首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From Middle-Upper Jurassic volcanics at the western margin of the Maranha?o Basin (6.4°S, 47.4°W) 15 sites (121 samples) have a mean magnetization directionD = 3.9°,I = ?17.9° withα95 = 9.3°,k = 17.9 after AF cleaning (all sites have normal polarity). This yields a pole (named SAJ2) at 85.3°N, 82.5°E (A95 = 6.9°) which is near to the other known Middle Jurassic South American pole. For 21 sites (190 samples) from Lower Cretaceous basalt intrusions from the eastern part of the Maranha?o Basin (6.5°S, 42°W) the mean direction isD = 174.7°,I = +6.0° withα95 = 2.8°,k = 122 (all sites have reversed polarity) yielding a pole (SAK9) at 83.6°N, 261°E (A95 = 1.9°) in agreement with other Lower Cretaceous pole positions for South America. Comparing Mesozoic pole positions for South America and Africa in the pre-drift configuration after Bullard et al. [13] one finds a significant difference (with more than 95% probability) for the Lower Cretaceous and Middle Jurassic poles and also a probable difference for the mean Triassic poles indicating a small but probably stationary separation of the two continents from the predrift position in the Mesozoic until Lower Cretaceous time which may be due to an early rifting event.  相似文献   

2.
The palaeomagnetism of Middle Triassic (224 ± 5 m.y.) igneous rocks from the Ischigualasto-Ischichuca Basin (67°40′W, 30°20′S) was investigated through 86 oriented hand samples from 11 sites. At least one reversal of the geomagnetic field has been found in these rocks. Nine sites yield a palaeomagnetic pole at 239°E, 79°S (α95 = 15°, k = 13).The K-Ar age determinations of five igneous units of the Puesto Viejo Formation give a mean age of 232 ± 4 m.y. (Early Triassic). The palaeomagnetism of six igneous units of the Puesto Viejo Formation (68°W, 35°S) was investigated through 60 oriented samples. These units, two reversed relative to the present magnetic field of the Earth and four normal, yield a pole at 236°E, 76°S (α95 = 18°, k = 14).Data from the Puesto Viejo Formation indicate, for the first time on the basis of palaeomagnetic and radiometric data, that the Illawarra Zone, which defines the end of the Kiaman Magnetic Interval, extends at least down to 232 ± 4 m.y. within the Early Triassic. The palaeomagnetic poles for the igneous rocks of the Ischigualasto-Ischichuca Basin and Puesto Viejo Formation form an “age group” with the South American Triassic palaeomagnetic poles (mean pole position: 239°E, 77°S; α95 = 6.6°, k = 190). The Middle and Upper Permian, Triassic and Middle Jurassic palaeomagnetic poles for South America would define a “time group” reflecting a quasi-static interval (mean pole position: 232°E, 81°S; α95 = 4°, k = 131).  相似文献   

3.
From Upper Cretaceous volcanic rocks of Southeast Sicily 107 cores from 19 sites were collected giving a mean palaeomagnetic pole position at 62°N, 223°E, A95 = 5.4° after AF-cleaning. This pole agrees with the Upper Cretaceous pole of Northern Africa indicating that no large post-Cretaceous relative motion has occurred between Africa and Sicily.  相似文献   

