首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
An iron-rich deposit dredged from the upper flank of Dellwood Seamount in the Northeast Pacific has been analyzed for major and trace elements, rare-earth contents and uranium isotopic composition. In terms of mineralogy and overall chemical composition, the deposit resembles other iron-rich deposits variously attributed to volcanic hydrothermal activity. Both the relative concentrations of the rare-earth elements and the isotopic composition of uranium rule out seawater as the sole source of elements in this deposit. The rare-earth element pattern indicates that these elements were derived from the underlying basalt. The234U/238U ratio is significantly higher than in seawater and can best be explained by preferential leaching of234U generated by decay from its parent238U in the underlying rock and subsequent redeposition of the excess234U together with the Fe and minor metals. These data are consistent with a model for the origin of submarine metal-rich solutions involving mobilization of elements from the interior of slowly cooling basalts by circulating seawater.  相似文献   

2.
A 15.6-m cooling unit from DSDP Leg 34 is investigated to determine the effects of the rate of solidification of a liquid on the resulting textures and mineralogy. A detailed sampling from the top and bottom margins of the cooling unit inward to the center has revealed systematic textural and mineralogical variations that are the result of different cooling rates. Textures change from spherulitic-intersertal in the chilled margins through intergranular to subophitic/ophitic in the interior of the flow. Plagioclase width increases and the length/width ratio decreases with distance from the flow margins (and hence with decreasing cooling rate). Titanium and Al contents are higher in pyroxenes from the chilled margins than in those from the interior regions although there is no systematic change in major element concentrations. Thus, as has been shown by experiments in lunar rock systems [4,33], Ti and Al contents in pyroxene increase with increasing cooling rate. Cooling rates calculated from conductive heat flow equations range from >100°C/hr in the margins of the cooling unit to <0.1°C/hr in the interior (>3 m from the margin). The variations in minor element content of pyroxene due to cooling rate must be taken into account when one attempts to relate coarse-grained gabbros and volcanic rocks to a common parent by comparing their pyroxene compositions.  相似文献   

3.
Loihi Seamount is the southeasternmost active volcano of the Emperor-Hawaii linear volcanic chain. It comprises a spectrum of basalt compositional varieties including basanite, alkali basalt, transitional basalt and tholeiite. Samples from four dredge collections made on Scripps Institution of Oceanography Benthic Expedition in October 1982 are tholeiite. The samples include highly vesicular, olivine-rich basalt and dense glass-rich pillow fragments containing olivine and augite phenocrysts. Both quartz-normative and olivine-normative tholeiites are present. Minor and trace element data indicate relatively high abundances of low partition coefficient elements (e.g., Ti, K, P. Rb, Ba, Zr) and suggest that the samples were derived by relatively small to moderate extent of partial melting, of an undepleted mantle source. Olivine composition, MgO, Cr and Ni abundances, and Mg/(Mg+Fe), are typical of moderately fractionated to relatively unfractionated “primary” magmas. The variations in chemistry between samples cannot be adequately explained by low-pressure fractional crystallization but can be satisfied by minor variations in extent of melting if a homogeneous source is postulated. Alternatively, a heterogeneous source with variable abundances of certain trace elements, or mixing of liquids, may have been involved. Data for 3He/4He, presented in a separate paper, implies a mantle plume origin for the helium composition of the Loihi samples. There is little variation in the helium isotope ratio for samples having different compositions and textures. The helium data are not distinctive enough to unequivocally separate the magma sources for the tholeiitic rocks from the other rock types such as Loihi alkalic basalts and the whole source region for Loihi may have a nearly uniform helium compositions even though other element abundances may be variable. Complex petrologic processes including variable melting, fractional crystallization and magma mixing may have blurred original helium isotopic signatures.  相似文献   

