首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Journal of Oceanography》2007,63(6):983-994
A mesoscale iron-enrichment study (SEEDS II) was carried out in the western subarctic Pacific in the summer of 2004. The iron patch was traced for 26 days, which included observations of the development and the decline of the bloom by mapping with sulfur hexafluoride. The experiment was conducted at almost the same location and the same season as SEEDS (previous iron-enrichment experiment). However, the results were very different between SEEDS and SEEDS II. A high accumulation of phytoplankton biomass (∼18 mg chl m−3) was characteristic of SEEDS. In contrast, in SEEDS II, the surface chlorophyll-a accumulation was lower, 0.8 to 2.48 mg m−3, with no prominent diatom bloom. Photosynthetic competence in terms of F v/F m for the total phytoplankton community in the surface waters increased after the iron enrichments and returned to the ambient level by day 20. These results suggest that the photosynthetic physiology of the phytoplankton assemblage was improved by the iron enrichments and returned to an iron-stressed condition during the declining phase of the bloom. Pico-phytoplankton (<2 μm) became dominant in the chlorophyll-a size distribution after the bloom. We observed a nitrate drawdown of 3.8 μM in the patch (day 21), but there was no difference in silicic acid concentration between inside and outside the patch. Mesozooplankton (copepod) biomass was three to five times higher during the bloom-development phase in SEEDS II than in SEEDS. The copepod biomass increased exponentially. The grazing rate estimation indicates that the copepod grazing prevented the formation of an extensive diatom bloom, which was observed in SEEDS, and led to the change to a pico-phytoplankton dominated community towards the end of the experiment.  相似文献   

2.
An extremely dense bloom of the potentially toxic dinoflagellate Alexandrium tamarense was observed in the lagoons of Cà Pisani (Veneto, Italy) in summer 1993. The lagoons were experiencing a significant eutrophication impact, receiving waste waters from intensive fish culture plants. During their bloom dinoflagellates in the lagoons reached densities of 2 to 4 × 106 cells·dm−3 and a biomass of over 100 g·m−3. The bloom produced drastic ecological changes in the lagoons. It caused nocturnal anoxia, mortality of macrophytes and the build-up of labile organic matter in the water column. Grazing by the tintinnid Favella sp. contributed to the termination of the bloom of the flagellates. The results show that coastal aqua culture probably stimulates dinoflagellate blooms in shallow brackish lagoons.  相似文献   

3.
The plankton food web structure and trophodynamics in the neritic area of Sagami Bay were investigated from January 2003 to December 2005, based on abundance, biomass, production rate and nutritional requirements of pico- (0.2–2 μm), nano- (2–20 μm), micro- (20–200 μm) and mesoplankton (>200 μm: mainly copepods CI-CVI) at 0–10 m depth. The average carbon biomass of the total plankton community was higher in spring and summer (1.452 and 1.466 g C m−2, respectively) than in winter and autumn (0.676 and 0.686 g C m−2, respectively). The average values of primary production and of production rate and food requirement of heterotrophic organisms were higher in summer than in other seasons. During the study period the biomass, production rate and food requirement of small heterotrophs (i.e. bacteria: BA; heterotrophic nanoflagellates: HNF; microzooplankton: MZ) were much higher than those of copepod secondary (CSP) and tertiary producers (CTP), indicating that the microbial food web was the main route of carbon flow from phytoplankton (PP) to CSP and CTP, rather than the grazing food chain. In particular, during summer and autumn the biomass of pico- and nano-size PP plus BA was greater than that of micro-size PP, suggesting the high prevalence of the microbial food web (pico-/nanophytoplankton/BA-HNF/MZ-copepods). During winter and spring, the biomass of micro-size PP was greater than that of pico- and nano-size PP plus BA, suggesting that the indirect route (microphytoplankton-MZ-copepods) probably prevailed, while the microbial food web might be important.  相似文献   

