首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The detection of near‐infrared (NIR) excess at the position of a star can indicate either a substellar companion or a disk around the respective star. In this work we probed whether a 2.5σ H ‐band flux enhancement at the position of the isolated neutron star RX J0806.4–4123 can be confirmed at another NIR wavelength. We observed RXJ0806.4–4123 in the J ‐band with Gemini South equipped with FLAMINGOS‐2. There was no significant detection of a J ‐band source at the neutron star position. However, similarly to the H ‐band we found a very faint (1.4σ) flux enhancement with a nominal magnitude of J = 24.8 ± 0.5. The overall NIR‐detection significance is 3.1σ. If real, this emission is too bright to come from the neutron star alone. Deeper near‐infrared observations are necessary to confirm or refute the potential NIR excess. The confirmation of such NIR excess could imply that there is a substellar companion or a disk around RXJ0806.4–4123. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
5.
RX J1856.5−3754 is one of the brightest nearby isolated neutron stars (INSs), and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5−3754, within the uncertainties. In our simplest model, the best-fitting parameters are an interstellar column density   N H≈ 1 × 1020 cm−2  and an emitting area with   R ≈ 17 km  (assuming a distance to RX J1856.5−3754 of 140 pc), temperature   T ≈ 4.3 × 105 K  , gravitational redshift   z g ∼ 0.22  , atmospheric hydrogen column   y H≈ 1 g cm−2  , and magnetic field   B ≈ (3–4) × 1012 G  ; the values for the temperature and magnetic field indicate an effective average over the surface. We also calculate a more realistic model, which accounts for magnetic field and temperature variations over the NS surface as well as general relativistic effects, to determine pulsations; we find that there exist viewing geometries that produce pulsations near the currently observed limits. The origin of the thin atmospheres required to fit the data is an important question, and we briefly discuss mechanisms for producing these atmospheres. Our model thus represents the most self-consistent picture to date for explaining all the observations of RX J1856.5−3754.  相似文献   

6.
RX J1856.5−3754 is one of the brightest, nearby isolated neutron stars (NSs), and considerable observational resources have been devoted to its study. In previous work, we found that our latest models of a magnetic, hydrogen atmosphere match well the entire spectrum, from X-rays to optical (with best-fitting NS radius   R ≈ 14  km, gravitational redshift   z g∼ 0.2  , and magnetic field   B ≈ 4 × 1012  G). A remaining puzzle is the non-detection of rotational modulation of the X-ray emission, despite extensive searches. The situation changed recently with XMM–Newton observations that uncovered 7-s pulsations at the     level. By comparing the predictions of our model (which includes simple dipolar-like surface distributions of magnetic field and temperature) with the observed brightness variations, we are able to constrain the geometry of RX J1856.5−3754, with one angle <6° and the other angle     , though the solutions are not definitive, given the observational and model uncertainties. These angles indicate a close alignment between the rotation and the magnetic axes or between the rotation axis and the observer. We discuss our results in the context of RX J1856.5−3754 being a normal radio pulsar and a candidate for observation by future X-ray polarization missions such as Constellation-X or XEUS .  相似文献   

7.
We report XMM-Newton observations of the isolated neutron star RBS1774 and confirm its membership as an XDINS. The X-ray spectrum is best fit with an absorbed blackbody with temperature kT=101 eV and absorption edge at 0.7 keV. No power law component is required. An absorption feature in the RGS data at 0.4 keV is not evident in the EPIC data, but it is not possible to resolve this inconsistency. The star is not seen in the UV OM data to m AB ∼21. There is a sinusoidal variation in the X-ray flux at a period of 9.437 s with an amplitude of 4%. The age as determined from cooling and magnetic field decay arguments is 105–106 yr for a neutron star mass of 1.35–1.5 M.   相似文献   