4.
Single-crystal X-ray, optical, and microprobe study of pyroxenes in the Serra de Magéfeldspar cumulate eucrite indicate complex exsolution features from a slow cooling history. Two pyroxenes now exist: “low” orthohypersthene ( P21ca) as host ( 82 vol.%) and augite ( C2/c) in four distinct habits. This pyroxene pair yields an apparent “equilibration” temperature of 900°. These relations are typical for orthopyroxene of both the Stillwater and Kintoki-San types, indicating an original pigeonite pyroxene with a bulk composition En51Fs39Wo10. Variations in augite-hypersthene textural relationships suggest variable initial compositions from about Wo8 to Wo11. The bulk composition is intermediate to those of initial pigeonites in Moama and Moore County but the augite-hypersthene tie line is longer suggesting a slower cooling history. Our examinations of all three meteorites show that Serra de Magéaugite lamellae are as thick or thicker than those in the other meteorites, contrary to the measurement of Miyamoto and Takeda. The compositional data, textural relations, and existence of P21ca hypersthene suggest at least a comparable if not slower cooling history for Serra de Magé.  相似文献   

5.
Human‐accelerated climate change is quickly leading to glacier‐free mountains, with consequences for the ecology and hydrology of alpine river systems. Water origin (i.e., glacier, snowmelt, precipitation, and groundwater) is a key control on multiple facets of alpine stream ecosystems, because it drives the physico‐chemical template of the habitat in which ecological communities reside and interact and ecosystem processes occur. Accordingly, distinct alpine stream types and associated communities have been identified. However, unlike streams fed by glaciers (i.e., kryal), groundwater (i.e., krenal), and snowmelt/precipitation (i.e., rhithral), those fed by rock glaciers are still poorly documented. We characterized the physical and chemical features of these streams and investigated the influence of rock glaciers on the habitat template of alpine river networks. We analysed two subcatchments in a deglaciating area of the Central European Alps, where rock glacier‐fed, groundwater‐fed, and glacier‐fed streams are all present. We monitored the spatial, seasonal, and diel variability of physical conditions (i.e., water temperature, turbidity, channel stability, and discharge) and chemical variables (electrical conductivity, major ions, and trace element concentrations) during the snowmelt, glacier ablation, and flow recession periods of two consecutive years. We observed distinct physical and chemical conditions and seasonal responses for the different stream types. Rock glacial streams were characterized by very low and constant water temperatures, stable channels, clear waters, and high concentrations of ions and trace elements that increased as summer progressed. Furthermore, one rock glacier strongly influenced the habitat template of downstream waters due to high solute export, especially in late summer under increased permafrost thaw. Given their unique set of environmental conditions, we suggest that streams fed by thawing rock glaciers are distinct river habitats that differ from those normally classified for alpine streams. Rock glaciers may become increasingly important in shaping the hydroecology of alpine river systems under continued deglaciation.  相似文献   

6.
7.
Hidehisa  Mashima 《Island Arc》2005,14(2):165-177
Abstract   The major element and compatible trace element compositions of the northwest Kyushu basalts (NWKBs) collected from Saga-Futagoyama were analyzed to examine the petrogenesis of these basalts. Although nepheline-normative alkaline basalts are not found in the basalts from Saga-Futagoyama, the Saga-Futagoyama basalts almost cover the major element variations of NWKBs. The basalts can be chemically divided into two groups: an Fe-poor group (IPG) and an Fe-rich group (IRG). The compositional variation of IPG basalts is essentially controlled by the partial melting of the source as suggested by the following: (i) bulk rock MgO, FeO and NiO compositions indicate that some IPG samples were equilibrated with mantle olivine; and (ii) correlations between Al2O3, CaO and MgO are consistent with those of experimental partial melts of peridotites. The inconsistent behaviors of the elements compatible with clinopyroxene (Cpx), such as V (Sc and Cu), preclude the significant role of the fractional crystallization of Cpx and spinel in IPG variation. IPG basalts have low Al and high Fe concentrations compared to the products of melting experiments involving peridotites and pyroxenites, suggesting that the IPG source would have a lithology and bulk rock composition different from those of typical peridotites and pyroxenites. IRG basalts have negative correlations between Fe2O3* and MgO, and between V and Fe2O3*/MgO, indicating that IRG basalts would have fractionated Cpx. However, the anomalously Fe-rich feature of IRG basalts compared with NWKBs collected from other areas suggests that the role of Cpx fractionation in NWKBs is minor. Relatively low melting temperatures would have principally caused the large chemical variation of NWKBs.  相似文献   

