首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
87Sr/86Sr ratios of three hydrothermal waters collected on the East Pacific Rise at 21°N define a mixing line between seawater and a hydrothermal end-member at 0.7030 which is derived by seawater-basalt interaction at ca. 350°C and water/rock ratio of about 1.5. Sr concentrations are not affected in the process while Mg uptake from seawater is almost complete. Up to2/3 of this hydrothermal component is involved in anhydrite precipitation while the Sr isotopic ratio in sulfides (chalcopyrite + sphalerite) cannot be distinguished from that of sulfate. It is estimated that ca. 1 × 1010 moles of strontium are yearly cycled in the hydrothermal systems of mid-oceanic ridges, thereby affecting the87Sr/86Sr budget of seawater. Mass balance between river runoff, limestone precipitation and ridge basalt alteration suggests that the87Sr/86Sr ratios of the river runoff are in the range 0.7097–0.7113, and are largely dominated by limestone alteration.  相似文献   

2.
87Sr/86Sr ratios of 15 samples of basalt dredged from Loihi Seamount range from 0.70334 to 0.70368. The basalt types range from tholeiite to basanite in composition and can be divided into six groups on the basis of abundances of K2O, Na2O, Rb and Sr and 87Sr/86Sr ratio. The isotopic data require that the various basalt types be derived from source regions differing in Sr isotopic composition. The Loihi basalts may be produced by mixing of isotopically distinct sources, but the tholeiites and alkalic basalts from Loihi do not show a well-developed inverse trend between Rb/Sr and 87Sr/86Sr that is characteristic of the later stages of Hawaiian volcanoes such as Haleakala and Koolau.  相似文献   

3.
Andesites from the Peruvian Andes and the Banda arc of Indonesia are characterized by unusually high and variable 87Sr/86Sr ratios. The Banda arc samples, including two cordierite-bearing lavas from Ambon, show a clear positive correlation between 87Sr/86Sr and δ18O. The andesitic rocks have δ18O values that range from 5.6 to 9.2‰. Over that range in δ18O, 87Sr/86Sr increases from 0.7044 to 0.7095. The cordierite-bearing lavas have δ18O values of approximately 15‰ and 87Sr/86Sr ratios of approximately 0.717. The similarity between δ18O values and 87Sr/86Sr ratios in total rocks and separated plagioclase phenocrysts of the Banda arc samples indicates that the measured isotope ratios are primary and have not been affected by secondary, low-temperature post-eruptive alteration. The observed variation between O and Sr isotopic ratios can be modeled by two-component mixing in which one component is of mantle isotopic composition. As the crust beneath the Banda arc is probably oceanic, contamination of the manle component may have resulted from the subduction of either continentally-derived sediments or continental crust. Mixing calculations indicate that the contaminant could have an isotopic composition similar to that observed in the cordierite-bearing lavas.The Andean samples, despite petrographic evidence of freshness, exhibit whole-rock δ18O values significantly higher than those of corresponding plagioclase phenocryst separates, indicating extensive low-temperature post-eruptive alteration. The plagioclase mineral separates show a range of δ18O values between 6.9 and 7.9‰. The 87Sr/86Sr ratios of these same samples are, in most instances, not significantly different from those measured for the whole rock, thus signifying that the phenocrysts and groundmass were in isotopic equilibrium at the time of eruption. Unlike the lavas of the Banda arc, the Andean lavas show no strong positive correlation between 87Sr/86Sr ratios and δ18O values, but instead lower 87Sr/86Sr ratios appear to be associated with higher δ18O values. The δ18O and 87Sr/86Sr values of the Peruvian samples are both slightly higher than those of “normal” island arc volcanics.The small proportions of contaminant implied by the O isotope results seem to preclude continental crustal contamination as a primary cause of high 87Sr/86Sr ratios. The most plausible process that can explain both O and Sr isotope results is one in which sediments of continental origin are partially melted in the subduction zone. These melts rise into overlying mantle material and subsequently participate in the formation of calc-alkaline magmas.If the involvement of a sialic component in the genesis of andesitic magma occurs in the subduction zone, melting of that sialic material signifies temperatures of at least 750–800°C at the top of the subducted lithospheric slab at depths of approximately 150 km. The fact that contamination has apparently occurred in the Banda arc samples without producing any simple widespread correlations between Sr and O isotopic compositions on the one hand and major or trace element abundances on the other, shows that isotopic correlations, possibly including pseudo-isochrons, can be produced by mixing without producing trace element mixing correlations. Because O versus Sr isotope correlations are little affected by processes of partial melting of differentiation, they provide a direct means of testing whether Sr isotopic variations in volcanic rocks are of mantle origin or are due instead to mixing with sialic material.  相似文献   

