首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Groundwater is often the only water source in semi-arid regions of Turkey. Günyüzü Basin, located in the Sakarya River basin, SW of Eskişehir, exhibits semi-arid conditions. The study area is composed of Paleozoic metamorphic rocks, Eocene granitic rocks, Neogene sedimentary rocks, and Quaternary alluvium. In the basin, Paleozoic Marbles are the main reservoir rocks for hot and cold water, bordered by impermeable diabases dykes at the sides and by impermeable granites and schists. Neogene-aged limestones, conglomerates and alluvium represent the other significant aquifers. Water samples chosen to exemplify the aquifer characteristics, were collected from springs and wells in both the dry and the wet seasons. The cation and anion permutation of the samples show that carbonates are the dominant lithology in the formation of chemical composition. δ18O (−11.2 to −8.9‰) and δ2H (−79 to −60‰) isotopic values show that all waters (thermal and cold) are meteoric in origin. The hydrological, hydrochemical, and isotopic properties of the waters reveal that there exist two main groups of groundwater systems; one of these is deep circulating, while the other one is shallow. Tritium values, 0–4 TU (Tritium Unit) indicate the presence of old, static water in these aquifer systems.  相似文献   

2.
The Emizözü shear zone is the west–northwest-trending ductile shear zone within the A?açören granitoid in central Turkey. Deformation that affected the granitoid along the Emizözü shear zone resulted in mylonites with mylonitic foliation and stretching lineation. The textural features of the deformed minerals suggest that mylonitization occurred under conditions of upper greenschist facies. The shear indicators, including asymmetric porphyroclasts, oblique foliation, and shear bands, suggest a down-dip (top-to-the-southwest) displacement. The orientation of stretching lineation, as well as kinematic indicators, indicates the extensional character of the Emizözü shear zone. Although it is not precisely dated, the available age constraints suggest that the zone formed at 78–71 Ma. According to field and micro-structural data, the A?açören granitoid was most likely emplaced during a regional deformation in central Turkey, and synchronously or shortly after was overprinted by the extensional Emizözü shear zone. The zone can also be correlated with the earlier stage development of the Tuzgölü basin in central Turkey.  相似文献   

3.
This paper presents a stratigraphic and sedimentary study of Neoproterozoic successions of the South Sinai, at the northernmost segment of the Arabian–Nubian Shield (ANS), including the Kid complex. This complex is composed predominantly of thick volcano-sedimentary successions representing different depositional and tectonic environments, followed by four deformational phases including folding and brittle faults (D1–D4). The whole Kid area is divisible from north to south into the lower, middle, and upper rock sequences. The higher metamorphic grade and extensive deformational styles of the lower sequence distinguishes them from the middle and upper sequences. Principal lithofacies in the lower sequence include thrust-imbricated tectonic slice of metasediments and metavolcanics, whereas the middle and upper sequences are made up of clastic sediments, intermediate-felsic lavas, volcaniclastics, and dike swarms. Two distinct Paleo- depositional environments are observed: deep-marine and alluvial fan regime. The former occurred mainly during the lower sequence, whereas the latter developed during the other two sequences. These alternations of depositional conditions in the volcano-sedimentary deposits suggest that the Kid area may have formed under a transitional climate regime fluctuating gradually from warm and dry to warm and humid conditions.Geochemical and petrographical data, in conjunction with field relationships, suggest that the investigated volcano-sedimentary rocks were built from detritus derived from a wide range of sources, ranging from Paleoproterozoic to Neoproterozoic continental crust. Deposition within the ancient Kid basin reflects a complete basin cycle from rifting and passive margin development, to intra-arc and foreland basin development and, finally, basin closure. The early phase of basin evolution is similar to various basins in the Taupo volcanics, whereas the later phases are similar to the Cordilleran-type foreland basin. The progressive change in lithofacies from marine intra-arc basin to continental molasses foreland basin and from compression to extension setting respectively, imply that the source area became peneplained, where the Kid basin became stabilized as sedimentation progressed following uplift. The scenario proposed of the study area supports the role of volcanic and tectonic events in architecting the facies and stratigraphic development.  相似文献   