8.
Abstract The Wakino Subgroup is a lower stratigraphic unit of the Lower Cretaceous Kanmon Group. Previous studies on provenance of Wakino sediments have mainly concentrated on either petrography of major framework grains or bulk rock geochemistry of shales. This study addresses the provenance of the Wakino sandstones by integrating the petrographic, bulk rock geochemistry, and mineral chemistry approaches. The proportions of framework grains of the Wakino sandstones suggest derivation from either a single geologically heterogeneous source terrane or multiple source areas. Major source lithologies are granitic rocks and high‐grade metamorphic rocks but notable amounts of detritus were also derived from felsic, intermediate and mafic volcanic rocks, older sedimentary rocks, and ophiolitic rocks. The heavy mineral assemblage include, in order of decreasing abundance: opaque minerals (ilmenite and magnetite with minor rutile), zircon, garnet, chromian spinel, aluminum silicate mineral (probably andalusite), rutile, epidote, tourmaline and pyroxene. Zircon morphology suggests its derivation from granitic rocks. Chemistry of chromian spinel indicates that the chromian spinel grains were derived from the ultramafic cumulate member of an ophiolite suite. Garnet and ilmenite chemistry suggests their derivation from metamorphic rocks of the epidote‐amphibolite to upper amphibolite facies though other source rocks cannot be discounted entirely. Major and trace element data for the Wakino sediments suggest their derivation from igneous and/or metamorphic rocks of felsic composition. The major element compositions suggest that the type of tectonic environment was of an active continental margin. The trace element data indicate that the sediments were derived from crustal rocks with a minor contribution from mantle‐derived rocks. The trace element data further suggest that recycled sedimentary rocks are not major contributors of detritus. It appears that the granitic and metamorphic rocks of the Precambrian Ryongnam Massif in South Korea were the major contributors of detritus to the Wakino basin. A minor but significant amount of detritus was derived from the basement rocks of the Akiyoshi and Sangun Terrane. The chromian spinel appears to have been derived from a missing terrane though the ultramafic rocks in the Ogcheon Belt cannot be discounted.  相似文献   

9.
Metal accumulation rates over the East Pacific Rise and Bauer Deep rule out normal authigenic precipitation of iron and manganese as the major mechanism of enrichment to the metalliferous sediments. A hydrothermal source located along the East Pacific Rise is compatible with the transition metal and aluminum accumulation rates. For the Bauer Deep the accumulation rate data suggest either that metal-bearing phases are being transported from the rise to the protected basins of the deep or that a second hydrothermal source exists within the Bauer Deep. A major portion of the minor elements being deposited in the Bauer Deep could result from authigenic precipitation, thus accounting for their distinctive chemical composition.  相似文献   

10.
Determining Earth’s structure is a fundamental goal of Earth science, and geophysical methods play a prominent role in investigating Earth’s interior. Geochemical, cosmochemical, and petrological analyses of terrestrial samples and meteoritic material provide equally important insights. Complementary information comes from high-pressure mineral physics and chemistry, i.e., use of sophisticated experimental techniques and numerical methods that are capable of attaining or simulating physical properties at very high pressures and temperatures, thereby allowing recovered samples from Earth’s crust and mantle to be analyzed in the laboratory or simulated computationally at the conditions that prevail in Earth’s mantle and core. This is particularly important given that the vast bulk of Earth’s interior is geochemically unsampled. This paper describes a quantitative approach that combines data and results from mineral physics, petrological analyses of mantle minerals, and geophysical inverse calculations, in order to map geophysical data directly for mantle composition (major element chemistry and water content) and thermal state. We illustrate the methodology by inverting a set of long-period electromagnetic response functions beneath six geomagnetic stations that cover a range of geological settings for major element chemistry, water content, and thermal state of the mantle. The results indicate that interior structure and constitution of the mantle can be well-retrieved given a specific set of measurements describing (1) the conductivity of mantle minerals, (2) the partitioning behavior of water between major upper mantle and transition-zone minerals, and (3) the ability of nominally anhydrous minerals to store water in their crystal structures. Specifically, upper mantle water contents determined here bracket the ranges obtained from analyses of natural samples, whereas transition-zone water concentration is an order-of-magnitude greater than that of the upper mantle and appears to vary laterally underneath the investigated locations.  相似文献   

