首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Earth's atmosphere, biosphere and lithosphere are increasingly being modified by human activity. Given this anthropogenic influence on the natural environment, the case for recognizing an Anthropocene Epoch has recently been made and there is ongoing debate as to whether, and how, to formally characterize and define such an epoch. As a contribution to this debate, this article explores whether or not the landscapes, deposits, landforms and key marker horizons that may be used to characterize and define an Anthropocene Epoch could, and should, be identified and conserved in the same manner as other parts of the geological succession. Anthropogenic features pose a conservation challenge, however, as they often cross cut existing conservation frameworks which tend to focus on the natural, historic or cultural environment. Developing a coherent approach to the conservation of the indicators of an Anthropocene Epoch would, therefore, require an integrated system of describing, auditing and designating features for conservation. A major benefit of such an approach would be the opportunities for interdisciplinary collaboration between the wide range of researchers interested or involved in studying and conserving the record of anthropogenic activity.  相似文献   

2.
3.
The stress [crack damage stress (σ cd) and uniaxial compressive strength (σ c)] and strain characteristics [maximum total volumetric strain (ε cd), axial failure strain (ε af)], porosity (n) and elastic constants [elastic modulus (E) and Poisson’s ratio (ν)] and their ratios were coordinated with the existence of two different types (type 1 and type 2) of volumetric strain curve. Type 1 volumetric strain curve has a reversal point and, therefore, σ cd is less than the uniaxial compressive strength (σ c). Type 2 has no reversal point, and the bulk volume of rock decreases until its failure occurs (i.e., σ cd = σ c). It is confirmed that the ratio between the elastic modulus (E) and the parameter λ = n/ε cd strongly affects the crack damage stress (σ cd) for both type 1 and type 2 volumetric strain curves. It is revealed that heterogeneous carbonate rock samples exhibit different types of the volumetric strain curve even within the same rock formation, and the range of σ cd/σ c = 0.54–1 for carbonate rocks is wider than the range (0.71 < σ cd/σ c < 0.84) obtained by other researchers for granites, sandstones and quartzite. It is established that there is no connection between the type of the volumetric strain curve and values of n, E, σ cd, ν, E/(1 ? 2ν), M R = E/σ c and E/λ. On the other hand, the type of volumetric strain curve is connected with the values of λ and the ratio between the axial failure strain (ε af) and the maximum total volumetric strain (ε cd). It is argued that in case of small ε af/ε cd–small λ, volumetric strain curve follows the type 2.  相似文献   

4.
By measuring S spacing, C spacing and the SC angle (α) in deformed rocks, this paper investigates the geometry of previously published examples of SC and SC-like structures on a scale range between micrometres and several hundred kilometres. The results indicate that common SC fabrics of thin-section, hand-specimen and outcrop scale, and conjugate fault/mylonite zones of map scale define a simple function Cspacing=2Sspacing, which depicts a scale-invariant geometry over ten orders of magnitude. Logarithmic plots of cumulative frequency suggest that the SC fractal set (D=0.13) is restricted to the scale range between 600–800 μm and 1 km where genuine SC structures, characterized by antithetic shear on the S planes, can be formed. Below 600–800 μm, grain scale processes seem to influence the development of SC structures. Above the upper limit (1 km), only SC-like structures with duplex kinematics (synthetic shear on S planes) occur. The SC and SCC′ fractals are envisaged as self-similar structures where the foliations work as both S or C planes, depending on which scale is considered.  相似文献   

5.
《Journal of Structural Geology》1999,21(8-9):1131-1142
Using spatial relationships between individual plutons and faults to support genetic correlations between faulting and magmatism is meaningless since even random magmatic or tectonic processes will result in some plutons adjacent to faults. Our initial analyses of populations of faults and Carboniferous plutons in the Armorican Massif, France and faults and Alleghanian plutons in the southern Appalachians, USA indicate that plutons have broad distributions with respect to faults but with a tendency for plutons to occur away from faults. Maxima of integrated pluton areas occur at 1/4 (Appalachians) and 1/2 (Armorican) of the distance between the average fault spacing in these orogens. Although there is a great need for statistical evaluations of relationships between populations of igneous bodies and structures in a wide variety of settings and crustal depths, our initial studies suggest that faults do not preferentially channel magma during ascent or emplacement and that these are relatively unfocused processes within orogenic belts.  相似文献   