4.
Combined subsidence and thermal 1D modelling was performed on six well-sections located in the north-western Mid-Polish Trough/Swell in the eastern part of the Central European Basin system. The modelling allowed constraining quantitatively both the Mesozoic subsidence and the magnitude of the Late Cretaceous–Paleocene inversion and erosion. The latter most probably reached 2,400 m in the Mid-Polish Swell area. The modelled Upper Cretaceous thickness did not exceed 500 m, and probably corresponded to 200–300 m in the swell area as compared with more than 2,000 m in the adjacent non-inverted part of the basin. Such Upper Cretaceous thickness pattern implies early onset of inversion processes, probably in the Late Turonian or Coniacian. Our modelling, coupled with previous results of stratigraphic and seismic studies, demonstrates that the relatively low sedimentation rates in the inverted part of the basin during the Late Cretaceous were the net result of several discrete pulses of non-deposition and/or erosion that were progressively more pronounced towards the trough axis. The last phase of inversion started in the Late Maastrichtian and was responsible for the total amount of erosion, which removed also the reduced Upper Cretaceous deposits. According to our modelling results, a Late Cretaceous heat-flow regime which is similar to the present-day conditions (about 50 mW/m2) was responsible for the observed organic maturity of the Permian-Mesozoic rocks. This conclusion does not affect the possibility of Late Carboniferous–Permian and Late Permian–Early Triassic thermal events.  相似文献   

5.
The series of two papers presents a comprehensive isotope-geochronological and petrologicalgeochemical study of the Late Quaternary Tendürek Volcano (Eastern Turkey), one of the greatest volcanoes within the Caucasian–Eastern Anatolian segment of the Alpine foldbelt. The second article discusses the results of petrogenetic modeling, role of AFC-processes in the petrogenesis of magmas and the nature of mantle source of the Tendürek Volcano. Based on geochronological data, geochemical and isotopegeochemical (Sr-Nd-Pb) characteristics of the studied rocks we suggest the petrological model which well describe the evolution of magmatic system of the Tendürek Volcano during the whole period of its activity. The data obtained indicate that the igneous rocks of the Tendürek Volcano belong to the same homodromous volcanic series (trachybasalt–tephrite–phonotephrite–tephriphonolite–trachyandesite–trachyte–phonolite), which are dominated by the intermediate and moderately-acid varieties of the eruption products. The leading role in the petrogenesis of the lavas was played by the fractional crystallization processes, which, according to isotope-geochemical data, were sometimes complicated by the assimilation of upper crustal material. The mantle reservoir responsible for the magmatic activity within the major part of the Eastern Anatolia in the Late Quaternary time was represented by the OIB-type mantle. It was subject to slight metasomatic changes as a result of earlier deepening and remelting of the Arabian Plate slab, which was subducted under the region through the end of the Miocene. The depth of the magma-generating source is estimated at around 80 km, which corresponds to the upper part of the asthenospheric wedge under the region, based on geophysical data.  相似文献   

6.
The Asmari Formation(a giant hydrocarbon reservoir)is a thick carbonate sequence of the Oligocenee Miocene in the Zagros Basin,southwest of Iran.This formation is exposed at Tang-e-Lendeh in the Fars interior zone with a thickness of 190 m comprising medium and thick to massive bedded carbonates.The age of the Asmari Formation in the study area is the late Oligocene(Chattian)eearly Miocene(Burdigalian).Ten microfacies are defned,characterizing a gradual shallowing upward trend;the related environments are as follows:open marine(MF 8e10),restricted lagoon(MF 6e7),shoal(MF 3e5),lagoon(MF 2),and tidal fat(MF 1).Based on the environmental interpretations,a homoclinal ramp consisting of inner and middle parts prevails.MF 3e7 are characterized by the occurrence of large and small porcelaneous benthic foraminifera representing a shallow-water setting of an inner ramp,infuenced by wave and tidal processes.MF 8e10,with large particles of coral and algae,represent a deeper fair weather wave base of a middle ramp setting.  相似文献   