4.
The Precambrian basement of the British region south of the Caledonian orogenic belt is only observed in a few small inliers; this paper reports a detailed paleomagnetic study of four of these inliers. The Stanner-Hanter amphibolitised gabbro-dolerite complex of uncertain age yields a mean direction of magnetisation D = 282°, I = 51° (15 sites,α95 = 11.4°) after AF and thermal cleaning. Uriconian lavas and tuffs (~700-600 m.y.) of the Pontesford and Wrekin inliers require both thermal and AF cleaning for complete analysis of NRM. The former region (Western Uriconian) yields a mean of D = 136°, I = ?25° (6 sites,α95 = 15.3°) and the latter region (Eastern Uriconian) a mean of D = 78°, I = 17° (9 sites, α95 = 12.8°); the Eastern Uriconian shows a marked improvement in precision after a two-stage fold test, and the palaeomagnetic data suggest that some apparent polar movement took place between eruption of the two sequences. The Uriconian rocks in both areas were intruded by dolerites which yield a mean direction of magnetisation D = 72°, I = 54° (11 sites,α95 = 13.2°).The collective data give palaeomagnetic poles related to Upper Proterozoic metamorphic episodes (Stanner-Hanter Complex and Rushton Schist) which are in close agreement with earlier studies of the Malvernian metamorphic rocks, and to the late Precambrian Uriconian volcanic/hypabyssal igneous episode. All of these magnetisations are probably confined to the interval 700-600 m.y., and are indicative of appreciable polar movement during this interval. The palaeomagnetic poles define an apparent polar wander path for this crustal block between Late Precambrian and Lower Cambrian times and show that cratonic Britain south of the Caledonian suture is unrelated to the Baltic Shield.  相似文献   

5.
Of 16 sites collected in the Taru grits (Permian) and Maji ya Chumvi beds (Permo-Triassic) of East Africa only 6 sites from the Maji ya Chumvi sediments gave meaningful palaeomagnetic results. After thermal cleaning the 6 sites (32 samples) give an Early Triassic pole at 67°N, 269°E with A95 = 17° in excellent agreement with other African Mesozoic poles. There are now 26 Mesozoic palaeomagnetic poles for Africa from widely diverse localities ranging in present latitude from 35°N to 30°S. The poles subdivide into Triassic (17 poles) and Cretaceous (9 poles) groups whose means are not significantly different. The palaeomagnetic pole for Africa thus remained in much the same position for 170 m.y. from Early Triassic to Late Cretaceous. The data form an especially good set for estimating the palaeoradius using Ward's method. Values of 1.08 ± 0.15 and 1.03 ± 0.19 times the present radius are deduced for the Triassic and Cretaceous respectively with a mean value of 1.08 ± 0.13 for all the Mesozoic data combined. The analysis demonstrates that hypotheses of earth expansion are very unattractive.  相似文献   

6.
The mean palaeomagnetic pole position obtained from Upper Cretaceous rocks in west Sicily is at 21°N, 100°E (A95 = 15°), and at 38°N, 67°E (A95 = 31°) obtained from Middle Jurassic rocks. These pole positions are completely different from comparable pole positions for southeast Sicily and Africa and imply a clockwise rotation of west Sicily since the Upper Cretaceous of about 90° relative to southeast Sicily and Africa and also a clockwise rotation of about 60° relative to “stable” Europe. The sense of rotation of west Sicily is opposite to any known rotation of other crustal blocks in the central Mediterranean.  相似文献   

7.
A preliminary collection of 43 palaeomagnetic samples (10 sites) from the miogeosynclinal and supposedly autochthonous Umbrian sequence in the Northern Apennines, Italy, was analysed by means of alternating magnetic fields and thermal demagnetization studies. The older group of samples, taken from the upper part of the Calcari Diasprini (Malm), the Fucoid Marls (Albian/Cenomanian) and from the basal part of the Scaglia Bianca (Early Late Cretaceous), all showed normal polarity directions and resulted in a mean site direction:D = 290.5°,I = +51.5°,α95 = 11°,k = 74,N = 4.The younger group of samples, taken throughout the Scaglia Rossa sequence (Latest Cretaceous/Middle Eocene) showed normal and reversed polarity directions. In contrast to the older group, the magnetic analysis of these samples resulted in a considerably less dense grouping of site mean directions. This presumably is due to inaccuracies introduced with the very large bedding tilt corrections that had to be applied to the samples of some sites. A tentative mean site direction for these Scaglia Rossa samples was computed as:D = 351°,I = +52.5°,α95 = 23.5°,k = 11.5,N = 5.Despite the low precision of the Scaglia Rossa result, the significant deviation between this Latest Cretaceous/Early Tertiary direction and the Late Jurassic/Early Late Cretaceous direction indicates a counterclockwise rotation of more than forty degrees. This rotation can be dated as Late Cretaceous.How far these data from the Northern Apennines apply to other parts of the Italian Peninsula has yet to be established. The timing of this rotation is not at variance with the data from other parts of Mediterranean Europe (Southern Alps, Iberian Peninsula) and from Africa. However, taking into account the preliminary nature of the results, the amount of rotation of the Northern Apennines seems to surpass the rotation angle which is deduced from the palaeomagnetic data for Africa.  相似文献   