4.
Initial87Sr/86Sr ratios have been determined for 34 plutonic and volcanic rocks covering the entire age span of magmatic events associated with the Andean orogeny between latitudes 26° and 29° south. The igneous rocks, the majority dated by K/Ar mineral techniques, range in age from Lower Jurassic (190 m.y.) to Quaternary (0.89 m.y.). In addition, initial ratios were determined for three granitoid plutons and one metasediment from the pre-Mesozoic basement which underlies the entire Andean orogen in this transect at shallow depth. The compositions vary from basalt to rhyolite, and from quartz diorite to granodiorite or trondjemite, for the extrusives and intrusives, respectively.Mid-Cretaceous to Quaternary rocks exhibit a systematic west to east increase in mean strontium isotope ratio from 0.7022 to 0.7077, whereas the initial ratios of Jurassic plutons vary from 0.7043 to 0.7059, and do not correlate with age.The existence of unusually low initial ratios (e.g. 0.7022, 0.7023) for several Mesozoic plutonic rocks strongly implies a sub-crustal source for at least some of the Andean magmas. The time-dependent post-Jurassic increase in initial ratio is considered to reflect a systematic change in the composition of partial melts generated in response to the progressive subduction of a lithospheric slab. It is suggested that a systematic change in the locus of melting takes place from along or close to the upper surface of the subduction slab into hanging-wall mantle peridotite as subduction continues.  相似文献   

5.
We have determined K, Rb and Sr concentrations and87Sr/86Sr ratios in fresh surface waters, a rain water sample and five geothermal waters from the Cantal volcanic area in the Massif Central, France. A comparison with appropriate rock types of the region showed no apparent chemical and isotopic fractionation occurring in the fresh water-surface rock system. The thermo-mineral water results suggest that all springs discharge dissolved Sr from the following contributors: Hercynian granito-metamorphic basement, lacustrian sediments underlying the volcano, Miocene-Pliocene volcanic rocks of basaltic to rhyolitic composition.  相似文献   

6.
The five diogenites, Johnstown, Roda, Ellemeet, Shalka and Tatahouine, give scattered data in the87Rb/86Sr,87Sr/86Sr diagram. This can result from a disturbance which occurred later than 4.45 Ga ago. However, it is shown that if samples of sufficient size were analyzed, there meteorites could plot on the eucrite isochron and are thereby in agreement with a genetic relation between eucrites, howardites and diogenites. The age of eucrite differentiation from diogenites has been computed using data from the two families yielding an age of 4.47±0.1Ga(2σ) (λ=1.42×10?11a?1), the initial87Sr/86Sr ratio being BABI.  相似文献   

7.
143Nd/144Nd,87Sr/86Sr and trace element results are reported for volcanic and plutonic rocks of the Aleutian island arc. The Nd and Sr isotopic compositions plot within the mantle array with εNd values of from 6.5 to 9.1 and87Sr/86Sr ratios of from 0.70289 to 0.70342. Basalts have mildly enriched light REE abundances but essentially unfractionated heavy REE abundances, while andesites exhibit a greater degree of light to heavy REE fractionation. Both the basalts and andesites have significant large ion lithophile element to light rare earth element (LILE/LREE) enrichments. Variations in the isotopic compositions of Nd and Sr are not related to the spatial distribution of volcanoes in the arc, nor are they related to temporal differences. εNd and87Sr/86Sr do not correlate with major element compositions but do, however, correlate with certain LILE/LREE ratios (e.g. BaN/LaN). Plutonic rocks have isotropic and trace element characteristics identical to some of the volcanic rocks. Rocks that make up the tholeiitic, calc-alkaline and alkaline series in the Aleutians do not come from isotopically distinct sources, but do exhibit some differing LILE characteristics.Given these elemental and isotopic constraints it is shown that the Aleutian arc magmas could not have been derived directly from homogeneous MORB-type mantle, or fresh or altered MORB subducted beneath the arc. Mixtures of partially altered MORB with deep-sea sediment can in principle account for the isotopic characteristics and most of the observed LILE/LREE enrichments. However, some samples have exceedingly high LILE/LREE enrichments which cannot be accounted for by sediment contamination alone. For these samples a more complex scenario is considered whereby dehydration and partial melting of the subducted slab, containing less than 8% sediment, produces a LILE-enriched (relative to REE) metasomatic fluid which interacts with the overlying depleted mantle wedge. The isotopic and LILE characteristics of the mantle are extremely sensitive to metasomatism by small percentages of added fluid, whereas major elements are not substantially effected, Major element compositions of Aleutian magmas are dominantly controlled by the partial melting of this mantle and subsequent crystal fractionation; whereas isotopic and LILE characteristics are determined by localized mantle heterogeneities.  相似文献   

