首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Young pumice deposits on Nisyros,Greece   总被引:1,自引:1,他引:1  
The island of Nisyros (Aegean Sea) consists of a silicic volcanic sequence upon a base of mafic-andesitic hyaloclastites, lava flows, and breccias. We distinguish two young silicic eruptive cycles each consisting of an explosive phase followed by effusions, and an older silicic complex with major pyroclastic deposits. The caldera that formed after the last plinian eruption is partially filled with dacitic domes. Each of the two youngest plinian pumice falls has an approximate DRE volume of 2–3 km3 and calculated eruption column heights of about 15–20 km. The youngest pumice unit is a fall-surge-flow-surge sequence. Laterally transitional fall and surge facies, as well as distinct polymodal grainsize distributions in the basal fall layer, indicate coeval deposition from a maintained plume and surges. Planar-bedded pumice units on top of the fall layer were deposited from high-energy, dry-steam propelled surges and grade laterally into cross-bedded, finegrained surge deposits. The change from a fall-to a surge/flow-dominated depositional regime coincided with a trend from low-temperature argillitic lithics to high-temperature, epidote-and diopside-bearing lithic clasts, indicating the break-up of a high-temperature geothermal reservoir after the plinian phase. The transition from a maintained plume to a surge/ash flow depositional regime occurred most likely during break-up of the high-temperature geothermal reservoir during chaotic caldera collapse. The upper surge units were possibly erupted through the newly formed ringfracture.  相似文献   

2.
The Ottaviano eruption occurred in the late neolithic (8000 y B.P.). 2.40 km3 of phonolitic pyroclastic material (0.61 km3 DRE) were emplaced as pyroclastic flow, surge and fall deposits. The eruption began with a fall phase, with a model column height of 14 km, producing a pumice fall deposit (LA). This phase ended with short-lived weak explosive activity, giving rise to a fine-grained deposit (L1), passing to pumice fall deposits as the result of an increasing column height and mass discharge rate. The subsequent two fall phases (producing LB and LC deposits), had model column heights of 20 and 22 km with eruption rates of 2.5 × 107 and 2.81 × 107 kg/s, respectively. These phases ended with the deposition of ash layers (L2 and L3), related to a decreasing, pulsing explosive activity. The values of dynamic parameters calculated for the eruption classify it as a sub-plinian event. Each fall phase was characterized by variations in the eruptive intensity, and several pyroclastic flows were emplaced (F1 to F3). Alternating pumice and ash fall beds record the waning of the eruption. Finally, owing to the collapse of a eruptive column of low gas content, the last pyroclastic flow (F4) was emplaced.  相似文献   

3.
Volcán Huaynaputina is a group of four vents located at 16°36'S, 70°51'W in southern Peru that produced one of the largest eruptions of historical times when ~11 km3 of magma was erupted during the period 19 February to 6 March 1600. The main eruptive vents are located at 4200 m within an erosion-modified amphitheater of a significantly older stratovolcano. The eruption proceeded in three stages. Stage I was an ~20-h sustained plinian eruption on 19-20 February that produced an extensive dacite pumice fall deposit (magma volume ~2.6 km3). Throughout medial-distal and distal parts of the dispersal area, a fine-grained plinian ashfall unit overlies the pumice fall deposit. This very widespread ash (magma volume ~6.2 km3) has been recognized in Antarctic ice cores. A short period of quiescence allowed local erosion of the uppermost stage-I deposits and was followed by renewed but intermittent explosive activity between 22 and 26 February (stage II). This activity resulted in intercalated pyroclastic flow and pumice fall deposits (~1 km3). The flow deposits are valley confined, whereas associated co-ignimbrite ash fall is found overlying the plinian ash deposit. Following another period of quiescence, vulcanian-type explosions of stage III commenced on 28 February and produced crudely bedded ash, lapilli, and bombs of dense dacite (~1 km3). Activity ceased on 6 March. Compositions erupted are predominantly high-K dacites with a phenocryst assemblage of plagioclase>hornblende>biotite>Fe-Ti oxides-apatite. Major elements are broadly similar in all three stages, but there are a few important differences. Stage-I pumice has less evolved glass compositions (~73% SiO2), lower crystal contents (17-20%), lower density (1.0-1.3 g/cm3), and phase equilibria suggest higher temperature and volatile contents. Stage-II and stage-III juvenile clasts have more evolved glass (~76% SiO2) compositions, higher crystal contents (25-35%), higher densities (up to 2.2 g/cm3), and lower temperature and volatile contents. All juvenile clasts show mineralogical evidence for thermal disequilibrium. Inflections on a plot of log thickness vs area1/2 for the fall deposits suggest that the pumice fall and the plinian ash fall were dispersed under different conditions and may have been derived from different parts of the eruption column system. The ash appears to have been dispersed mainly from the uppermost parts of the umbrella cloud by upper-level winds, whereas the pumice fall may have been derived from the lower parts of the umbrella cloud and vertical part of the eruption column and transported by a lower-altitude wind field. Thickness half distances and clast half distances for the pumice fall deposit suggests a column neutral buoyancy height of 24-32 km and a total column height of 34-46 km. The estimated mass discharge rate for the ~20-h-long stage-I eruption is 2.4᎒8 kg/s and the volumetric discharge rate is ~3.6᎒5 m3/s. The pumice fall deposit has a dispersal index (Hildreth and Drake 1992) of 4.4, and its index of fragmentation is at least 89%, reflecting the dominant volume of fines produced. Of the 11 km3 total volume of dacite magma erupted in 1600, approximately 85% was evacuated during stage 1. The three main vents range in size from ~70 to ~400 m. Alignment of these vents and a late-stage dyke parallel to the NNW-SSE trend defined by older volcanics suggest that the eruption initiated along a fissure that developed along pre-existing weaknesses. During stage I this fissure evolved into a large flared vent, vent 2, with a diameter of approximately 400 m. This vent was active throughout stage II, at the end of which a dome was emplaced within it. During stage III this dome was eviscerated forming the youngest vent in the group, vent 3. A minor extra-amphitheater vent was produced during the final event of the eruptive sequence. Recharge may have induced magma to rise away from a deep zone of magma generation and storage. Subsequently, vesiculation in the rising magma batch, possibly enhanced by interaction with an ancient hydrothermal system, triggered and fueled the sustained Plinian eruption of stage I. A lower volatile content in the stage-II and stage-III magma led to transitional column behavior and pyroclastic flow generation in stage II. Continued magma uprise led to emplacement of a dome which was subsequently destroyed during stage III. No caldera collapse occurred because no shallow magma chamber developed beneath this volcano.  相似文献   