7.
The Late Cretaceous–Tertiary accretionary prism in Eastern Turkey includes several ophiolitic megablocks and/or tectonic slivers (Mehmetalan, Mollatopuz and Alabayir) within a mélange complex, mainly comprising harzburgite, dunite and cumulate-textured gabbro. The diabases, which are the main focus of this study, cut across the ophiolites as parallel and variably thick dyke-swarms. Geochemistry of the diabases reveals three distinct groups, including a) supra-subduction zone (SSZ) type, which is characterized by marked Nb-anomaly and normal mid-ocean ridge basalt (N-MORB) like HFSE distribution, b) enriched MORB (E-MORB) type, showing some degree of enrichment relative to N-MORB, c) oceanic-island basalt (OIB) type with characteristic hump-backed trace element patterns, coupled with fractionated REE distribution. Among these groups, SSZ- and E-MORB-type signatures are acquired from the Mehmetalan and Mollatopuz suites, whereas OIB-type characteristics are found in the Alabayir suite. The melting models indicate involvement of both depleted and enriched sources for the genesis of the studied dykes. The close spatial relationship, similar ages (based on Ar–Ar dating) and the presence of variable subduction component displayed by Mehmetalan and Mollatopuz suites may indicate melt generation in an intra-oceanic SSZ within the southern branch of Neotethys. In spite of the solely OIB-like character of the Alabayir suite, the similar age obtained from these dykes may suggest their formation in a similar SSZ setting. Alternatively, the Alabayir suite may have represented an oceanic island or seamount formed in an intra-plate setting with or without plume influence. We suggest that decompression melting triggered by slab roll-back mechanism during the closure of the southern branch of the Neotethys during the Late Cretaceous may have been the main process that led to generation of magmas of both depleted and enriched characteristics.  相似文献   

8.
Sedimentary deposits of the Cretaceous to Miocene Tansen Group of Lesser Himalayan association in central Nepal record passive-margin sedimentation of the Indian Continent with direct deposition onto eroded Precambrian rocks (Sisne Formation onto Kaligandaki Supergroup rocks), succeeded by the appearance of orogenic detritus as the Indian continent collided with Asia on a N-dipping subduction zone. Rock samples from two field traverses were examined petrographically and through detrital zircon U–Pb dating, one traverse being across the Tansen Group and another across the Higher and Tethyan Himalaya (TH). The Tansen Group depositional ages are well known through fossil assemblages. We examined samples from three units of the Tansen Group (Amile, Bhainskati, and Dumri Formations). The Sedimentary petrographic data and Qt F L and Qm F Lt plots indicate their ‘Quartzose recycled’ nature and classify Tansen sedimentary rocks as ‘recycled orogenic’, suggesting Indian cratonic and Lower Lesser Himalayan (LLH) sediments as the likely source of sediments for the Amile Formation (Am), the TH and the Upper Lesser Himalaya (ULH) as the source for the Bhainskati Formation (Bk), and both the Tethyan and Higher Himalaya (HH) as the major sources for the Dumri Formation (Dm). The Cretaceous–Palaeocene pre-collisional Am is dominated by a broad detrital zircon U–Pb ~1830 Ma age peak with neither Palaeozoic nor Neoproterozoic zircons grains, but hosts a significant proportion (23%) of syndepositional Cretaceous zircons (121–105 Ma) would be contributions from the LLH volcanosedimentary arc, Gangdese batholith (including the Xigaze forearc). The other formations of the Tansen Group are more similar to Tethyan units than to Higher Himalaya Crystalline (HHC). From the analysed samples, there is a lack of distinctive evidence or HH detritus in the Tansen basin. Furthermore, the presence of ~23±1 Ma zircons from the HH unit suggests that they could not have been exposed until the earliest Miocene time.  相似文献   

9.
Over 70 m thick interbedded sandstone, siltstone and claystone of the upper member of the Gharif Formation are exposed in western Huqf area in Oman Interior Sedimentary Basin. The Gharif Formation, particularly its upper member hosts major hydrocarbon reservoir in the subsurface of the Oman Interior Sedimentary Basin. The upper member of the Gharif Formation is comprised of interbedded thick sandstone, siltstone, carbonaceous clays and intraformational conglomerates. The sandstone lithofacies, on average, constitute 10 m thick multistoreyed sequences, which are composed internally of 2–3 m thick and 100 s of metres across vertically and laterally amalgamated sandstone bodies. Two major types of sandstones (types 1 and 2) are identified on the basis of their lithofacies association and internal architecture. The type 1 sandstone constitutes the lower part of the member and is comprised of pebbly to coarse-grained, planar and trough cross-bedded sandstone, plane bedded sandstone and pebble lags at the base of major sandstone bodies. The cross-beds are, on average, 30 cm thick exhibiting a dominant paleoflow direction towards NW (280–300° N). It is interpreted to be deposited by low sinuosity braided streams. The type 2 sandstone constitutes the upper part of the member and is comprised of medium-grained sandstone, trough to low angle plane bedding associated with lateral accretion surfaces. It is commonly interbedded with carbonaceous clays. Silicified plant fragments are commonly distributed in the upper part of the sandstone. Interbedded clays and siltstones are red, mottled and extensively bioturbated due to root burrows. It is interpreted to be deposited by high sinuosity meandering streams. In the uppermost part of the section, several dark grey to black carbonaceous clay/coal beds with plant matter are interbedded with sandstone and red clay indicating development of swampy conditions during onset of the coastal setting in the uppermost part of the formation. About 30 cm thick bioclastic sandstone deposited by the marine coastal bars mark transition from the Gharif Formation to carbonate dominated Khuff Formation. The sandstone of the Gharif Formation is arkosic in composition. Very small amount of cement and negligible compaction of constituent grains in sandstone indicates shallow burial before uplift.  相似文献   