4.
We collected surface water along the 142nd E meridian from Tasmania to Antarctica in December 1999. We measured temperature, salinity and total chlorophyll a; additionally, we collected suspended particle size fractions and used fluorometric analysis to determine the quantity of chlorophyll a in each of four cell size classes: picoplankton (<3 μm), two nanoplankton fractions (3–10 μm and 10–20 μm) and microplankton (> 20 μm). Changes in temperature and salinity show that we crossed 6 water masses separated by 5 fronts. We found low abundance (<0.2 mg m−3) of chlorophyll in all size classes, with the exception of higher values near the continent (0.2 to 0.4 mg m−3). Lowest chlorophyll values (<0.1 mg m−3) were found in the Polar Frontal Zone (51° to 54°S). Microplankton made up the largest portion of total chlorophyll throughout most of the region. We conclude that biomass of all phytoplankton fractions, especially pico-and nanoplankton, was constrained by limiting factors, most probably iron, throughout the region and that ecosystem dynamics within a zone are not circumpolar but are regionalized within sectors.  相似文献   

5.
In order to detect iron (Fe) stress in micro-sized (20–200 μm) diatoms in the Oyashio region, western subarctic Pacific during spring, immunological ferredoxin/flavodoxin assays were applied to samples collected from the surface layer in May 2005. Concomitantly, the community composition of the micro-sized phytoplankton and hydrographic conditions, including dissolved Fe and macronutrient concentrations, were also examined. Chlorophyll (Chl) a concentrations were <2 mg m−3 at all sampling stations, except at a station where the Chl a level was 9.0 mg m−3 and a micro-sized diatom bloom occurred. A high abundance of ferredoxin in micro-sized diatoms was detected only at a rather near-shore station where dissolved Fe and macronutrient concentrations were higher, indicating that the micro-sized diatoms did not suffer from iron deficiency. On the other hand, flavodoxin in micro-sized diatoms was often observed at the other stations, including the bloom station, where macronutrients were replete but dissolved Fe concentration was low (0.31 nM). A significant amount of chlorophyllide a, a degradation product of Chl a, was also observed at the bloom station, suggesting a decline of the diatom bloom. The micro-sized phytoplankton species at all the stations were mainly composed of the diatoms Thalassiosira, Chaetoceros, and Fragilariopsis spp. Our study indicates that micro-sized diatoms were stressed by Fe bioavailability during the spring season in the Oyashio region  相似文献   

6.
We deployed a profiling buoy system incorporating a fast repetition rate fluorometer in the western subarctic Pacific and carried out time-series observations of phytoplankton productivity from 9 June to 15 July 2006. The chlorophyll a (Chl a) biomass integrated over the euphotic layer was as high as 45–50 mg Chl a m−2 in the middle of June and remained in the 30–40 mg Chl a m−2 range during the rest of observation period; day-to-day variation in Chl a biomass was relatively small. The daily net primary productivity integrated over the euphotic layer ranged from 144 to 919 mg C m−2 day−1 and varied greatly, depending more on insolation rather than Chl a biomass. In addition, we found that part of primary production was exported to a 150-m depth within 2 days, indicating that the variations in primary productivity quickly influenced the organic carbon flux from the upper ocean. Our results suggest that the short-term variability in primary productivity is one of the key factors controlling the carbon cycle in the surface ocean in the western subarctic Pacific.  相似文献   