6.
This paper presents a series of cyclic 2D direct shear tests on sand–rough material interfaces under constant normal load (CNL) and constant normal stiffness (CNS) conditions. The aim of these tests is to describe the behavior of the soil–pile contact subjected to a large number of cycles due to environmental or anthropic loadings. These cycles (typically 104 or less due to an early rupture) are small (10, 20 and 40 kPa in terms of shear stress). A new interpretation of the direct shear tests is proposed. The sample of soil is schematically composed of a sheared interface and of a buffer under oedometric load. The problem of sand leakage between the shear box and the rough plate, classical phenomenon in this type of test, is focused. The effect of initial density, position of “center of cycles” in stress plane (mean cyclic variables) and cyclic amplitude is investigated. The cycles are defined by the initial mean cyclic normal stress, the level of initial mean cyclic stress ratio and the normalized cyclic amplitude. Under CNL condition, either dilation or contraction is exhibited, in agreement with the characteristic state developed by Luong (International symposium on soils under cyclic and transient loading, Swansea, 7–11 January, pp 315–324, 1980). The influence of a prescribed normal stiffness is especially considered. It can be highlighted that CNS cyclic paths are always contractive. This contraction results in a drop of mean cyclic normal stress often called degradation of friction.  相似文献   

7.
Peter Newby 《GeoJournal》1997,43(4):351-358
Urban planners have to develop a planning doctrine (Faludi and Van der Valk 1990). This concept stands for a body of thoughts concerning (a) spatial arrangements within an area, (b) the development of that area; and (c) the way both should be handled. To be successful, they need a planning community (planners, top officials and sub-national establishments for political support) that nurtures it. The planners of the Amsterdam General Extension Plan (1935) developed a doctrine that covers three levels of functions and activities: (1) Amsterdam is a regional centre, a closed functional system, an orthogenetic city. (2) a monocentric urban form and (3) homogeneous neighbourhood communities around a common neighbourhood centre (church, school, medical services, shops). Since the early 1970s Amsterdam has become (1) an international centre, a heterogenetic city, part of a network city system, (2) has developed into a polycentric urban region, and (3) has been acquiring ethnically mixed quarters, divided communities losing their basic function as common neighbourhood centres and even as control areas or domains (Hägerstrand 1970). So in Amsterdam the planning-doctrine was not particularly successful.  相似文献   

8.
9.
Spatial variations in shear strain rate are expected in ductile shear zones. Where the variation is a change in shear strain perpendicular to the displacement direction, the effect is to rotate the shear slip planes. This is a mechanism for giving a rotation of fold axes into parallelism with the slip and extension direction in a rock. If such a variation in shear strain affects rocks with a strong planar anisotropy it is possible to produce a fabric with an apparent stretching lineation parallel to fold axes, but both significantly oblique to the slip direction. A possible example of this is seen in strongly deformed quartz-mica schists from Syros, Greece, where a stretching lineation is seen parallel to fold hinges over a range of fold axes orientations of at least 40°.  相似文献   

10.
11.
The imprint of orbital cycles, which result from the varying eccentricity of the Earth’s orbit and changes in the orientation of its axis, have been recognised throughout the Phanerozoic rock record. Variations in insolation and their effect on climate are generally considered to be the sole transfer mechanism between the orbital variables and cyclic sedimentary successions. Common oceanographic principles, however, show that the ocean tide also responds to variations in the orbital parameters. The ocean tide has not yet been considered to be a valid, additional transfer mechanism for the orbital variations. In geological studies of Milankovitch cycles in sedimentary successions the insolation paradigm offers satisfying explanations, and the role of long‐term variations of the ocean tide has not yet been appreciated. Variations in the ocean tide, related to changing eccentricity (at present 0·0165, theoretical maximum 0·0728), affect a variety of oceanographic and sedimentary processes. In addition to the widely accepted paradigm of orbitally forced insolation changes, the tidal transfer of orbital signals may explain certain less well‐understood aspects of orbitally induced cycles in the stratigraphic record related to ocean mixing, organic productivity, and tidal processes in shallow seas and deep water. Variations of the ocean tide in relation to the 18·6 year lunar nodal cycle, which has no insolation counterpart by which they may be obscured, indeed show that these relatively small variations can produce significant effects in sedimentary environments that are sensitive to variations in the strength of the ocean tide. In analogy with the 18·6 year lunar nodal cycle, orbital variations of the tide on Milankovitch time scales are likely to have affected sedimentary systems in the past.  相似文献   

12.
A successful piece of applied research will not only influence the related problem perception within the scientific community, but also lead to much better understanding of a complex challenge, including the delivery of solutions. Ideally it may contribute significantly to reducing possible risk situations for people and/or the natural environment. In short, a successful study will have a broader impact beyond the sphere of science. Planning, timing, funding, networking, communication, and interdisciplinarity are identified as key aspects for a successful project and are being examined in their scope and boundary conditions, while not neglecting the particular role of local and regional people and authorities.Defining what makes a successful environmental geochemical study is clearly based upon experience and evidence found, and not upon any particular theoretical concept. Here, experience is drawn from the outcome of many projects and specifically first-hand from the complex ARSENEX project in Minas Gerais, Brazil. Against the backdrop of both perceived and real arsenic contamination of environmental compartments, including local people, all subsequent project steps and proposals were set up using a three-prong approach that sought to a) understand the processes, b) educate and inform the public and all other stakeholders and c) remediate the situation.  相似文献   