8.
Southwest Tarim (hereafter SW Tarim) is one of afew areas that well developed Cretaceous marinesedimentary rocks in China [1]. The Cretaceous marinesediments are stretched in front area along the Tian-shan and Kunlun Mountains. Toward the center ofTarim Basin, the Cretaceous sediments are buried bygreat thickness of Tertiary and Quaternary sedimentswith little exposure. Compared with the Cretaceousterrestrial strata of north Tarim, the Cretaceous marinestrata of SW Tarim continue and d…  相似文献   

9.
The Mesozoic McCoy Mountains Formation is a 7.3-km-thick deformed clastic sequence exposed in six mountain ranges in southeastern California and southwestern Arizona. Interbedded with Jurassic volcanic rocks at its base, the McCoy Mountains Formation had been assigned a Cretaceous age based upon fossil angiosperm wood found in the upper third of the section. Characteristic natural remanent magnetism (NRM) from 145 oriented samples from 18 sites within the sedimentary terrane yield an in situ mean direction:I = 20.6°, D = 335.1°, α95 = 7.7° (uncorrected for structural tilting). Opaque mineralogy and a failed fold test indicate that the NRM is a chemical remanence acquired post-folding. The paleomagnetic pole position calculated from the in situ mean direction falls adjacent to poles from the Summerville Formation and Canelo Hills Volcanics. We interpret these data to indicate that deformation, mild metamorphism, and resultant magnetization of the McCoy Mountains Formation occurred during Jurassic time. It is suggested that the McCoy Mountains Formation and underlying Jurassic volcanics were deposited adjacent to, and then deformed between, the North American craton and an outlying allochthonous terrane during Jurassic time.  相似文献   

10.
Three components of magnetization have been observed in ninety-six samples (twelve sites) of amygdaloidal basalts and “sedimentary greenstones” of the Unicoi Formation in the Blue Ridge Province of northeast Tennessee and southwest Virginia. These components could be isolated by alternating field as well as thermal demagnetization. One component, with a direction close to that of the present-day geomagnetic field is ascribed to recent viscous remanent magnetizations; another component, with intermediate blocking temperatures and coercivities, gives a mean direction of D = 132°, I = +43°,α95 = 9° for N = 10 sites before correction for tilt of the strata. This direction and the corresponding pole position are close to Ordovician/Silurian data from the North American craton and we infer this magnetization to be due to a thermal(?) remagnetization during or after the Taconic orogeny. This magnetization is of post-folding origin, which indicates that the Blue Ridge in our area was structurally affected by the Taconic deformation. The third component, with the highest blocking temperatures and coercivities, appears to reside in hematite. Its mean direction, D = 276°, I = ?17°,α95 = 13.8° for N = 6 sites (after tilt correction) corresponds to a pole close to Latest Precambrian and Cambrian poles for North America. The fold test is inconclusive for this magnetization at the 95% confidence level because of the near-coincidence of the strike and the declinations. We infer this direction to be due to early high-temperature oxidation of the basalts, and argue that its magnetization may have survived the later thermal events because of its intrinsic high blocking temperatures. A detailed examination of the paleomagnetic directions from this study reveals that the Blue Ridge in this area may have undergone a small counterclockwise rotation of about 15°.  相似文献   