4.
The chronology of deposits of the 1976 eruption of Augustine volcano, which produced pyroclastic falls, pyroclastic flows, and lava domes, is determined by correlating the stratigraphy with published records of seismicity, plume observations, and distant ash falls. Three thin air-fall ash beds (unit A1, A2 and A3) correlate with events near the beginning of the 1976 eruption on 22 and 23 January. On 24 January a small-volume, ash-cloud-surge deposit (unit S) accumulated over the north half of Augustine Island. A series of pumiceous pyroclastic flows represented by the lobate pumiceous deposits (unit F) occurred on 24 January and locally melted the snowpack to cause small pumice-laden floods. A thin ash bed (unit A4) was deposited on 24 January, and the main plinian eruption (unit P) occurred on 25 January. In middle to late February and again in mid April, lava domes were extruded at the summit accompanied by incandescent block-and-ash flows down the north flank. A hut near the north coast of the island was mechanically and thermally damaged by the small-volume ash-cloud surge of unit S before the eruption of the pumice flow of unit F; the metal roof was then penetrated by lithic fragments of the plinian fall of 25 January. Explosive eruptions in the early stage of an eruption-like that which deposited unit S — are important hazards at Augustine Island, as are infrequent debris avalanches and attendant tsunamis.deceased on 18 May 1980  相似文献   

5.
Impact of large-scale explosive eruptions largely depends on the dynamics of transport, dispersal and deposition of ash by the convective system. In fully convective eruptive columns, ejected gases and particles emitted at the vent are vertically injected into the atmosphere by a narrow, buoyant column and then dispersed by atmosphere dynamics on a regional scale. In fully collapsing explosive eruptions, ash partly generated by secondary fragmentation is carried and dispersed by broad co-ignimbrite columns ascending above pyroclastic currents. In this paper, we investigate the transport and dispersion dynamics of ash and lapillis during a transitional plinian eruption in which both plinian and co-ignimbrite columns coexisted and interacted. The 800 BP eruptive cycle of Quilotoa volcano (Ecuador) produced a well-exposed tephra sequence. Our study shows that the sequence was accumulated by a variety of eruptive dynamics, ranging from early small phreatic explosions, to sustained magmatic plinian eruptions, to late phreatomagmatic explosive pulses. The eruptive style of the main 800 BP plinian eruption (U1) progressively evolved from an early fully convective column (plinian fall bed), to a late fully collapsing fountain (dense density currents) passing through an intermediate transitional eruptive phase (fall + syn-plinian dilute density currents). In the transitional U1 regime, height of the convective plinian column and volume and runout of the contemporaneous pyroclastic density currents generated by partial collapses were inversely correlated. The convective system originated from merging of co-plinian and co-surge contributions. This hybrid column dispersed a bimodal lapilli and ash-fall bed whose grain size markedly differs from that of classic fall deposits accumulated by fully convective plinian columns. Sedimentological analysis suggests that ash dispersion during transitional eruptions is affected by early aggregation of dry particle clusters.  相似文献   