11.
New 40Ar-39Ar geochronology, bulk rock geochemical data, and physical characteristics for representative stratigraphic sections of rhyolite ignimbrites and lavas from the west-central Snake River Plain (SRP) are combined to develop a coherent stratigraphic framework for Miocene silicic magmatism in this part of the Yellowstone ‘hotspot track’. The magmatic record differs from that in areas to the west and east with regard to its unusually large extrusive volume, broad lateral scale, and extended duration. We infer that the magmatic systems developed in response to large-scale and repeated injections of basaltic magma into the crust, resulting in significant reconstitution of large volumes of the crust, wide distribution of crustal melt zones, and complex feeder systems for individual eruptive events. Some eruptive episodes or ‘events’ appear to be contemporaneous with major normal faulting, and perhaps catastrophic crustal foundering, that may have triggered concurrent evacuations of separate silicic magma reservoirs. This behavior and cumulative time-composition relations are difficult to relate to simple caldera-style single-source feeder systems and imply complex temporal-spatial development of the silicic magma systems. Inferred volumes and timing of mafic magma inputs, as the driving energy source, require a significant component of lithospheric extension on NNW-trending Basin and Range style faults (i.e., roughly parallel to the SW–NE orientation of the eastern SRP). This is needed to accommodate basaltic inputs at crustal levels, and is likely to play a role in generation of those magmas. Anomalously high magma production in the SRP compared to that in adjacent areas (e.g., northern Basin and Range Province) may require additional sub-lithospheric processes. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

12.
CRISPY is a cristobalite-pyroxene assemblage in the L6 chondrite ALHA 76003. It was formed by reaction of a very siliceous inclusion with the surrounding olivine-rich rock. Oxygen isotopes show that the inclusion was derived from a source with non-chondritic isotopic composition. The isotopes also show that the oxygen of the pyroxene reaction product was derived by simple mixing of oxygen from the inclusion and its immediately adjacent surroundings, with exchange with the bulk meteorite limited to a distance of about a millimeter. The persistence of cristobalite in close proximity to olivine, and the lack of isotopic equilibration, show that the metamorphic processes that form petrographic grade 6 chondrites involve transport of major elements over distances only on the order of millimeters.  相似文献   

13.
Recently obtained data on oxygen diffusion in feldspars, quartz, and hornblende permit the prediction of the apparent18O16O temperatures that would be measured in a rock that consisted only of those three minerals, and cooled slowly from high temperature. The computed temperatures would be based on the differences in the18O16O ratios between coexisting pairs of minerals. The present calculation takes into account the diffusion rates for oxygen as a function of temperature, the cooling rate of the rock, the mineral grain sizes, and the mode of the rock. For mineral grains 1 mm in radius, and a cooling rate of 10°C/m.y., the minimum difference in apparent temperature between quartz-feldspar and feldspar-hornblende pairs will be 115°C, despite the assumption of a normal, uneventful, slow cooling history to room temperature. Further, the apparent quartz-hornblende temperature will range over 30°C (590–620°C) depending on the mode of the rock. For a cooling rate of 1000°C/m.y., the apparent difference in temperature can be as much as 400°C. Consequently, consistency in temperatures obtained by oxygen isotope analysis should not be expected in most high-grade metamorphic rocks or igneous rocks which are cooled slowly. Departures from the pattern of temperatures obtained in this model would imply a very rapid quench from high temperature, or a complex history for the rock. For some minerals, including hornblende, the relation between temperature and the equilibrium fractionation of oxygen isotopes between coexisting phases has been derived from observed relations in natural specimens. The choice of the specimens used for such calibrations needs to be re-evaluated in light of these findings. This may result in a change in the equilibrium equation constants.An example from the literature, the San Jose tonalite, Baja California, Mexico, was modelled and yieldsδ18O concentrations in the minerals that correspond closely with the measured values. This suggests that the model used is appropriate, that the rock has had a simple thermal history, and that it cooled at 100–200°C/m.y. over the temperature range 800–500°C. The set of paleotemperatures obtained for a rock will, in general, yield neither the mineral closure temperatures nor the formation or crystallization temperatures. On the other hand, the cooling rate of the rock may be derived from the data. This, in turn, may have important tectonic implications with regard to denudation and uplift rates.  相似文献   