11.
This palaeomagnetic study is centered on agglomerates and volcanic rocks from the western margin of the Appalachian belt in the Drummondville-Actonvale-Granby area, Quebec (long.: 72°30′W, lat.: 46°00′N). It involves a total of 36 oriented samples (111 speciments) distributed over eleven sites. Both thermal and AF cleaning techniques were used to isolate residual remanent components. The dispersion of the directions is slightly reduced after AF cleaning and thermal treatment.The palaeopole position obtained is 191°E, 6°N (dm = 14°, dp = 7°) after thermal treatment and 164°E, 19°N (dm = 11°, dp = 6°) after AF cleaning. The polarity of most of the sites (two exceptions) are reversed. The thermal-treated data appear to be relatively stable and an approximate value of the primary magnetization is extracted from them. The palaeopole obtained does not lie close to the tentatively defined position of the Cambrian and Ordovician poles from rocks of the North American plate; it is located near the Upper Cambrian and Lower Ordovician poles from eastern Newfoundland and the Lower Ordovician pole from the Caledonides in Europe.  相似文献   

12.
An Upper Permian paleomagnetic pole has been determined for the Cribas Formation in eastern Timor. The co-ordinates for the mean pole are 159.8°E and 56.6°S,α95 = 9.0. The reliability of the pole is ascertained through thermal demagnetization, a fold test, comparison between red beds and a lava flow, and the presence of normal and reversed polarities. The Timor pole is in excellent agreement with the Australian Upper Permian and Triassic poles. From this it is inferred that autochthonous Timor formed part of the Australian continental margin at least since the Upper Permian.  相似文献   

13.
A magnetization which passes the fold test has been observed in 73 limestone samples (10 sites) from the Middle Jurassic Twin Creek Formation. The pole calculated from the site mean poles is located at 68.4°N, 145.0°E (K = 31.8,A95 = 8.7°). This pole lies in a segment of the North American apparent polar wander (APW) path for which there are only a few reliable poles in the literature. The results corroborate earlier studies which conclude that the Jurassic segment of the APW path does not include the present north pole. However, the position of the Twin Creek pole suggests that significantly more APW took place prior to the late Jurassic than previous studies indicated.  相似文献   

14.
A paleomagnetic study of about 95 samples from 16 sites sampled in the Early Cretaceous in Luanping basin in Hebei Province was reported. Stepwise thermal demagnetization was used to isolate magnetic components. Most samples have a characteristic direction with a high temperature component above 500°C. The tectonic-corrected data areD = 347.8°,I = 50.4°, α95 = 7.l°, and the corresponding pole position is at 76.1°N, 346.3°E,with dp =6.4°,dm = 3.8°, paleolatitude λ = 31.1°N. This result indicates a counterclockwise post-Cretaceous rotation of 30.7° ±9.8° with respect to the stable Ordos basin in the west of North China Block, and a non-significant northward motion. This rotation could be related to local fault action or structural detachment, or regional NNW-NWWward motion and collision of Kula-Pacific plate with eastern China since the Early Cretaceous.  相似文献   

15.
We report paleomagnetic results from oriented drill core samples collected at 10 sites (80 samples) from the Covey Hill and 19 sites (96 samples) from the overlying, fossiliferous Cha?teauguay Formations of the gently dipping Late Cambrian Potsdam Group sandstones exposed in the St. Lawrence Lowlands of Quebec. Stepwise thermal demagnetization analyses ave revealed the presence of two predominant groups of coherent magnetizations C-1 and C-2, after simple correction for bedding tilt. The C-1 group magnetization is a stable direction (D=332°, I=+18°) with unblocking temperatures (TUB) between 550 and 650°C, present in the older Covey Hill Formation; this direction is probably a chemical remanence acquired during the Covey Hill diagenesis and carried predominantly by hematite. The C-2 group magnetization (D=322°, I=+9°) is present at 13 sites of the younger Cha?teauguay Formation; this is probably carried by magnetite and represents a penecontemporaneous, depositional DRM, characterized by TUB spectra 400–550°C. We believe that C-2 is relatively younger than C-1 based on a combination of arguments such as the presence of opposite polarities, internal consistency, similarity and common occurrence of C-1 and C-2 respectively in the Covey Hill and Cha?teauguay members. The corresponding paleomagnetic poles C-1 (46°N, 149°E; dp, dm=3°, 5°) and C-2 (37°N, 156°E; dp, dm=2°, 5°) are not significantly different from most of the other Late Cambrian (Dresbachian-Franconian) poles derived from sediments exposed in the southern region (Texas) of the North American craton which are also believed to have been deposited during Croixian Sauk sea transgression similar to the Potsdam sandstones. Although adequate faunal control is lacking (in particular for the Covey Hill Formation), this comparison with the Cratonic poles suggests a Late Cambrian age to the Potsdam poles. The agreement between the results also gives the evidence for internal consistency of cratonic poles at least for Late Cambrian.The incoherent C-3 group remanence (D=250°, I=?15°) is commonly present at 7 sites in both the formations; this may not correspond to a reliable paleomagnetic signal. The other remanence C-4 (D=180°, I=+10°) is found only at 3 sites located in the uppermost stratigraphic levels of the Cha?teauguay Formation; the corresponding paleomagnetic pole (40°N, 107°E) does not differ significantly from the Ordovician and some Late Cambrian poles. The present data are insufficient to resolve a problem in apparent polar wander for Middle and Late Cambrian time posed by the existence of high-latitude poles for some strata of Middle Cambrian age and low-latitude poles for some strata of Late Cambrian age.  相似文献   