6.
Peak eruption column heights for the B1, B2, B3 and B4 units of the May 18, 1980 fall deposit from Mount St. Helens have been determined from pumice and lithic clast sizes and models of tephra dispersal. Column heights determined from the fall deposit agree well with those determined by radar measurements. B1 and B2 units were derived from plinian activity between 0900 and about 1215 hrs. B3 was formed by fallout of tephra from plumes that rose off pyroclastic flows from about 1215 to 1630 hrs. A brief return to plinian activity between 1630 and 1715 hrs was marked by a maximum in column height (19 km) during deposition of B4.Variations in magma discharge during the eruption have been reconstructed from modelling of column height during plinian discharge and mass-balance calculations based on the volume of pyroclastic flows and coignimbrite ash. Peak magma discharge occurred during the period 1215–1630 hrs, when pyroclastic flows were generated by collapse of low fountains through the crater breach. Pyroclastic flow deposits and the widely dispersed co-ignimbrite ash account for 77% of the total erupted mass, with only 23% derived from plinian discharge.A shift in eruptive style at noon on May 18 may have been associated with increase in magma discharge and the eruption of silicic andesite mingled with the dominant mafic dacite. Increasing abundance of the silicic andesite during the period of highest magma discharge is consistent with the draw-up and tapping of deeper levels in the magma reservoir, as predicted by theoretical models of magma withdrawal. Return to plinian activity late in the afternoon, when magma discharge decreased, is consistent with theoretical predictions of eruption column behavior. The dominant generation of pyroclastic flows during the May 18 eruption can be attributed to the low bulk volatile content of the magma and the increasing magma discharge that resulted in the transition from a stable, convective eruption column to a collapsing one.  相似文献   

7.
 The Quaternary White Trachytic Tuffs Formation from Roccamonfina Volcano (southern Italy) comprises four non-welded, trachytic, pyroclastic sequences bounded by paleosols, each of which corresponds to small- to intermediate-volume explosive eruptions from central vents. From oldest to youngest they are: White Trachytic Tuff (WTT) Cupa, WTT Aulpi, WTT S. Clemente, and WTT Galluccio. The WTT Galluccio eruption was the largest and emplaced ∼ 4 km3 of magma. The internal stratigraphy of all four WTT eruptive units is a complex association of fallout, surge, and pyroclastic flow deposits. Each eruptive unit is organized into two facies associations, Facies Association A below Facies Association B. The emplacement of the two facies associations may have been separated by short time breaks allowing for limited reworking and erosion. Facies Association A consists of interbedded fallout deposits, surge deposits, and subordinate ignimbrites. This facies association involved the eruption of the most evolved trachytic magma, and pumice clasts are white and well vesiculated. The grain size coarsens upward in Facies Association A, with upward increases of dune bedform wavelengths and a decrease in the proportion of fine ash. These trends could reflect an increase in eruption column height from the onset of the eruption and possibly also in mass eruption rate. Facies Association B comprises massive ignimbrites that are progressively richer in lithic clast content. This association involved the eruption of more mafic magma, and pumice clasts are gray and poorly vesiculated. Facies Association B is interpreted to record the climax of the eruption. Phreatomagmatic deposits occur at different stratigraphic levels in the four WTT and have different facies characteristics. The deposits reflect the style and degree of magma–water interaction and the local hydrogeology. Very fine-grained, lithic-poor phreatomagmatic surge deposits found at the base of WTT Cupa and WTT Galluccio could record the interaction of the erupting magma with a lake that occupied the Roccamonfina summit depression. Renewed magma–water interaction later in the WTT Galluccio eruption is indicated by fine grained, lithic-bearing phreatomagmatic fall and surge deposits occurring at the top of Facies Association A. They could be interpreted to reflect shifts of the magma fragmentation level to highly transmissive, regional aquifers located beneath the Roccamonfina edifice, possibly heralding a caldera collapse event. Received: 26 August 1996 / Accepted: 27 February 1998  相似文献   