7.
The role of copepod grazing on the ecosystem dynamics in the Oyashio region, western subarctic Pacific was investigated during six cruises from June 2001 to June 2002. In situ grazing rates of the copepod community (CGR) were measured by the gut fluorescence method in respect to developmental stages of dominant species. In terms of biomass, more than 80% of the copepod community was dominated by six large calanoid species (Neocalanus cristatus, Neocalanus flemingeri, Neocalanus plumchrus, Eucalanus bungii, Metridia pacifica and Metridia okhotensis) throughout the year. Resulting from the observed pattern of the interzonal migrating copepods, the CGR in the Oyashio region was divided into three phases, i.e. spring (bloom), summer (post-bloom) and autumn-winter phase. During the spring bloom, late copepodites of the interzonal migrating species, N. cristatus, N. flemingeri and E. bungii appeared in the surface layer (0-50 m) to consume the production of the bloom, resulting in a high grazing rate of the copepod community (7.9 mg Chl m−2 d−1), though its impact on phytoplankton community was low due to the high primary productivity. During the post-bloom period, although the copepod community which was dominated by N. cristatus, N. plumchrus, M. pacifica and newly recruited E. bungii still maintained a high biomass, the CGR was generally lower (1.8-2.6 mg Chl m−2 d−1 for June and August 2001), probably due to the lower availability of phytoplankton. Nevertheless, the highest CGR was also observed during this period (10.5 mg Chl m−2 d−1 in June 2002). The high CGR on autotrophic carbon accounted for 69% of the primary production, suggesting that the copepod community in the Oyashio region potentially terminates the phytoplankton bloom. Abundant occurrence of young E. bungii, which is a characteristic phenomenon in the Oyashio region, was largely responsible for the high grazing pressure in June 2002 suggesting that success of reproduction, growth, and survival in E. bungii during the spring bloom is an important factor in controlling phytoplankton abundance during the post-bloom season. During autumn and winter, CGR was the lowest in the year (0.29-0.38 mg Chl. m−2 d−1) due to the disappearance of the interzonal migrating copepods from the surface layer. Diel migrant M. pacifica was the most important grazer during this period. The annual ingestion of the copepod community is estimated as 37.7 gC m−2 on autotrophic carbon (converted using C:Chl ratio of 30) or 137.9 gC m−2 on suspended particles (using C:Chl ratio of in situ value, 58-191), accounting for 13% and 46% of annual primary production, respectively. This study confirms that copepod grazing is an important pathway in carbon flow in the Oyashio region and in particular their role in the phytoplankton dynamics is significant for the termination of the spring bloom.  相似文献   

8.
The biomass and production rate of net zooplankton were studied at eight stations in Yatsushiro Bay, Japan, monthly from May 2002 to April 2003. Based on environmental conditions, the bay was divided into three regions, viz. northern (average depth, salinity and chlorophyll a concentration: 11 m, 31.8 and 6.5 μg l−1, respectively), central (30 m, 32.8 and 3.2 μg l−1, respectively) and southern (43 m, 33.4 and 1.9 μg l−1, respectively). Net zooplankton biomass was high in warm months and low in cold ones, with annual averages of 20.2, 38.8 and 16.4 mg C m−3 in the northern, central and southern regions, respectively. Copepods were the most important constituent (>ca. 70% of net zooplankton biomass) in all regions. The northern region was characterized by the dominance of Oithona spp. in summer and Acartia spp. in winter-spring. In the central region, Microsetella norvegica was most pronounced in summer-fall. In both central and southern regions, Calanus sinicus and Eucalanus spp. dominated in winter-spring and fall, respectively. The annual average net zooplankton secondary production rate was 4.4, 7.5 and 3.9 mg C m−3d−1 in the northern, central and southern region, respectively. Combining the results from the present study with those from other collaborative works on microzooplankton allowed us to determine the trophic interactions in Yatsushiro Bay. If the secondary producers depend entirely on phytoplankton for food, their daily carbon requirement is equivalent to 12.5, 21.6 and 19.1% of the phytoplankton biomass in the respective regions.  相似文献   

9.
O. A. Yunev 《Oceanology》2011,51(4):616-625
Using the data of daily primary production, as well as intraannual and long-term changes in the concentration of chlorophyll “a” and hydrochemical characteristics, the annual primary production of phytoplankton in the deep-water part of the Black Sea is estimated for the three key periods in the contemporary evolution of the sea: preeutrophication, very intense eutrophication, and the present-day period characterized by deeutrophication. It is shown that eutrophication in the second part of the 20th Century led to an increase in the production level not only in the shelf of the Black Sea, but also its deep-water areas. By the end of the 1980s and the early 1990s, the value of the annual primary production in this part of the sea increased from 63 ± 18 g C m−2 yr−1 (in the 1960s) up to 135 ± 30 g C m−2 yr−1. On the contrary, after 1993, mainly because of reduced runoff of biogenic substances into the Black Sea from land based sources, there was a decrease in the annual production of phytoplankton in the deep-water areas of the sea, which is currently about 105 g C m−2 yr−1.  相似文献   