16.
The eastern segment of the Appalachian orogen is largely underlain by late Precambrian (Hadrynian) rocks affected by the Avalonian, Acadian and possibly Alleghenian orogenies. The provenance of the Avalon Zone of Newfoundland is uncertain. The region investigated in this segment consists of porphyrite stocks and sills (laccoliths) intrusive into the sedimentary, tuffaceous and volcanic rocks of the Harbour Main Group and rhyolite sills intrusive into the porphyrites. Some 55 oriented samples (148 specimens) collected at 11 sites were thermally (20–650°C) and AF (0.05–100 mT) demagnetized. Three components of magnetization were isolated: C (311°, +48°, α95 = 11°, k = 21, 10 sites), A (13°, +37°, α95 = 14°, k = 22, 6 sites), and B (67°, +45°, α95 = 15°, k = 27,5 sites). Based on coercivity spectra, unblocking temperatures, frequency distribution and precision parameters of the respective components, it is suggested that component C is older than component A which is turn is older than component B. The palaeopoles of components C, A and B are: 211°E, 48°N (dp = 9.8°, dm = 14.7°); 101°E, 61°N (dp = 9.6°, dm = 16.4°); 33°E, 34°N (dp = 12°, dm = 19°), respectively. Component C is most probably primary. Component A is secondary and its pole is near that of Carboniferous and Early Permian North America poles, indicating that the porphyrites and the rhyolites were remagnetized in the late Palaeozoic. Component B remains unexplained; it is possible that it is an unresolved pseudo-component but it is more likely an overprint. There are few palaeomagnetic results for the late Precambrian period in Avalon terrane(s). The preliminary results of this study suggest the presence of a separate plate from North American at that time. These results will prove useful for the palaeoreconstruction of the continents (North Africa, northeast Europe) in the late Precambrian period.  相似文献   

17.
The paleomagnetism of the Late Cretaceous Poços de Caldas alkaline complex (46.6°W, 21.9°S) was investigated through 42 oriented cores from seven sites. Six sites, reversed relative to the present magnetic field of the Earth, yield a pole at 127°W, 82°S (dp = 8°,dm = 13°). This pole is located close to other Late Cretaceous poles for South America obtained by Creer [1] from untreated paleomagnetic samples. The results are significantly different from those for the nearby Early Cretaceous Serra Geral basalt but close to the Triassic pole for South America. The polar wandering path for South America for the Mesozoic seems to be more complicated than anticipated. The available paleomagnetic information may not yet be precise enough to determine the time of opening of the Atlantic.  相似文献   