8.
The Kos Plateau Tuff consists of pyroclastic deposits from a major Quaternary explosive rhyolitic eruption, centred about 10 km south of the island of Kos in the eastern Aegean, Greece. Five main units are present, the first two (units A and B) were the product of a phreatoplinian eruption. The eruption style then changed to `dry' explosive style as the eruption intensity increased forming a sequence of ignimbrites and initiating caldera collapse. The final waning phase returned to phreatomagmatic eruptive conditions (unit F). The phreatomagmatic units are fine grained, poorly sorted, and dominated by blocky vitric ash, thickly ash-coated lapilli and accretionary lapilli. They are non-welded and were probably deposited at temperatures below 100°C. All existing exposures occur at distances between 10 km and 40 km from the inferred source. Unit A is a widespread (>42 km from source), thin (upwind on Kos) to very thick (downwind), internally laminated, dominantly ash bed with mantling, sheet-like form. Upwind unit A and the lower and middle part of downwind unit A are ash-rich (ash-rich facies) whereas the upper part of downwind unit A includes thin beds of well sorted fine pumice lapilli (pumice-rich facies). Unit A is interpreted to be a phreatoplinian fall deposit. Although locally the bedforms were influenced by wind, surface water and topography. The nature and position of the pumice-rich facies suggests that the eruption style alternated between `wet' phreatoplinian and `dry' plinian during the final stages of unit A deposition.Unit B is exposed 10–19 km north of the inferred source on Kos, overlying unit A. It is a thick to very thick, internally stratified bed, dominated by ash-coated, medium and fine pumice lapilli in an ash matrix. Unit B shows a decrease in thickness and grain size and variations in bedforms downcurrent that allow definition of several different facies and laterally equivalent facies associations. Unit B ranges from being very thick, coarse and massive or wavy bedded in the closest outcrops to source, to being partly massive and partly diffusely stratified or cross-bedded in medial locations. Pinch and swell, clast-supported pumice layers are also present in medial locations. In the most distal sections, unit B is stratified or massive, and thinner and finer grained than elsewhere and dominated by thickly armoured lapilli. Unit B is interpreted to have been deposited from an unsteady, density stratified, pyroclastic density current which decelerated and progressively decreased its particle load with distance from source. Condensation of steam during outflow of the current promoted the early deposition of ash and resulted in the coarser pyroclasts being thickly ash-coated. The distribution, texture and stratigraphic position of unit B suggest that the pyroclastic density current was generated from collapse of the phreatoplinian column following a period of fluctuating discharge when the eruptive activity alternated between `wet' and `dry'. The pyroclastic density current was transitional in particle concentration between a dilute pyroclastic surge and a high particle concentration pyroclastic flow. Unidirectional bedforms in unit B suggest that the depositional boundary was commonly turbulent and in this respect did not resemble conventional pyroclastic flows. However, unit B is relatively thick and poorly sorted, and was deposited more than 19 km from source, implying that the current comprised a relatively high particle concentration and in this respect, did not resemble a typical pyroclastic surge.  相似文献   

9.
Six years after the 1991 Mt. Pinatubo eruption, deep erosion incisions into the pyroclastic deposits accumulated around the volcano enabled us to investigate the stratigraphy of the climactic deposits both in valley bottoms and on contiguous ridges. Stratigraphic relationships between fall, flow, and surge deposits in the Marella drainage system indicate that during the climactic eruption a progressive shift occurred from an early convective regime, to a transitional regime feeding both the plinian convective column and mostly dilute density currents, to a fully collapsing regime producing mostly dense pyroclastic flows. Syn-plinian dilute density currents (surges) propagated up to ~10 km from the crater, both along valley bottoms and on contiguous ridges of the Marella Valley, whereas post-plinian pyroclastic flows had greater runout (~13 km), were confined to valleys and were not associated with significant surges. Stratigraphic study and grain-size analyses allow the identification of three types of intra-plinian deposits: (a) lower and often coarse-grained surge deposits, emplaced during the accumulation of the coarsest portion of the fallout bed at time intervals of ~16-24 min; (b) upper fine-grained surge deposits, interstratified with the fine-grained portion of the fall bed and emplaced at shorter time intervals of ~3-13 min; and (c) small-volume, channel-confined, massive pumiceous flow deposits interbedded with the upper surges in the upper fine-grained fall bed. Maximum clast size isopleths of 1.6 and 0.8 cm for lithics (ML) and 2.0 and 4.0 cm for pumices (MP) show almost symmetrical distribution around the vent, indicating that the passing of the typhoon Yunya during the climactic eruption had little effect on trajectories of high-Reynold-number clasts. Significant distortion was, however, observed for the 3.2-cm ML and 6.0-cm MP proximal isopleths, whose patterns were probably influenced by the interaction of the clasts falling from column margins with the uprising co-ignimbrite ash plumes. Application of the Carey and Sparks (1986) model to the undisturbed isopleths generated by the umbrella cloud yields a maximum column height of ~42 km, in good agreement with satellite measurements. Systematic stratigraphic and vertical grain-size studies of the plinian fall deposit in the Marella Valley, combined with satellite data and eyewitness accounts, reveal that the carrying capacity of the convective column and related fallout activity peaked in the early phase of the eruption, beginning slightly before 13:41 and gradually declined until its cessation 3 h later. Most of the pumiceous pyroclastic flow deposits were emplaced after the end of the fallout activity at ~16:30 but before the summit caldera collapse at approximately 19:11. Only a small volume of pumiceous flow deposits accumulated after the final caldera collapse. In contrast to the previous reconstruction of Holasek et al. (1996), which interpreted the progressive lowering of the column, documented by satellite data, as due to a decreasing mass eruption rate, we suggest that a progressive shift from a plinian column to a large co-ignimbrite column could also account for such a variation.  相似文献   