13.
The Franciscan Complex of California is better understood now than in 1972, when Berkland et al. defined it as a complex and divided it into three geographic belts. A re-evaluation is needed. Belts first served as major architectural units, but they have been abandoned by some and renamed as and subdivided into tectonostratigraphic terranes by others. The Franciscan Complex – considered to be the archetypical accretionary complex by many – is the folded, faulted, and stratally disrupted rock mass comprising the supramantle basement of the California-Southern Oregon Coast Ranges exposed east of the Salinian Block and west of and structurally below principal exposures of the Coast Range Fault, Coast Range Ophiolite, Great Valley Group, and Klamath Mountains. The Complex is dominated by sandstones and mudrocks, but contains mafic oceanic crustal fragments with chert, limestone, and other rock types, and zeolite, prehnite-pumpellyite, blueschist, and rare amphibolite and eclogite facies metamorphic rocks. Review of historical precedence, new data, available large-scale maps, and fundamental definitions suggest now (1) that the Belt terminology as applied to the entire Franciscan Complex conflicts with current knowledge of Franciscan rocks and architecture; and (2) that most named Franciscan terranes and nappes are inconsistent with basic definitions of those unit types. The major architectural units into which the Franciscan Complex can be divided are accretionary units – mélanges and underthrust sheets. Underthrust sheets can be subdivided into smaller units, e.g. broken formations and olistostromal mélanges, mappable using traditional lithostratigraphic and structural mapping techniques. Unresolved controversies in reconstruction of the nature and history of the accretionary complex relate to specific mélange origins; megathrust versus subduction channel mélange models; chert conundrums; delineation of the ages, subdivisions, and regional architecture of Franciscan units; palinspastic reconstruction of the pre-Late Cenozoic architecture; and reconstruction of the complete histories of accretionary units.  相似文献   

14.
The 27 km long, 0.5 km thick mylonite zone of the Pinaleño Mountains metamorphic core complex is interpreted as a normal-displacement simple-shear zone on the basis of major, minor and microscopic-scale structures. Shear strains calculated as a function of the angle between the foliation and the lower boundary of the shear zone range from 2 to 19 and have a mean value of 3.5, corresponding to a mean angular shear of 74°. These values are the same as those calculated independently from rotations of sheared lithologic contacts. Integration of the calculated shear strains yields a minimum translation estimate of 2.9 km.  相似文献   

15.
There exists a transition between rockfalls, large rock mass failures, and rock avalanches. The magnitude and frequency relations (M/F) of the slope failure are increasingly used to assess the hazard level. The management of the rockfall risk requires the knowledge of the frequency of the events but also defining the worst case scenario, which is the one associated to the maximum expected (credible) rockfall event. The analysis of the volume distribution of the historical rockfall events in the slopes of the Solà d’Andorra during the last 50 years shows that they can be fitted to a power law. We argue that the extrapolation of the F-M relations far beyond the historical data is not appropriate in this case. Neither geomorphological evidences of past events nor the size of the potentially unstable rock masses identified in the slope support the occurrence of the large rockfall/rock avalanche volumes predicted by the power law. We have observed that the stability of the slope at the Solà is controlled by the presence of two sets of unfavorably dipping joints (F3, F5) that act as basal sliding planes of the detachable rock masses. The area of the basal sliding planes outcropping at the rockfall scars was measured with a terrestrial laser scanner. The distribution of the areas of the basal planes may be also fitted to a power law that shows a truncation for values bigger than 50 m2 and a maximum exposed surface of 200 m2. The analysis of the geological structure of the rock mass at the Solà d’Andorra makes us conclude that the size of the failures is controlled by the fracture pattern and that the maximum size of the failure is constrained. Two sets of steeply dipping faults (F1 and F7) interrupt the other joint sets and prevent the formation of continuous failure surfaces (F3 and F5). We conclude that due to the structural control, large slope failures in Andorra are not randomly distributed thus confirming the findings in other mountain ranges.  相似文献   

16.
We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique ‘mean’ kinematic vorticity experienced by a deformed rock volume.  相似文献   