10.
The series of two papers presents a comprehensive isotope-geochronological and petrological-geochemical study of the Late Quaternary Tendürek Volcano (Eastern Turkey), one of the greatest volcanoes within the Caucasian—Eastern Anatolian segment of the Alpine foldbelt. The first article discusses the results of chronostratigraphic reconstruction and provides the main petrographic characteristics of the Tendürek’s igneous rocks. The K-Ar dating results show that the magmatic activity of the Tendürek Volcano developed in the Late Pleistocene time, over the period of the last 250 thousand years. Five discrete phases (I—250–200 ka, II—200–150 ka, III—150–100 ka, IV—100–70 ka, and V—<50 ka) of the youngest magmatism were identified in this study. The first two phases were represented by the fissure eruptions of alkaline basic lavas and subsequent formation of vast lava plateaus, the Çald?ran and Do?ubeyaz?t plains. In the following phases, the intermediate and moderately-acid volcanic rocks of mildly-alkaline or alkaline series started to dominate among the eruption products. According to their petrographic characteristics, the rocks of Tendürek Volcano are assigned to the alkaline association with Na-specifics (hawaiites-mugearites-benmoreites). The available geological, isotope-geochronological, and geomorphological data suggest that the Tendürek Volcano is potentially active. Nowadays, Tendürek reaches the caldera stage of its development.  相似文献   

11.
Several geothermal fields are located in a NE-SW trend along a structural lineament around the Sivas basin; one of those is the Ortaköy travertines situated 83?km south-west of Sivas. There are eight fissure-ridge-type travertine localities in the area, although eroded-sheet-type travertines constitute many of the travertines of the region. By evaluating the rocks of the Late Miocene-Early Pliocene K?z?l?rmak Formation, it was determined that fissure axes developed within fissure-ridge-type travertines, and that the structural elements obtained from satellite images together with the fissures that form the fissure-ridge-type travertines are shear and tension fissures, and the NE-SW-oriented opening of the fissures, were a result of NW-SE-directed compression, which was also responsible for the formation of the Sivas Backthrust. Ground-penetrating radar studies have shown that the thickness of fissure fills within the fissure-ridge-type travertines of the Ortaköy geothermal field increase with depth, and that the hydrothermal fluids which brought about the formation of the travertines moved surfaceward via fissure systems. The results of U/Th radiometric dating indicate that the youngest travertine in the region is 17,761 (?268/+269) years old and the oldest 128,286 (?3537/+3662) years old. Using the widths of banded travertines within the fissure-ridge-type travertines as well as these age results, the opening rate of the Sivas Basin was determined to be .06 (?.01/+.05) mm/year.  相似文献   

12.
The southern Great Xing’an Range is the most critical Sn-polymetallic metallogenic belt in northeast China. However, the tectonic setting of the Early Cretaceous magmatic-metallogenic ”flare-up“ event remains uncertain. This paper presents an integrated study on the occurrence, petrology, zircon U-Pb ages, whole-rock geochemistry, and in situ zircon Hf isotopes for Wenduerchagan granites of Xi Ujimqin Banner, central-eastern Inner Mongolia. These granites consist primarily of granite porphyry(wi...  相似文献   