10.
Thermal remanent magnetization analyses were carried out on ceramic fragments and lithic clasts embedded in the first pumice fall deposits of the Minoan eruption. The aim of this study is to estimate the equilibrium temperature after deposition of these pyroclastic fall deposits and their thermal effect on the pre-Minoan surface. A total of 30 samples from 22 independent ceramic fragments and 20 samples from 14 lithic clasts have been studied. Samples were collected from the Megalochori Quarry, located at the southern part of Santorini island. Stepwise thermal demagnetization reveals that the ceramics were mostly re-heated at temperatures around 140–180°C; in few ceramics a higher temperature component is also present, probably related to the original heating or the use of the ceramics before the eruption. Thermal demagnetization of the lithic clasts shows similar results with slightly higher re-heating temperatures, around 180–240°C. The estimated temperatures represent the equilibrium temperatures obtained after the deposition of the pumice fall and show that the pyroclastic fall deposits at a distance of around 6 km from the eruption vent maintained a temperature high enough to re-heat the buried ceramics at temperatures around 140–180°C.  相似文献   

11.
Proximal deposits of the 3.3 Ma Grants Ridge Tuff, part of a 5-km3 topaz rhyolite sequence, are composed of basal pyroclastic flow, surge, and fallout deposits, a thick central ignimbrite, and upper surge and fallout deposits. Large lithic blocks (≤2 m) of underlying sedimentary and granitic bedrock that are present in lower pyroclastic flow and fallout deposits indicate that the eruptive sequence began with explosive, conduit-excavating eruptions. The massive, nonwelded central ignimbrite displays evidence for postemplacement deformation. The upper pyroclastic surge deposits are dominated by fine ash, some beds containing accretionary lapilli, soft-sediment deformation features, and mud-coated lithic lapilli, indicating an explosive, hydromagmatic component to these later eruptions. The upper fall and surge deposits are overlain by fluvially reworked volcaniclastic deposits that truncate the primary section with a relatively planar surface. The proximal, upper pyroclastic surge and Plinian fall deposits are preserved only in small grabens (5–8 m deep and wide), where they subsided into the ignimbrite and were protected from reworking. The pyroclastic surge and fall deposits within the grabens are offset by numerous small normal faults. The offset on some faults decreases upward through the section, indicating that the faulting process may have been syn-eruptive. Several graben-bounding faults extend downward into the ignimbrite, but the uppermost, fluvially reworked tephra layers are not cut by these faults. The faulting mechanism may have been related to settling and compaction of the 60 m thick, valley-filling ignimbrite along the axis of the paleovalley. Draping surge contacts against the graben faults and brittle and soft-style disruption of the upper pyroclastic surge beds indicate that subsidence was ongoing during the emplacement of the upper eruptive sequence. Seismicity accompanying the late-stage hydromagmatic explosions may have contributed to the abrupt settling and compaction of the ignimbrite.  相似文献   