10.
We measured the in situ primary production at four stations from the surface to 80 m off Sanriku in late May 1997. The depth-integrated daily primary production in the upper 80 m was estimated to be 391, 468, and 855 mgC m−2d−1 in water from the Oyashio, and 336 mgC m−2d−1 in the warm-core ring. The variation in the primary production was primarily due to the variation in phytoplankton activity (chlorophyll α-specific primary production). A combination of previous and present studies in water from the Oyashio and the warm-core ring suggested that phytoplankton activity is proportional to light intensity between 12 and 50 Ein m−2d−1 which is close to the usual light condition (61–75 Ein m−2d−1) off Sanriku in May and June. Light may be a limiting factor for phytoplankton off Sanriku in late spring and early summer.  相似文献   

11.
Primary productivity in the East China Sea and its adjacent area was measured by the13C tracer method during winter, summer and fall in 1993 and 1994. The depth-integrated primary productivity in the Kuroshio Current ranged from 220 to 350 mgC m−2d−1, and showed little seasonal variability. High primary productivity (above 570 mgC m−2d−1) was measured at the center of the continental shelf throughout the observation period. The productivity at the station nearest to the Changjiang estuary exhibited a distinctive seasonal change from 68 to 1,500 mgC m−2d−1. Depth-integrated primary productivity was 2.7 times higher in the shelf area than the rates at the Kuroshio Current. High chlorophyll-a specific productivity (mgC mgChl.-a−2d−1) throughout the euphotic zone was mainly found in the shelf area rather than off-shelf area, probably due to higher nutrient availability and higher activity of phytoplankton at the subsurface layer in the shelf area.  相似文献   

12.
A sediment trap experiment was carried out in conjunction with an over flight of Ocean Color Temperature Scanner (OCTS) on board Advanced Earth Observing Satellite (ADEOS) at 40°N, 143°E off Sanriku in April to May 1997. Short term variability of particle fluxes was examined at depths of 450 m and 600 m from April 6 to May 1 with a sampling interval of two days, and at 450 m with one day interval from 2nd to 10th May. Daily averaged mass flux at 450 m and 600 m was 815 mg m−2d−1 and 862 mg m−2d−1, respectively. A sharp increase in mass flux was observed during the period from April 26 to April 29 with the highest mass flux of 8 g m−2d−1. About 85% of the total mass flux for the entire duration (26 days) was collected within these 4 days. Trapped material during the peak flux period was mainly composed of diatoms dominated byThalassiosira spp. and resting spores ofChaetoceros spp. This suggested that the peak flux was the result of (a) diatom bloom(s) in the euphotic column. Current meter records at 420 m showed that on April 26 and 27, the period when the peak flux was observed, the southwestward current had diminished in strength and changed its direction northwestward. Low current speeds appeared to have enhanced trap efficiency to help form the peak flux. A time series of OCTS Intensive-LAC (Local Area Coverage: Region B) images from mid-March to early May was examined todetect phytoplankton bloom(s). In the March 26th Chl image, high concentration region was restricted to the southwest off Cape Erimo, but spread around the warm core ring (WCR) 93A by April 10. East of the WCR93A, high Chl concentration remained steady until May, but to the west of the WCR93A, Chl decreased rapidly before the 19th of April. From this observation we suspect that the peak flux observed at the end of April originated from a bloom, which ceased on the 17th or 18th of April, in the region north of 40°N and west of 143°E. Taking the current meter records into account, the source region for the trapped material is most likely around southwest of the Cape Erimo.  相似文献   