14.
北京密云水库表层沉积物磁性矿物的鉴别   总被引:1,自引:0,他引:1       下载免费PDF全文
本文对密云水库表层沉积物中的磁性矿物进行了岩石磁学和透射电子显微学的综合研究.本实验建立的磁选方法实现将70%~85%左右的磁性矿物从沉积物中分离出来.岩石磁学研究表明,密云水库沉积物中的磁性矿物以多畴和单畴磁铁矿为主,还含有少量高矫顽力弱磁性载磁矿物(可能为赤铁矿).对磁选矿物的透射电镜观测表明,样品中部分单畴磁铁矿具有纳米尺寸和化学纯度高等特点,为拉长的立方-八面体磁铁矿,是趋磁细菌产生的化石磁小体;多畴磁铁矿多数具有微米尺寸,形状不规则,为碎屑成因;超顺磁磁铁矿粒径约为5~20nm,且含硅、铝等元素,可能为自生成因.研究结果表明,岩石磁学和透射电子显微学的综合应用可以更全面、准确地分析沉积物中磁性矿物的成分、含量、粒径和化学成分等信息,为环境磁学、生物地磁学和古地磁学研究提供依据.  相似文献   

15.
Kamacite Ni profiles in low-Ni and high-Ni IVA irons are distinctly different, and cannot be fit with the same α/(α + γ) boundary in the low-temperature Fe-Ni phase diagram. This is attributed to an expansion of the α field to higher Ni contents resulting from the substantially higher P contents of the high-Ni irons. New α/(α + γ) boundaries are derived for P contents of 0.03 and 0.16%.Cooling rates of six group IVA iron meteorites were estimated by a taenite central Ni concentration-taenite half-width method similar to that of Wood [1]. Narrow (<20 μm) taenite lamellae were used to minimize uncertainties resulting from differences in nucleation temperatures. The calculated cooling rates range between 13 and 25°C/Myr, with an average of 20°C/Myr. No correlation between cooling rate and bulk Ni content is observed, and the data appear to be consistent with a uniform cooling rate as expected from an igneous core origin. This result differs from previous studies reporting a wide range in cooling rates that were strongly correlated with bulk Ni contents. The differences mainly result from differences in the phase diagram and the selected diffusion coefficients.Cooling rates inferred from taenite Ni concentrations at the interface with kamacite are consistent with those based on taenite central Ni contents.  相似文献   

16.
For any given volcanic field the compositions of primary melts provide important constraints on models of magmatic processes and volcanic eruptions. In this paper, based on petrography, olivine and bulk rock compositions, two tholeiitic picrites (samples C122 and C123) from Haleakala Volcano, east Maui are evaluated as possible primary melts. Sample C122 (bulk rock MgO = 16.6%) has a high apparent Mg-Fe exchange coefficient, KD, between olivine phenocrysts and bulk rock (0.6). However, major-elements and Ni mass-balance calculations show that the olivines in C122 are in equilibrium with the residual melt (matrix) after closed-system equilibrium fractionation of 25 wt.% olivine. Therefore, the Mg/Fe ratio, Ca content, and Ni content of C122 are consistent with the hypothesis that the bulk composition of C122 is close to a primary melt formed by partial melting of a mantle containing olivine with composition around Fo89 to Fo91. The uniform composition and small size (mostly 0.2–0.3 mm) of the olivine, and the glass patches in the matrix suggest fast ascent, and rapid cooling at shallow depth for C122. On the contrary, sample C123, which has an apparent KD (between the most mafic olivine megacrysts and the bulk rock) close to the equilibrium value (0.27), the multiple planar subgrain boundaries in most of the olivine crystals indicate that it may not be a primary melt unless the deformed olivines are generated at magmatic condition as phenocrysts. If the deformed subgrain boundary texture in olivine could indeed be generated at magmatic condition, then the wide compositional range of olivine crystals in C123 (Fo74 to Fo91) suggests multi-stage crystallization over a wide range of cooling temperatures.The compositions of the two picrites, and a differentiated basalt which does not contain xenocrysts suggest that the Haleakala tholeiites are derived from primary melts with at least 16–17 wt.% MgO. Lavas with such high MgO content are rare in Haleakala and other Hawaiian volcanoes; therefore, most Hawaiian tholeiites must have undergone extensive fractionation histories.  相似文献   