12.
We describe the stratigraphy, chronology, and grain size characteristics of the white trachytic tuff (WTT) of Roccamonfina Volcano (Italy). The pyroclastic rock was emplaced between 317 and 230 Ma BP during seven major eruptive events (units A to G) and three minor events (units BC, CD, and DE). These units are separated by paleosol layers and compositionally well-differentiated pyroclastic successions. Stratigraphic control is favored by the occurrence at the base of major units of marker layers. Four WTT units (1 to 4) occur within the central caldera. These are not positively correlated with specific extracaldera units.The source of most of the WTT units was the central caldera. Units B and C were controlled by the western wall of the caldera, whereas units D and E were able to overcome this barrier, spreading symmetrically along the flanks of MC. The maximum pumice size (MP) of units increases with distance from the caldera, whereas the maximum lithic size (ML) decreases. MP and ML of the marker layer of unit D (MKDa–MKDp) do not show any systematic variations with respect to the central caldera. In contrast, the thickness of surge MKDa decreases with distance from the source, and MKDp accumulates to the north of MC probably controlled, respectively, by mobility-transport power and by wind blowing northwards.The grain size characteristics of the WTT deposits are used for classifying the units. There is no systematic variation of the grain size as a function of stratigraphic height either among units or within single units. Large variation of components in subunit E1, with repetitive alternation of pyroclastic flow to surge through fallout vs. surge deposits, suggests that the process of eruption took place in a complex or piecemeal fashion.Pumice concentration zones (PCZ) occur at all WTT levels on the volcano, but they are much thicker and pumice clasts are much larger within the central caldera. These were probably originated by the disruption of lava (flow or dome) to pumice fragments and fine ash due to sudden depressurization and interaction with lake waters of the molten lava. Local basal PCZ are, in some cases, similar to the lapilli-rich “layer 1P” that has been described elsewhere, and may have been deposited from currents transitional between pyroclastic surge and flow. Other basal PCZ formed in response to small undulations in the substrate, or can be originated by fallout. Lenticular PCZ within ignimbrite interiors and tops are interpreted to record marginal pumice levees and pumice rafts, some of which were buried by subsequant pyroclastic flows.Lithic concentration zones (LCZ) also occur at various stratigraphic height within the extracaldera ignimbrites, whereas intracaldera LCZ are absent, probably due to the fact that ignimbrite currents are strongly energetic and erosive near vent. LCZ at the top of basal inversely graded layers are formed by mechanical sieving or dispersive pressure in response to variable velocity gradients and particle concentration gradients (a segregation process). Coarse LCZ and coarse lithic breccias (LB), that reside in the interior or tops of pyroclastic flows and that occur in medial to distal areas, are interpreted to be the result of slugs of lithic-rich debris introduced by vent collapse or rockslides into the moving pyroclastic flows along their flow paths. These LCZ become mixed to varying degrees due to differential densities and velocities relative to the pyroclastic flows (desegregation processes).  相似文献   

13.
The series of eruptions of June 15, 1991 at Mt. Pinatubo, Philippines were observed hourly by satellite. A giant discshaped cloud covering an area of 60,000 km2 appeared in the satellite images at 14:40, Philippine time. The cloud expanded radially against wind of 20 m/s and spread to an area of more than 120,000 km2 within an hour. According to eyewitness accounts there was heavy fine-ash fall after 14:00, intermittent lapilli fall started at about 14:20, and heavy and continuous lapilli fall widely started at about 15:00. The occurrence of the giant cloud roughly corresponded to the initiation of the intermittent lapilli fall.The air-fall deposits of the major eruption are widely distributed, including upwind from the vent. They are composed of 3 units; a silt-size fine-ash layer (Layer B), a lapilli layer commonly including pumice grains of > 1 cm in diameter (Layer C), a lapilli bearing volcanic sand layer (Layer D). Judging from its wide distribution and depletion of coarse, grains, most of the fine ash of Layer B is not distal deposits of a small eruption, but is originated from a large co-ignimbrite cloud. It is suggested that the major eruption started with the generation of a pyroclastic flow, which was subsequently followed by a plinian eruption resulting in the formation of the giant cloud and the lapilli fall.The results of calculations on the dynamics of eruption cloud indicate that the dimension and dynamics of the giant eruption cloud is accounted for by a plinian eruption with a magma discharge rate of the order of 109 kg/s.  相似文献   

14.
The volcanic eruptions which generate the greatest quantities of fine ash and dust are those of ignimbrite-forming, plinian, vulcanian and phreatomagmatic types; these are also the eruptions which produce the widest dispersal of this material, attributed to the superior height attained by their eruptive columns. However, much of the fine ash and dust may be rapidly flushed out of the eruptive plume by water, particularly in phreatomagmatic eruptions. Recent studies made on the dispersal and grain-size of pyroclastic deposits produced by examples of plinian and phreatomagmatic types, have yielded estimates of the quantities of material generated in each grain-size class, besides the extent of their dispersal. Not all of the fine volcanic particles are produced by fragmentation at the eruptive vent; in ignimbrite eruptions, there is good evidence for their large-scale generation in and loss from the moving ash flows.  相似文献   

15.
The tuff ring of Averno (3700 years BP) is a wide maar-type, lake-filled volcano which formed during one of the most recent explosive eruptions inside the Campi Flegrei caldera.The eruptive products consist of (a) a basal coarse unit, intercalated ballistic fallout breccia, subplinian pumice deposits and pyroclastic surge bedsets and (b) an upper fine-grained, stratified, pyroclastic surge sequence.During the deposition of the lower unit both purely magmatic (lapilli breccia) and hydromagmatic episodes (wavy and planar bedded, fine ash pyroclastic surge bedsets) coexisted. The hydromagmatic deposits exhibit both erosive and depositional features. The upper unit mostly comprises fine grained, wet pyroclastic surge deposits. The pyroclastic surges were controlled by a highly irregular pre-existing topography, produced by volcano-tectonic dislocation of older tuff rings and cones.Both the upper and lower units show decreasing depletion of fines with increasing distance from the vent. The ballistic fallout layers, however, exhibit only a weak increase in fines with distance from the vent, in spite of marked fining of the lapilli and blocks. The deposits consist dominantly of moderately to highly vesicular juvenile material, generated by primary magmatic volatile driven fragmentation followed by episodes of near-surface magma-water interaction.The evolution of the eruption toward increased fragmentation and a more hydromagmatic character may reflect that the progressive depletion in magmatic volatiles and a decrease in conduit pressure during the last stage of the eruption, possibly associated with a widening of the vent at sea level.  相似文献   