13.
The concentrations of Cu, Ni and Cd were determined in Funka Bay during a spring phytoplankton bloom, consisting of diatoms. Just after the bloom, both dissolved Cd and nutrients were removed in the euphotic zone. However, the removal ratio of Cd to phosphate was very different from that in seawater. The removal of Cd took place at a Cd/phosphate ratio of 0.07×10−3, which was lower than in seawater before the bloom (0.25×10−3), leading to an increase in this ratio in seawater exceeding 0.7×10−3 at the end of the bloom. Elevated concentrations of Cd and phosphate were observed in the deeper layer after the bloom due to the decomposition of detrital materials produced in the bloom. The ratio of Cd/phosphate in the regeneration step was 0.24×10−3 which was different from the removal ratio of 0.07×10−3. These observations suggest that the high Cd/phosphate ratio in the regeneration would reflect a relatively high regeneration rate of Cd than that of phosphate. No significant decrease in Cu and Ni concentrations was observed during the development of the bloom, suggesting that biological removal of these metals was not so significant during the spring bloom. The concentrations of Cd, Cu and silicate in surface waters increased after the bloom with decreasing salinity due to the influence of a spring thaw.  相似文献   

14.
Seasonal variations in the picoplankton community were investigated from June 2002 to March 2004 within the photic zone of Sagami Bay, Japan. The study area was mostly dominated by coastal waters during the warm period (mixed layer water temperature ≥ 18°C). During the cold period (mixed layer water temperature ≤ 18°C), the water mass was characterized by low temperature and high saline waters indicative of the North Pacific Subtropical Mode Water (NPSTMW). Occasionally, a third type of water mass characterized by high temperature and low saline properties was observed, which could be evidence of the intrusion of warm Kuroshio waters. Synechococcus was the dominant picophytoplankton (5−28 × 1011 cells m−2) followed by Prochlorococcus (1−5 × 1011 cells m−2) and picoeukaryotes during the warm period. Heterotrophic bacteria dominated the picoplankton community throughout the year, especially in the warm period. During the Kuroshio Current advection, cyanobacterial abundance was high whereas that of picoeukaryotes and heterotrophic bacteria was low. During the cold period, homogeneously distributed, lower picophytoplankton cell densities were observed. The dominance of Synechococcus in the warm period reflects the importance of high temperature, low salinity and high Photosynthetically Active Radiation (PAR) on its distribution. Cyanobacterial and heterotrophic bacterial abundance showed a positive correlation with temperature. Prochlorococcus and picoeukaryotes showed a positive correlation with nutrients. Picoeukaryotes were the major contributors to the picophytoplankton carbon biomass. The annual picophytoplankton contribution to the photosynthetic biomass was 32 ± 4%. These observations suggest that the environmental conditions, combined with the seasonal variability in the source of the water mass, determines the community structure of picoplankton, which contributes substantially to the phytoplankton biomass and can play a very important role in the food web dynamics of Sagami Bay.  相似文献   

15.
Observations of primary productivity, 234Th, and particulate organic carbon (POC) were made from west to east across the northern North Pacific Ocean (from station K2 to Ocean Station Papa) during September–October 2005. Primary productivities in this region varied longitudinally from approximately 236 to 444 mgC m−2d−1 and clearly indicate the West High East Low (WHEL) trend. We estimated east-west variations in the POC flux from the surface layer (0–100 m) by using 234Th as a tracer. POC fluxes in the western region (44–53 mgC m−2d−1) were higher than those in the eastern region (21–34 mgC m−2d−1). However, the export ratios (e-ratios) ranged from approximately 8% to 16% and did not show the WHEL trend. Contrary to our expectation, no relation between POC flux (or e-ratio) and diatom biomass (or dominance) was apparent in autumn in the northern North Pacific.  相似文献   