18.
Palaeomagnetic results are reported from the predominantly green sediments of the Upper Permian to Lower Triassic Sakamena Group and the Upper Carboniferous to Lower Permian Sakoa Group of Madagascar. Secondary magnetizations could only be removed successfully through thermal demagnetization procedures and then only if the cleaning process was completed by 450°C. Heating in air caused extensive magnetochemical changes to occur above this temperature. Coercivity spectrum analysis and low-temperature characteristics of the heated and unheated green sediments indicate that considerable amounts of fine-grained single-domain magnetite are formed at 500°C or more from some non-magnetic mineral, probably the iron silicates. For this reason consistent palaeomagnetic data could only be obtained from about half the samples collected. Results from 4 sites (19 samples) of the Lower Sakamena Group give a palaeomagnetic pole at 64.9S, 113.9E (A95 = 5.6°) and 3 sites (16 samples) from the Glacial Series of the Sakoa Group give a pole at 47.9S, 84.1E (A95 = 8.1°). When compared with corresponding data from Africa these results confirm and strengthen our previous conclusions from the Triassic-Jurassic Isalo Group regarding the palaeoposition of Madagascar. All three poles are only consistent with the Smith and Hallam reconstruction which places Madagascar off the eastern coast of Africa adjacent to Kenya and Tanzania.  相似文献   

19.
In the western part of the Gardar Igneous Province of southern Greenland, lamprophyre dykes intruded at ca. 1276-1254 m.y. RbSr biotite ages yield a palaeomagnetic pole at 206.5°E,3°N (nine sites, dψ = 5.1°, dχ = 10.1°) Slightly younger dolerite dykes with RbSr biotite ages in the range 1278-1263 m.y. give a pole at 201.5°E,8.5°N (24 sites, dψ = 4.7°, dχ = 9.4°), and the syeno-gabbro ring dyke of the Kûngnât complex (RbSr isochron age 1245 ± 17 m.y.) cutting both of these dykes swarms, gives a pole at 198.5°E, 3.5°N (four sites, dψ = 2.3°,dχ = 4.4°). All these rock units have the same polarity and the poles are identical to those from Mackenzie and related igneous rocks of North America (1280-1220 m.y.) after closure of the Davis Strait; they confirm that this part of the Gardar Province is a lateral extension of the Mackenzie igneous episode within the Laurentian craton.In the Tugtutôq region of the eastern part of the Gardar Province 47 NNE-trending dykes of various petrologic types, and intruded between 1175 ± 9 and 1168 ± 37 m.y. (RbSr isochron ages) yield a palaeomagnetic pole at 223.9° E, 36.4°N (dψ = 4.1°, dχ = 6.1°). Fifteen other dykes in this swarm were intruded during a transitional phase of the magnetic field which, however, does not appear to have achieved a complete reversal over a period of several millions of years. The majority of dykes studied are highly stable to AF and thermal demagnetisation and contain single high blocking temperature components with single Curie points in the range 380–560°C.Palaeomagnetic poles from the Gardar Province between ca. 1330 and 1160 m.y. in age define the earlier part of the Great Logan apparent polar-wander loop; they correlate closely with contemporaneous North American results and confirm the coherence of the Laurentian craton in Upper Proterozoic times.  相似文献   

20.
Some 50 oriented samples (120 specimens) have been collected on eight sites of volcanic rocks from the Lower Devonian Dalhousie Group of northern New Brunswick and Devonian andesitic to basic dykes from central New Brunswick. Univectorial and occasional multivectorial components were extracted from the various samples. Results after AF and thermal demagnetization compare relatively well. In the volcanics and tuffs, two components of magnetization have been isolated: A (D = 33°, I = ?58°, α95 = 7.3°, K = 236) for four sites and B (D = 66°, I = +53°) for three sites. The grouping of component A is improved after tilt correction but the fold test is not significantly positive at the 95% confidence level. Component A is interpreted as being primary while component B is unresolved and appears to be the resultant magnetization of a Late Paleozoic and a recent component. The pole position obtained for tilt corrected component A is 268°E, 1°S, dp = 6.5°, dm = 8.8°. The paleolatitude calculated for component A is 39°S. The paleopole of in situ component A is located close to those of the Early-Middle Devonian formations from Quebec, New Brunswick and New England states while the paleopole of tilt-corrected component A is similar to Lower Devonian poles of rock units from the Canadian Arctic Archipelago. If component A is primary (as we believe it to be), then the western half of the northern Appalachians had already docked onto the North American Craton by Early Devonian time. Alternatively, if component A is secondary the same conclusion applies but the juxtaposition took place in Middle Devonian time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号