8.
The observation of a pair of simultaneous twin kHz QPOs in the power density spectrum of a neutron star or a black hole allows its mass‐angular‐momentum relation to be constrained. Situations in which the observed simultaneous pairs are more than one allow the different models of the kHz QPOs to be falsified. Discrepancy between the estimates coming from the different pairs would call the used model into question. In the current paper, the relativistic precession model is applied to the twin kHz QPOs that appear in the light curves of three groups of observations of the accreting millisecond X‐ray pulsar IGR J17511–3057. It was found that the predictions of one of the groups are practically in conflict with the other two. Another interesting result is that the region in which the kHz QPOs have been born is rather broad and extends quite far from the ISCO. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Recent Chandra and XMM–Newton observations of a number of X-ray 'dim' pulsating neutron stars have revealed quite unexpected features in the emission from these sources. Their soft thermal spectrum, believed to originate directly from the star surface, shows evidence for a phase-varying absorption line at some hundred eVs. The pulse modulation is relatively large (pulsed fractions in the range ∼12–35 per cent), the pulse shape is often non-sinusoidal, and the hard X-ray colour appears to be anticorrelated in phase with the total emission. Moreover, the prototype of this class, RX J0720.4−3125, has been found to undergo rather sensible changes in both its spectral and timing properties over a time-scale of a few years. All these new findings seem difficult to reconcile with the standard picture of a cooling neutron star endowed with a purely dipolar magnetic field, at least if surface emission is produced in an atmosphere on top of the crust. In this paper we explore how a dipolar+quadrupolar star-centred field influences the properties of the observed light curves. The phase-resolved spectrum has been evaluated accounting for both radiative transfer in a magnetized atmosphere and general relativistic ray-bending. We computed over 78 000 light curves, varying the quadrupolar components and the viewing geometry. A comparison of the data with our model indicates that higher-order multipoles are required to reproduce the observations.  相似文献   