13.
Fan deltas, constituting proximal depositional systems adjacent to boundary faults, are common features associated with rift basins. The Cretaceous fan delta systems of the Salvador Formation, deposited during the rift phase of the Recôncavo-Tucano-Jatobá Basin, were first reported in the Recôncavo Basin and later discovered in the Tucano Basin. Because of the absence of any outcrops in the Jatobá Basin until now, these alluvial fans were interpreted solely through seismic analysis. We report the first revealed outcrops of the Salvador Formation in that basin and characterize their depositional systems as interlayered with the lacustrine Candeias Formation. Based on facies and architecture, the alluvial system can be subdivided into three associations: (1) proximal fan delta, characterized by meter-scale conglomerate bodies with a predominance of boulders and cobbles with thin sandstone layers; (2) distal fan delta, characterized by sheet-like pebble conglomerate and sandstone layers with flame and load structures; and (3) lacustrine, further subdivided into shallow lake facies reddish shales and mudstones with oolitic limestones and deep lake facies grey to green shales with pyrite. Paleocurrent measurements for the proximal fan association show paleoflow direction varying from SW to SE, which is expected for the rift phase alluvial system. The Recôncavo-Tucano-Jatobá rift system has two conglomeratic units, namely the Salvador and Marizal Formations, the former a syn-rift and the latter a post-rift unit. The absence of sedimentary clasts in the conglomerates, very low maturity, the presence of giant clasts, and a visible relationship between boundary faults in the outcrop, define the syn-rift Salvador Formation characteristics. Based on the facies and paleocurrent analyses, the Salvador Formation deposits in Jatobá Basin were interpreted as a deposition of a debris flow-dominated fan delta, indicating the lacustrine setting represented by the Candeias Formation.  相似文献   

14.
The slip rate of Yema River–Daxue Mountain fault in the western segment of Qilian Mountains was determined by the dated offset of river risers or gullies. Results indicate that the left-lateral fault slip rate is 2.82 ± 0.20 mm/a at Dazangdele site,2.00 ± 0.24 mm/a at Shibandun site,and 0.50 ± 0.36 and 2.80 ± 0.33 mm/a at two sites in Zhazihu. The ideal average slip rate of the whole fault is 2.81 ± 0.32 mm/a. The lower slip rate confirms part of the displacement of Altyn Tagh fault was transformed into an uplifting of the strap mountains in the western segment of Qilian Mountains,whereas another part transformed into sinistral displacement of Haiyuan fault. This study illustrates that the slip of large strike-slip faults in the northeastern margin of the plateau transforms into crust thickening at the tip of the fault without large-scale propagation to the outer parts of the plateau.  相似文献   

15.
The Atuel depocenter of the Neuquén basin originated as an Upper Triassic to Lower Jurassic rift system, later inverted during the Andean contractional deformation. In order to study the extensional architecture and the kinematic evolution of this depocenter, we collected a large amount of field and sub-surface data, consisting of slip data from outcrop-scale normal faults, thickness and facies distribution within the synrift deposits, and structural data from angular and progressive unconformities. The Atuel depocenter has a NNW trend, showing a bimodal distribution of NNW and WNW major faults (first and second order faults). On the other hand, from kinematic indicators measured on outcrop-scale faults (third and fourth order faults), we found a mean NE internal extension direction, which is oblique to the general trend of the sub-basin. Taking these particular characteristics into account, we interpreted the Atuel depocenter as an oblique rift system. We evaluated two mechanisms in order to explain the development of this transtensional system: 1) reactivation of upper-crustal NNW-oriented Paleozoic shear zones, and 2) oblique stretching of a previous NNW-oriented lithospheric weakness zone.  相似文献   

16.
At ~20 ka bp , lakes Yehuin, Chepelmut and Fagnano constituted a single, large water body in the central part of Isla Grande de Tierra del Fuego (southernmost Patagonia). The evolutionary history of this lake, known as ‘Palaeolago Fueguino’, was probably controlled by the advances, stillstands and retreats of the ‘Fagnano Palaeoglacier’, an outlet glacier that flowed eastward from the Darwin Cordillera ice sheet. A detailed analysis of high-resolution seismic reflection profiles acquired within the three lakes has allowed the identification and correlation of seven unconformities within the lacustrine sedimentary infill, three seismostratigraphic sequences in Lago Fagnano and four in Lago Yehuin. A seismic stratigraphic correlation between these sequences suggests that these basins formerly constituted a single, large lacustrine body. A lake-level curve of the evolutionary stages of each lake, derived from the seismostratigraphic analysis of the sedimentary infill is proposed here, representing a 17.5 ka-long record. It was further integrated with the glacial record of the advances and retreats of the Fagnano Palaeoglacier. This study has implications for interpreting the sedimentary history of lake basins in glaciated mountain ranges.  相似文献   

