescale of 10 years, but the linear fit to the (OC) diagram shows that the value of the orbital period is Porb = 0.d2222123(6), which is close to the earlier published values. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We present a comprehensive photometric data set taken over the entire outburst of the eclipsing dwarf nova IP Peg in 1997 September/October. Analysis of the light curves taken over the long rise to the peak-of-outburst shows conclusively that the outburst started near the centre of the disc and moved outwards. This is the first data set that spatially resolves such an outburst. The data set is consistent with the idea that long rise times are indicative of such 'inside-out' outbursts. We show how the thickness and the radius of the disc, along with the mass transfer rate, change over the whole outburst. In addition, we show evidence of the secondary and the irradiation thereof. We discuss the possibility of spiral shocks in the disc; however, we find no conclusive evidence of their existence in this data set.  相似文献   

17.
We present high- and medium-resolution spectroscopic observations of the cataclysmic variable BF Eridani (BF Eri) during its low and bright states. The orbital period of this system was found to be 0.270881(3) d. The secondary star is clearly visible in the spectra through the absorption lines of the neutral metals Mg  i , Fe  i and Ca  i . Its spectral type was found to be K3±0.5. A radial velocity study of the secondary yielded a semi-amplitude of   K 2= 182.5 ± 0.9 km s−1  . The radial velocity semi-amplitude of the white dwarf was found to be   K 1= 74 ± 3 km s−1  from the motion of the wings of the Hα and Hβ emission lines. From these parameters, we have obtained that the secondary in BF Eri is an evolved star with a mass of  0.50–0.59 M  , whose size is about 30 per cent larger than a zero-age main-sequence single star of the same mass. We also show that BF Eri contains a massive white dwarf  ( M 1≥ 1.2 M)  , which allows us to consider the system as a Type Ia supernova progenitor. BF Eri also shows a high γ-velocity  (γ=−94 km s−1)  and substantial proper motion. With our estimation of the distance to the system  ( d ≈ 700 ± 200 pc)  , this corresponds to a space velocity of ∼350 km s−1 with respect to the dynamical local standard of rest. The cumulative effect of repeated nova eruptions with asymmetric envelope ejection might explain the high space velocity of the system. We analyse the outburst behaviour of BF Eri and question the current classification of the system as a dwarf nova. We propose that BF Eri might be an old nova exhibiting 'stunted' outbursts.  相似文献   

18.
In this paper we present Physical Parameter Eclipse Mapping (PPEM) of UBVRI eclipse light curves of UU Aqr from high to low states. We used a simple, pure hydrogen LTE model to derive the temperature and surface density distribution in the accretion disc. The reconstructed effective temperatures in the disc range between 9000 K and 15000 K in the inner part of the disc and below 7000 K in the outer parts. In the higher states it shows a more or less prominent bright spot with Teff between about 7000 K and 8000 K. The inner part of the disc (R < 0.3R) isL1 optically thick at all times, while the outer parts of the disc up to the disc edge (0.51 ± 0.04RL1 in the high state and 0.40 ± 0.03RL1 in the low state) deviate from a simple black body spectrum indicating that either the outer disc is optically thin or it shows a temperature inversion in the vertical direction. While during high state the disc is variable, it appears rather stable in low state. The variation during high state affects the size of the optically thick part of the disc, the white dwarf or boundary layer temperature and the uneclipsed component (originating in a disc chromosphere and/or cool disc wind), while the actual size of the disc remains constant. The difference between high and low state is expressed as a change in disc size that also affects the size of the optically thick part of the disc and the presence of the bright spot. Using the PPEM method we retrieve a distance for UU Aqr of 207±10 pc, compatible with previous estimates.  相似文献   

19.
We report on the results from a five-night campaign of high-speed spectroscopy of the 17-min binary AM Canum Venaticorum (AM CVn), obtained with the 4.2-m William Herschel Telescope on La Palma.
We detect a kinematic feature that appears to be entirely analogous to the 'central spike' known from the long-period, emission-line AM CVn stars GP Com, V396 Hya and SDSS J124058.03−015919.2, which has been attributed to the accreting white dwarf. Assuming that the feature indeed represents the projected velocity amplitude and phase of the accreting white dwarf, we derive a mass ratio   q = 0.18 ± 0.01  for AM CVn. This is significantly higher than the value found in previous, less direct measurements. We discuss the implications for AM CVn's evolutionary history and show that a helium star progenitor scenario is strongly favoured. We further discuss the implications for the interpretation of AM CVn's superhump behaviour, and for the detectability of its gravitational-wave signal with the Laser Interferometer Space Antenna ( LISA ).
In addition, we demonstrate a method for measuring the circularity or eccentricity of AM CVn's accretion disc, using stroboscopic Doppler tomography. We test the predictions of an eccentric, precessing disc that are based on AM CVn's observed superhump behaviour. We limit the effective eccentricity in the outermost part of the disc, where the resonances that drive the eccentricity are thought to occur, to   e = 0.04 ± 0.01  , which is smaller than previous models indicated.  相似文献   

20.
The Sloan Digital Sky Survey has been instrumental in obtaining a homogeneous sample of the rare AM CVn stars: mass-transferring binary white dwarfs. As part of a campaign of spectroscopic follow-up on candidate AM CVn stars from the Sloan Digital Sky Survey, we have obtained time-resolved spectra of the   g = 20.2  candidate SDSS J155252.48+320150.9 on the Very Large Telescope of the European Southern Observatory. We report an orbital period   P orb= 3376.3 ± 0.3 s  , or 56.272 ± 0.005 min, based on an observed 'S-wave' in the helium emission lines of the spectra. This confirms the ultracompact nature of the binary. Despite its relative closeness to the orbital period minimum for hydrogen-rich donors, there is no evidence for hydrogen in the spectra. We thus classify SDSS J1552 as a new bona fide AM CVn star, with the second-longest orbital period after V396 Hya  ( P = 65.5 min)  . The continuum of SDSS J1552 is compatible with either a blackbody or helium atmosphere of   T eff= 12 000–15 000 K  . If this represents the photosphere of the accreting white dwarf, as is expected, it puts the accretor at the upper end of the temperature range predicted by thermal evolution models. This suggests that SDSS J1552 consists of (or formerly consisted of) relatively high-mass components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号