16.
The plankton community composition comprising heterotrophic bacteria, pro-/eukaryotes, heterotrophic nanoflagellates, microzooplankton and mesozooplankton was assessed during the spring bloom and at non-bloom stations in the English Channel and Celtic Sea between 6 and 12 April 2002. Non-bloom sites were characterised by a dominance of pro-/eukaryotic phytoplankton <20 μm, higher abundance of heterotrophic nanoflagellates, microzooplankton standing stocks ranging between 60 and 380 mg C m−2, lower mesozooplankton diversity and copepod abundance of between 760 and 2600 ind m−3. Within the bloom, the phytoplankton community was typically dominated by larger cells with low abundance of pro-/eukaryotes. Heterotrophic nanoflagellate cell bio-volume decreased leading to a reduction in biomass whereas microzooplankton biomass increased (360–1500 mg C m−2) due to an increase in cell bio-volume and copepod abundance ranged between 1400 and 3800 ind m−3. Mesozooplankton diversity increased with an increase in productivity. Relationships between the plankton community and environmental data were examined using multivariate statistics and these highlighted significant differences in the abiotic variables, the pro-/eukaryotic phytoplankton communities, heterotrophic nanoflagellate, microzooplankton and total zooplankton communities between the bloom and non-bloom sites. The variables which best described variation in the microzooplankton community were temperature and silicate. The spatial variation in zooplankton diversity was best explained by temperature. This study provides an insight into the changes that occur between trophic levels within the plankton in response to the spring bloom in this area.  相似文献   

17.
The often-rapid deposition of phytoplankton to sediments at the end of the spring phytoplankton bloom is an important component of benthic–pelagic coupling in temperate and high latitude estuaries and other aquatic systems. However, quantifying the flux is difficult, particularly in spatially heterogeneous environments. Surficial sediment chlorophyll-a, which can be measured quickly at many locations, has been used effectively by previous studies as an indicator of phytoplankton deposition to estuarine sediments. In this study, surficial sediment chlorophyll-a was quantified in late spring at 20–50 locations throughout Chesapeake Bay for 8 years (1993–2000). A model was developed to estimate chlorophyll-a deposition to sediments using these measurements, while accounting for chlorophyll-a degradation during the time between deposition and sampling. Carbon flux was derived from these estimates via C:chl-a = 75.Bay-wide, the accumulation of chlorophyll-a on sediments by late spring averaged 171 mg m−2, from which the chlorophyll-a and carbon sinking fluxes, respectively, were estimated to be 353 mg m−2 and 26.5 gC m−2. These deposition estimates were ∼50% of estimates based on a sediment trap study in the mid-Bay. During 1993–2000, the highest average chlorophyll-a flux was in the mid-Bay (248 mg m−2), while the lowest was in the lower Bay (191 mg m−2). Winter–spring average river flow was positively correlated with phytoplankton biomass in the lower Bay water column, while phytoplankton biomass in that same region of the Bay was correlated with increased chlorophyll-a deposition to sediments. Responses in other regions of the Bay were less clear and suggested that the concept that nutrient enrichment in high flow years leads to greater phytoplankton deposition to sediments may be an oversimplification. A comparison of the carbon flux associated with the deposition of the spring bloom with annual benthic carbon budgets indicated that the spring bloom did not contribute a disproportionately large fraction of annual carbon inputs to Chesapeake Bay sediments. Regional patterns in chlorophyll-a deposition did not correspond with the strong regional patterns that have been found for plankton net community metabolism during spring.  相似文献   