17.
The fragmentation of magma and of the hosting country rocks is a major process in explosive eruptions. It is important to quantify the mechanical energy needed for fragmentation in order to assess the physical processes of this volcanic phenomenon. This paper presents a method to calculate the fragmentation energy of country rock using granulometry data of a typical phreatomagmatic Eifel maar volcano explosion. The total fracture area of country rock fragments in one tephra layer was quantified and related to the critical fragmentation energy of these country rocks. The rock parameters critical shear stress and critical fragmentation energy were determined experimentally, whereas the pre-volcanic crack inventory was measured in the field. The paper concludes with the calculation of the energy balance (i.e. partitioning of thermal energy into kinetical energy and mechanical energy of the fragmentation) of one Eifel maar volcanic explosion.  相似文献   

18.
Cooling rates of eight group IVA iron meteorites were determined using a modification of the Wood method where cooling rate curves are calculated as a function of central taenite Ni content and taenite half-width. The major modification of the Wood method was to include the effect of P on the Ni solubility limits and Ni diffusion coefficients in the kamacite phase for each meteorite studied. The Borg and Lai binary kamacite Ni diffusivities were judged to be the best quality data available for the calculations. The calculated cooling rates range between 3 and 65°C/Myr. A correlation between decreasing cooling rate and increasing Ni content within the group IVA irons is observed. This cooling rate variation agrees closely with the 6–70°C/Myr range calculated by the independent bulk Ni-kamacite bandwidth method. Such a large variation in cooling rate within the group IVA argues against formation within the core of a single parent body.Willis and Wasson in the preceding paper found only a factor of 2 variation in cooling rate for the six IVA irons studied. The differences between the results of Willis and Wasson and this study are due mainly to the choice of the Ni diffusion coefficients in α and to the choice of the expressions for the effect of P on both the diffusion coefficients and the Ni solubility in kamacite. The Hirano et al. diffusivities used by Willis and Wasson were judged to be incorrect particularly because they are significantly higher than diffusivities in kamacite and taenite measured by other investigators. The assumption of Willis and Wasson that the same P content (0.03 wt.%) can be used for the low-Ni IVA's and that the same P content (0.16 wt.%) can be used for the high-Ni IVA's was judged to be a serious oversimplification.  相似文献   

19.
Liquid metal-liquid silicate partitioning of Fe, Ni, Co, P, Ge, W and Mo among a carbon-saturated metal and a variety of silicate melts (magnesian-tholeiitic-siliceous-aluminous-aluminosiliceous basalts) depends modestly to strongly upon silicate melt structure and composition. Low valency siderophile elements, Fe, Ni and Co, show a modest influence of silicate melt composition on partitioning. Germanium shows a moderate but consistent preference for the depolymerized magnesian melt. High valency siderophile elements, P, Mo, and W, show more than an order of magnitude decrease in metal-silicate partition coefficients as the silicate melt becomes more depolymerized. Detailed inspection of our and other published W data shows that polymerization state, temperature and pressure are more important controls on W partitioning than oxidation state. For this to be true for a high and variable valence element implies a secondary role in general for oxidation state, even though some role must be present. Equilibrium core segregation through a magma ocean of ‘ultrabasic’ composition can provide a resolution to the ‘excess’ abundances of Ge, P, W and Mo in the mantle, but the mantle composition alone cannot explain the excess abundances of nickel and cobalt in chondritic proportions.  相似文献   

20.
It has aroused great attention that the mobilization of potential toxic substance during coal mining, pro- cessing and using has serious negative influence on environment. Clearly, the coal cleaning can be prop-erly applied to removing hazardous elements or re-ducing their concentrations prior to combustion, which also is considered as an economical and effective technique in minimizing some of these problems[1]. Unfortunately, there are fairly few studies on the parti-tioning behavior of trac…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号