16.
The 273 ka Poris Formation in the Bandas del Sur Group records a complex, compositionally zoned explosive eruption at Las Cañadas caldera on Tenerife, Canary Islands. The eruption produced widespread pyroclastic density currents that devastated much of the SE of Tenerife, and deposited one of the most extensive ignimbrite sheets on the island. The sheet reaches ~ 40-m thick, and includes Plinian pumice fall layers, massive and diffuse-stratified pumiceous ignimbrite, widespread lithic breccias, and co-ignimbrite ashfall deposits. Several facies are fines-rich, and contain ash pellets and accretionary lapilli. Eight brief eruptive phases are represented within its lithostratigraphy. Phase 1 comprised a fluctuating Plinian eruption, in which column height increased and then stabilized with time and dispersed tephra over much of the southeastern part of the island. Phase 2 emplaced three geographically restricted ignimbrite flow-units and associated extensive thin co-ignimbrite ashfall layers, which contain abundant accretionary lapilli from moist co-ignimbrite ash plumes. A brief Plinian phase (Phase 3), again dispersing pumice lapilli over southeastern Tenerife, marked the onset of a large sustained pyroclastic density current (Phase 4), which then waxed (Phase 5), covering increasingly larger areas of the island, as vents widened and/or migrated along opening caldera faults. The climax of the Poris eruption (Phase 6) was marked by widespread emplacement of coarse lithic breccias, thought to record caldera subsidence. This is inferred to have disturbed the magma chamber, causing mingling and eruption of tephriphonolite magma, and it changed the proximal topography diverting the pyroclastic density current(s) down the Güimar valley (Phase 7). Phase 8 involved post-eruption erosion and sedimentary reworking, accompanied by minor down-slope sliding of ignimbrite. This was followed by slope stabilization and pedogenesis. The fines-rich lithofacies with abundant ash pellets and accretionary lapilli record agglomeration of ash in moist ash plumes. They resemble phreatomagmatic deposits, but a phreatomagmatic origin is difficult to establish because shards are of bubble-wall type, and the moisture may have arisen by condensation within ascending thermal co-ignimbrite ash plumes that contained atmospheric moisture enhanced by that derived from the evaporation of seawater where the hot pyroclastic currents crossed the coast. Ash pellets formed in co-ignimbrite ash-clouds and then fell through turbulent pyroclastic density currents where they accreted rims and evolved into accretionary lapilli.Editorial Responsibility: J. Stix  相似文献   

17.
The Campanian Ignimbrite (36000 years B.P.) was produced by the explosive eruption of at least 80 km3 DRE of trachytic ash and pumice which covered most of the southern Italian peninsula and the eastern Mediterranean region. The eruption has been related to the 12-x15-km-diameter caldera located in the Phlegraean Fields, west of Naples. Proximal deposits on the periphery of the Phlegraean Fields comprise the following pyroclastic sequence from base to top: densely welded ignimbrite and lithic-rich breccias (unit A); sintered ignimbrite, low-grade ignimbrite and lithic-rich breccia (unit B); lithic-rich breccia and spatter agglutinate (unit C); and low-grade ignimbrite (unit D). Stratigraphic and componentry data, as well as distribution of accidental lithic types and the composition of pumice clasts of different units, indicate that coarse, lithic-rich breccias were emplaced at different stages during the eruption. Lower breccias are associated with fines-rich ignimbrites and are interpreted as co-ignimbrite lag breccia deposits. The main breccia unit (C) does not grade into a fines-rich ignimbrite, and therefore is interpreted as formed from a distinct lithic-rich flow. Units A and B exhibit a similar pattern of accidental lithic types, indicating that they were erupted from the same area, probably in the E of the caldera. Units C and D display a distinct pattern of lithics indicating expulsion from vent(s) that cut different areas. We suggest that unit C was ejected from several vents during the main stage of caldera collapse. Field relationships between spatter agglutinate and the breccia support the possibility that these deposits were erupted contemporaneously from vents with different eruptive style. The breccia may have resulted from a combination of magmatic and hydrothermal explosive activity that accompanied extensive fracturing and subsidence of the magma-chamber roof. The spatter rags probably derived from sustained and vigorous pyroclastic fountains. We propose that the association lithic-rich breccia and spatter agglutinate records the occurrence of catastrophic piecemeal collapse.  相似文献   