18.
The biochemical effects of a cold-core eddy that was shed from the Kuroshio Current at the Luzon Strait bordering the South China Sea (SCS) were studied in late spring, a relatively unproductive season in the SCS. The extent of the eddy was determined by time-series images of SeaWiFS ocean color, AVHRR sea surface temperature, and TOPEX/Jason-1 sea surface height anomaly. Nutrient budgets, nitrate-based new production, primary production, and phytoplankton assemblages were compared between the eddy and its surrounding Kuroshio and SCS waters. The enhanced productivity in the eddy was comparable to wintertime productivity in the SCS basin, which is supported by upwelled subsurface nitrate under the prevailing Northeastern Monsoon. There were more Synechococcus, pico-eucaryotes, and diatoms, but less Trichodesmium in the surface water inside the eddy than outside. Prochlorococcus and Richelia intracellularis showed no spatial differences. Water column-integrated primary production (IPP) inside the eddy was 2–3 times that outside the eddy in the SCS (1.09 vs. 0.59 g C m−2d−1), as was nitrate-based new production (INP) (0.67 vs. 0.25 g C m−2d−1). INP in the eddy was 6 times that in the Kuroshio (0.12 g C m−2d−1). IPP and INP in the eddy were higher than the maximum production values ever measured in the SCS basin. Surface chlorophyll a concentration (0.40 mg m−3) in the eddy equaled the maximum concentration registered for the SCS basin and was higher than the wintertime average (0.29 ± 0.04 mg m−3). INP was 3.5 times as great and IPP was doubled in the eddy compared to the wintertime SCS basin. As cold core eddies form intermittently all year round as the Kuroshio invades the SCS, their effects on phytoplankton productivity and assemblages are likely to have important influences on the biogeochemical cycle of the region.  相似文献   

19.
莱州湾及潍河口夏季浮游植物生物量和初级生产力的分布   总被引:9,自引:2,他引:9  
于1998年6月黄河断流期在潍河口及其邻近海域进行了水文、化学和生物等专业综合外业调查.对此海区浮游植物叶绿素a浓度、脱镁色素浓度和初级生产力的变化进行了分析.研究结果表明,叶绿素a浓度介于0.089~5.444mg/m3之间,平均值为1.331mg/m3;脱镁色素浓度介于0.176~3.402mg/m3之间,平均值为0.905mg/m3.叶绿素a和脱镁色素浓度高密度区分布在小清河口附近、潍河口内及潍河口以外临近海域.初级生产力介于13.58~301.54mg/(d·m2)之间,平均值为62.49mg/(d·m2).水柱初级生产力高值区分布在小清河口和37.30°N,119.47°E附近.对水文、化学和浮游动物等环境因子与浮游植物生物量和初级生产力的相关性分析表明,整个调查区,浮游植物生物量和初级生产力与海区潮汐、光照、磷酸盐、硅酸盐和微型浮游动物等环境因子密切相关,同氨盐、硝酸盐和亚硝酸盐的作用不明显,其中潍河口内浮游植物的生物量分布同潮汐的关系最为密切.夏季此海域浮游植物生长主要受磷酸盐和硅酸盐的限制.调查海域浮游植物生物量及生产力水平较历史同期有所增加.  相似文献   

20.
高源  何剑锋  陈敏  林凌  张芳 《海洋学报》2015,37(8):96-104
2012年夏季中国第5次北极科学考察期间,对北冰洋楚科奇海及其北部边缘海浮游细菌丰度和生产力进行了测定,并将其与环境因子进行了相关性分析。结果显示,楚科奇海浮游细菌丰度的变化范围为0.56×108~6.41×108 cells/dm3,平均为2.25×108 cells/dm3;细菌生产力介于0.042~1.92mg/(m3·d)(以碳计)之间,平均为0.54mg/(m3·d)(以碳计),与已有研究结果基本相当。陆架区细菌丰度和生产力要明显高于北部边缘区,但前者的单位细菌生产力则较低。与环境因子的相关性分析显示,细菌丰度与温度和叶绿素a浓度存在显著正相关(p0.01),表明北极变暖导致的海水升温及浮游植物生物量的增加均会促进细菌的生长,从而进一步提高细菌在海洋生态系统和碳循环中的作用。但陆架区的细菌生产力与环境参数均没有显著相关性,表明其影响因素较为复杂;生产力在北部边缘区则仅与叶绿素a存在显著正相关(p0.01),表明浮游植物生长过程产生的溶解有机碳(DOC)是细菌生长最为主要的碳源,碳源的单一可能制约细菌的生产从而导致该海域无冰状态下细菌丰度的增加不如预期,但融冰过程带来的大量DOC将促进细菌活性的增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号