17.
This paper deals with the possible impact of hydraulic fracturing (fracking), employed in the exploitation of unconventional shale gas and tight gas reservoirs, on groundwater, which is the most important source of drinking-water in Germany and many other European countries. This assessment, which is part of an interdisciplinary study by a panel of neutral experts on the risks and environmental impact of hydraulic fracturing, is based mainly on data obtained from three ExxonMobil drilling sites in northern Germany. First, the basic technical aspects of fracking and its relevant water fluxes are explained. The type, purpose and fate of the constituents of the fracking fluids are discussed. The chemicals used in the fracking fluids are assessed with regard to their hazardous properties according to the Regulation (EC) No. 1272/2008 of the European Parliament and of the Council on the classification, labelling and packaging of substances and mixtures (CLP regulation) and the German “Water Hazard Classes”. Contamination of groundwater by ingredients of fracking fluids may occur from under ground or may result from above-ground accidents associated with the transport, storage and handling of hazardous substances used as additives in fracking fluids. The degree of groundwater contamination cannot be predicted in a general way. Therefore, different dilutions of the fracking fluid in groundwater are considered. It is shown that the concentrations of most ingredients resulting from a 1:10,000 up to 1:100,000 dilution of the fracking fluid in groundwater are below health-based reference values such as the limit values of the European Drinking Water Directive, the WHO Guideline Values for Drinking-water Quality, and other health-based guide values for drinking-water. Regarding the salinity of fracking fluids, a dilution of 1:1,000 is sufficient to reach concentrations which are acceptable for drinking-water. From the human-toxicological point of view, the constituents of flowback water are more problematic with respect to drinking-water produced from groundwater than those of the fracking fluids. The few reliable data which have become available, as well as hydrogeological considerations, point in the direction of considerable salt concentrations and toxic constituents, e.g., Hg, As, Pb, Zn, Cd, BTX, PAHs, or even radioactive elements. The identification and assessment of reaction products and metabolites, which are produced as a result of the fracking operation and the metabolic activity of microorganisms, are important topics for further research. The recommendations include the need for a better understanding of the environmental impact of fracking operations, especially with regard to the development of sustainable rules for planning, permission, performance and management of fracking, and for the monitoring of groundwater quality around fracked drilling sites.  相似文献   

18.
International Journal of Earth Sciences - Across the crystalline basement of Madagascar, late Archaean rocks of the Antananarivo Block are tectonically overlain by Proterozoic, predominantly...  相似文献   

19.
《Geodinamica Acta》2013,26(3-4):165-184
Models consisting of a thick overburden resting on a buoyant layer were sheared and centrifruged in order to study the relationship between strike-slip shear zones and intrusions of buoyant material. Three experiments were carried out: In model 1, where the overburden consisted of a viscous material, no diapirs formed even after shearing for 40 mm (? = -1.07) and 27 min centrifuging. In models 2 and 3, where the overburden was semi-brittle, prescribed cuts at two different orientations (model 2: parallel to s1; model 3: perpendicular to s1) were initiated in the overburden in order to see whether such cuts acted as pathways for intrusion. In model 2 the prescribed cuts were used by the buoyant material as pathways when the cuts opened during shearing. Continued shearing widened the cuts and allowed the buoyant material to extrude on the surface of the model forming a coalesced elliptical sheet. In model 3. the cuts were closed during shearing and prevented the intrusion of the buoyant material. During further shearing, the cuts rotated and activated as strike-slip faults bounding pull-apart basins. Such pull-apart basins were not deep enough to tap the buoyant material. Nevertheless, the results of the experiments suggest that magma ascends in shear zones not as diapirs, but rises along preexisting pathways as dykes. Model results were used to evaluate emplacement of the Fürstenstein Intrusive Complex (FIC) in the Bavarian Forest, whose magnetic and structural inventory have been investigated in detail. The pluton consists of 5 magma batches, each with distinct magnetic fabrics. which are interpreted as the result of magma intrusion along opening and rotating tension gashes within the BPSZ stress field. Shear failure of the crust in the FIC area due to thermomechanical weakening provided the space for the emplacement of the last and biggest granite magma batch. Overall, the emplacement history of the FIC fits perfectly with the observations made during experiment 2 and indicates that magma ascent in shear zones is bound to tension gashes.  相似文献   

20.
Lineations within mylonites exhumed in the hanging wall of New Zealand's active Alpine Fault zone have a complicated relationship to contemporary plate kinematics. The shear zone is triclinic and macroscopic object lineations are not usually parallel to the simple shear direction, despite high total simple shear strains (γ ≥ 150). This is mostly because the lineations are inherited from pre-mylonitic fabrics, and have not been rotated into parallelism with the mylonitic stretching direction (which pitches c. 44° in the fault plane). Furthermore, some lineations have been variably rotated depending on whether they are present in shear bands or microlithons, which accommodated bulk strains with different vorticities. Total strains required to obtain parallelism between the finite maximum principal stretching direction calculated from transpression models and these mylonitic lineations, are pure shear stretch, S1 ∼ 3.5; simple shear 11.7 < γ < 150. The observations and numerical models also show that linear features are not rotated much during simple shear because they initially lie within the shear plane, and that inherited fabric components may not be destroyed until very high simple shear strains have been attained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号