10.
We report new radial velocity measurements for 30 candidate runaway stars. We revise their age estimates and compute their past trajectories in the Galaxy in order to determine their birthplaces. We find that seven of the stars could be younger than ∼100 Myr, and for five of them we identify multiple young clusters and associations in which they may have formed. For the youngest star in the sample, HIP 9470, we suggest a possible ejection scenario in a supernova event, and also that it may be associated with the young pulsar PSR J0152–1637. Our spectroscopic observations reveal seven of the stars in the sample of 30 to be previously unknown spectroscopic binaries. Orbital solutions for four of them are reported here as well. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We have observed EY Draconis with the 60‐cm telescope of Konkoly Observatory in Budapest for 64 nights. In the first observing season the star produced a stable light curve for more than 60 stellar rotations, however, the light curves observed in the next season and the spot modelling show clear evidence of the evolution of the spotted stellar surface. The changes of the maximum brightness level suggests the existence of a longer period of about 300 days, which seems to be confirmed by the ROTSE archival data. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We report the discovery of a bright blue quasar: SDSS J022218.03–062511.1. This object was discovered spectroscopically while searching for hot white dwarfs that may be used as calibration sources for large sky surveys such as the Dark Energy Survey or the Large Synoptic Survey Telescope project. We present the calibrated spectrum, spectral line shifts and report a redshift of z = 0.521±0.0015 and a rest‐frame g‐band luminosity of 8.71×1011 L. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
We present continuous and time‐resolved R = 55 000 optical échelle spectroscopy of ε Aurigae from 2006–2013. Data were taken with the STELLA Echelle Spectrograph of the robotic STELLA facility at the Observatorio del Teide in Tenerife. Contemporaneous photometry with the Automatic Photoelectric Telescopes at Fairborn Observatory in Arizona is presented for the years 1996–2013. Spectroscopic observations started three years prior to the photometric eclipse and are still ongoing. A total of 474 high‐resolution échelle spectra are analyzed and made available in this paper. We identify 368 absorption lines of which 161 lines show the characteristic sharp disk lines during eclipse. Another 207 spectral lines appeared nearly unaffected by the eclipse. From spectrum synthesis, we obtained the supergiant atmospheric parameters Teff = 7395 ± 70 K, log g ≈ 1, and [Fe/H] = +0.02 ± 0.2 with ξt = 9 km s–1, ζRT = 13 km s–1, and v sin i = 28 ± 3 km s–1. The residual average line broadening expressed in km s–1 varies with a period of 62.6 ± 0.7 d, in particular at egress and after the eclipse. Two‐dimensional line‐profile periodograms show several periods, the strongest with ≈110 d evident in optically thin lines as well as in the Balmer lines. Center‐of‐intensity weighted radial velocities of individual spectral lines also show the 110‐d period but, again, additional shorter and longer periods are evident and are different in the Balmer lines. The two main spectroscopic Hα periods, ≈ 116 d from the line core and ≈ 150 d from the center‐of‐intensity radial velocities, appear at 102 d and 139 d in the photometry. The Hβ and Johnson V I photometry on the other hand shows two well‐defined and phase‐coherent periods of 77 d and 132 d. We conclude that Hα is contaminated by changes in the circumstellar environment while the Hβ and V I photometry stems predominantly from the non radial pulsations of the F0 supergiant. We isolate the disk‐rotation profile from 61 absorption lines and found that low disk eccentricity generally relates to low disk rotational velocity (but not always) while high disk eccentricity always relates to high velocity. There is also the general trend that the disk‐absorption in spectral lines with higher excitation potential comes from disk regions with higher eccentricity and thus also with higher rotational velocity. The dependency on transition probability is more complex and shows a bi‐modal trend. The outskirts of the disk is distributed asymmetrically around the disk and appears to have been built up mostly in a tail along the orbit behind the secondary. Our data show that this tail continues to eclipse the F0 Iab primary star even two years after the end of the photometric eclipse. High‐resolution spectra were also taken of the other, bona‐fide, visual‐binary components of ε Aur (ADS 3605BCDE). Only the C‐component, a K3‐4‐giant, appears at the same distance than ε Aur but its radial velocity is in disagreement with a bound orbit. The other components are a nearby (≈ 7 pc) cool DA white dwarf, a G8 dwarf, and a B9 supergiant, and not related to ε Aur. The cool white dwarf shows strong DIB lines that suggest the existence of a debris disk around this star. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
16.
We present more than 1000‐day long photometry of EY Draconis in BV (RI)C passbands. The changes in the light curve are caused by the spottedness of the rotating surface. Modelling of the spotted surface shows that there are two large active regions present on the star on the opposite hemispheres. The evolution of the surface patterns suggests a flip‐flop phenomenon. Using Fourier analysis, we detect a rotation period of Prot = 0.45875 d, and an activity cycle with P ≈ 350 d, similar to the 11‐year long cycle of the Sun. This cycle with its year‐long period is the shortest one ever detected on active stars. Two bright flares are also detected and analysed (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
18.
19.
We have used the Ultra-High-Resolution Facility (UHRF) at the AAT, operating at a resolution of 0.35 km s−1 (FWHM), to observe K  i and C2 absorption lines arising in the circumstellar environment of the post-AGB star HD 56126. We find three narrow circumstellar absorption components in K  i , two of which are also present in C2. We attribute this velocity structure to discrete shells resulting from multiple mass-loss events from the star. The very high spectral resolution has enabled us to resolve the intrinsic linewidths of these narrow lines for the first time, and we obtain velocity dispersions ( b -values) of 0.2–0.3 km s−1 for the K  i components, and 0.54±0.03 km s−1 for the strongest (and best defined) C2 component. These correspond to rigorous kinetic temperature upper limits of 211 K for K  i and 420 K for C2, although the b -value ratio implies that these two species do not co-exist spatially. The observed degree of rotational excitation of C2 implies low kinetic temperatures ( T k≈10 K) and high densities ( n ≈106 to 107 cm−3) within the shell responsible for the main C2 component. Given this low temperature, the line profiles then imply either mildly supersonic turbulence or an unresolved velocity gradient through the shell.  相似文献   

20.
We present and apply a new computer program named SpotModeL to analyze single and multiple bandpass photometric data of spotted stars. It is based on the standard analytical formulae from Budding and Dorren. The program determines the position, size, and temperature of up to three spots by minimizing the fit residuals with the help of the Marquardt‐Levenberg non‐linear least‐squares algorithm. We also expand this procedure to full time‐series analysis of differential data, just as real observations would deliver. If multi‐bandpass data are available, all bandpasses can be treated simultaneously and thus the spot temperature is solved for implicitly. The program may be downloaded and used by anyone. In this paper, we apply our code to an ≈23 year long photometric dataset of the spotted RS CVn giant IM Peg. We extracted and modelled 33 individual light curves, additionally, we fitted the entire V dataset in one run. The resulting spot parameters reflect the long term light variability and reveal two active longitudes on the substellar point and on the antipode. The radius and longitude of the dominant spot show variations with 29.8 and 10.4 years period, respectively. Our multicolour data suggests that the spot temperature is increasing with the brightening of the star. The average spot temperature from V, IC is 3550 ± 150 K or approximately 900 K below the effective temperature of the star.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号