17.
18.
The Cenozoic geological hallmark of Western Yunnan is the characteristic voluminous Late Cretaceous-Eocene granites; however, their geological background and petrogenesis have not been well constrained and elucidated. In this study, we present new zircon U-Pb dating, along with geochemical and Sr-Nd-Hf isotopic data for granites from the Tengchong–Lianghe granitoid belt (as abbreviated to Tengliang belt) and West Yingjiang batholiths from the Tengchong block. The mineralogical and geochemical features of the Tengliang granites and the West Yingjiang batholiths are ascribed to aluminous S-type granites and weak peraluminous I-type, respectively. Zircon U-Pb analyses yielded consistent ages ranging from 67.5 Ma, 68.4 Ma and 66.2 Ma from the Tengliang granitoid belt and 50.4 Ma to 60.8 Ma for three samples from the west Yingjiang batholiths. The Tengliang granites were emplaced during the Late Cretaceous (68?66 Ma) and demonstrate negative εHf(t) values (?24 to ?4) and initial?87Sr/86Sr ratios of 0.7101–0.7139 and significant negative εNd(t) values from ?8.91 to ?13.2, indicating a Proterozoic sedimentary source or enriched components. The hornblende-bearing I-type granites from West Yingjiang are characterized by lower initial?87Sr/86Sr ratios of 0.7076–0.7106, compared to Tengliang granite and negative whole-rock εNd(t) values from ?4.0 to ?11.9. The early Eocene west Yingjiang gneissic granites show wide ranges of εHf(t) values from +7.4 to ?8.5 and T2DM of 1.30–0.65 Ga, indicating partial melting of ancient crust with contributions of depleted mantle materials. In combination with the regional background and previous studies, we propose that such a spatio-temporal distribution of the Tengchong granitoid belt might be related to the rollback or angle-switching of the Neo-Tethyan subducting slab. This study sheds new light on the evolutionary history of the Tengchong block.  相似文献   

19.
Sandstones of Punagarh basin of Trans Aravalli region, NW Indian shield were analyzed for their major and trace element contents in conjunction with petrographic modes. The Punagarh basin comprises four formations (Sojat, Bambolai, Khamal and Sowania), amongst which the Sojat Formation in uncoformable contact with overlying formations, is significantly older and enjoys separate status as rest of the formations constitute Punagarh Group. Petrographic attributes suggest that Sojat sandstones contain distinct modal abundances like high content of quartz and low content of feldspar, mica, matrix, rock fragments and cement. In general there is a decrease in the average modal abundance of quartz and mica with concomitant increase of feldspar, chert and rock fragments from base to top in Punagarh sandstones. Sojat sandstones are also geochemically distinct as they possess high SiO2/Al2O3, Th/U and Cr/Th ratios coupled with lowest Na2O/K2O ratio and Zr content, least fractionated LREE, more fractionated HREE and largest Eu* anomaly compared to Punagarh sandstones. The weathering indices suggest intense chemical weathering for Sojat sandstones and low to moderate for Punagarh sandstones. Compositionally all the sandstones of the Punagarh basin come under the category of quartzarenite. Compared to PAAS and UCC, both suite of sandstones are generally depleted in REE, HFSE (with exception of Zr, Hf and Ta), and enriched in ferromagnesian trace elements particularly Cr and Co. The chemical data indicate that the sediments were derived from the source(s) of mixed felsic - mafic composition, with the former being dominant. The source rocks were granites, TTG, basalts, and rhyolites. The Sojat sandstones owe their source form Archean crust while Punagarh sandstones got detritus from Mesoproterozic crust. Immobile element ratios and REE abundances of Sojat sandstones closely match with Paleoproterozoic metagreywackes of Ghana of African craton while Punagarh sandstones show near geochemical characteristic with Gogunda, Kumbalgarh and Vindhyan quartzites of Aravalli craton. This geochemical similarity of Sojat sandstones provides credence to the hypothesis that Trans–Aravalli region of India had been an integral part of Arabian - Nubian shield. The chemical data advocate the deposition of these sandstones in a tectonic setting comparable to modern back arc setting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号