18.
An extremely large magnitude eruption of the Ebisutoge-Fukuda tephra, close to the Plio-Pleistocene boundary, central Japan, spread volcanic materials widely more than 290,000 km2 reaching more than 300 km from the probable source. Characteristics of the distal air-fall ash (>150 km away from the vent) and proximal pyroclastic deposits are clarified to constrain the eruptive style, history, and magnitude of the Ebisutoge-Fukuda eruption.Eruptive history had five phases. Phase 1 is phreatoplinian eruption producing >105 km3 of volcanic materials. Phases 2 and 3 are plinian eruption and transition to pyroclastic flow. Plinian activity also occurred in phase 4, which ejected conspicuous obsidian fragments to the distal locations. In phase 5, collapse of eruption column triggered by phase 4, generated large pyroclastic flow in all directions and resulted in more than 250–350 km3 of deposits. Thus, the total volume of this tephra amounts over 380–490 km3. This indicates that the Volcanic Explosivity Index (VEI) of the Ebisutoge-Fukuda tephra is greater than 7. The huge thickness of reworked volcaniclastic deposits overlying the fall units also attests to the tremendous volume of eruptive materials of this tephra.Numerous ancient tephra layers with large volume have been reported worldwide, but sources and eruptive history are often unknown and difficult to determine. Comparison of distal air-fall ashes with proximal pyroclastic deposits revealed eruption style, history and magnitude of the Ebisutoge-Fukuda tephra. Hence, recognition of the Ebisutoge-Fukuda tephra, is useful for understanding the volcanic activity during the Pliocene to Pleistocene, is important as a boundary marker bed, and can be used to interpret the global environmental and climatic impact of large magnitude eruptions in the past.  相似文献   

19.
The well-documented 1883 eruption of Krakatau volcano (Indonesia) offers an opportunity to couple the eruption’s history with the tsunami record. The aim of this paper is not to re-analyse the scenario for the 1883 eruption but to demonstrate that the study of tsunami deposits provides information for reconstructing past eruptions. Indeed, though the characteristics of volcanogenic tsunami deposits are similar to those of other tsunami deposits, they may include juvenile material (e.g. fresh pumice) or be interbedded with distal pyroclastic deposits (ash fall, surges), due to their simultaneity with the eruption. Five kinds of sedimentary and volcanic facies related to the 1883 events were identified along the coasts of Java and Sumatra: (1) bioclastic tsunami sands and (2) pumiceous tsunami sands, deposited respectively before and during the Plinian phase (26–27 August); (3) rounded pumice lapilli reworked by tsunami; (4) pumiceous ash fall deposits and (5) pyroclastic surge deposits (only in Sumatra). The stratigraphic record on the coasts of Java and Sumatra, which agrees particularly well with observations of the 1883 events, is tentatively linked to the proximal stratigraphy of the eruption.  相似文献   

20.
Valley-fill ignimbrites of the Middle Laacher See Tephra (MLST) in the proximal depositional fan south of Laacher See volcano are laterally continuous with fine-grained overbank-facies deposits, 0.5–1.5 m thick, covering higher elevations and interfluves between the paleovalleys. The overbank deposits consist of up to 12 ash layers, each 4–10 cm thick, which show internal structures typical of ash-flow transport, such as poor sorting, reverse size-grading of pumice, local normal grading of coarse ash-sized lithics above a fine-grained basal layer, cross-stratification behind obstacles, and erosional unconformities. Thickness, median grain-size, and number of individual layers decrease systematically with distance from the vent. Overbank ash layers thicken at the valley slopes and form discrete valley-fill ignimbrite flow units in the paleochannels with median grain size increasing from 63 m to 350 m. Toward the center of paleochannels, however, the well-defined overbank facies is obscured by mutual erosion of individual flow units. Overlapping data fields in ternary grain-size variation diagrams indicate the overbank facies to have evolved from ash flows chiefly through depletion of lapilli and coarse ash. Overbank-facies ash layers do not represent dust layers resulting from elutriation clouds of ash flows (co-ignimbrite ash) or surge deposits developed on higher ground due to low concentration of solids. They are similar in some parameters to Taupo-type ignimbrite veneer deposits, but are interpreted differently. The thin, fine-grained, Laacher See ash layers are thought to have been deposited from diluted portions of the flow proceeding directly from the eruption column while the main pyroclastic flows were confined to the paleovalleys radiating away from the eruptive center. The wide distribution of the thin ash layers is attributed to the balance of deposition from various flow parts and turbulent entraining and heating of ambient air that sustained sufficient mobility of the diluted flows to spread across hills and level ground.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号