8.
We have investigated 24 whole rocks and mineral separates of five different rock types from the Cantal shield volcano in France, applying high-precision Rb-Sr techniques. The chemical and isotopic systematics suggest the distinction of two series throughout the different rock classes, one practically uncontaminated, the other seriously influenced by wall rock assimilation. The first group comprises basalts and intermediate rocks with87Sr/86Sr= 0.70340–0.70382. The second group in addition includes rhyolites and the corresponding87Sr/86Sr ratios vary between 0.70421 and 0.71270. The data of mineral separates support the hybridization hypothesis and possibly suggest an original87Sr/86Sr ratio of 0.7028 for the magma source region. Moreover they provide internal isochron ages which place a period of extensive volcanic activity at 8.1–8.8 m.y. ago in accord with K-Ar ages of volcanic rocks from the center of the Cantal volcano.  相似文献   

9.
Internal isochrons for two Apollo 15 rocks give an age of(3.34 ± 0.09)and(3.46 ± 0.04) × 109 years with an identical87Sr/86Sr initial ratio of 0.69928. Considering the possibility for the line obtained in a87Sr/86Sr,87Rb/86Sr diagram to be a mixing line, the significance of these results are discussed.  相似文献   

10.
Examples of positive correlations between initial 87Sr/86Sr and δ18O have now been shown to be very common in igneous rock series. These data in general require some type of mixing of mantle-derived igneous rocks with high-18O, high-87Sr crustal metamorphic rocks that once resided on or near the Earth's surface, such as sedimentary rocks or hydrothermally altered volcanic rocks. Mixing that involves assimilation of country rocks by magmas, however, is not a simple two-end-member process; heat balance requires appreciable crystallization of cumulates. In such cases, the isotopic compositions may strongly reflect this open-system behavior and indicate the process of assimilation, whereas the major element chemical compositions of the contaminated magmas will be largely controlled by crystal-melt equilibria and crystallization paths fixed by multicomponent cotectics. A variety of oxygen and strontium isotope “mixing” curves were therefore calculated for this process of combined assimilation-fractional crystallization. The positions and characteristics of the resultant curves on δ18O-87Sr/86Sr diagrams markedly diverge from simple two end-member mixing relationships. Based on the above, model calculations can be crudely fitted to two igneous rock suites (Adamello and Roccamonfina in Italy), but the shapes of the calculated curves appear to rule out magmatic assimilation as an explanation for most δ18O-87Sr/86Sr correlations discovered so far, including all of those involving calc-alkaline granitic batholiths and andesitic volcanic rocks. The isotopic relationships in such magma types must be inherited from their source regions, presumably reflecting patterns that existed in the parent rocks (or magmas) prior to or during melting.  相似文献   

11.
The hypothesis that seawater was the source of the hydrothermal fluid which formed the Upper Cretaceous ophiolitic cupriferous pyrite ore desposits of the Troodos Massif (Cyprus) has been tested by analysing the strontium isotopic composition of thirteen mineralized samples from four mines. Initial87Sr/86Sr ratios range from 0.7052 ± 0.0001 to 0.7075 ± 0.0002, the latter value being indistinguishable from that of Upper Cretaceous seawater at 0.7076 ± 0.0006 (2σ). Hence, the mineralized metabasalt samples have been contaminated with87Sr, relative to initial magmatic strontium isotope ratios of the Troodos ophiolitic complex (0.70338 ± 0.00010 to 0.70365 ± 0.00005).Since seawater was the only source of strontium available during formation of the Troodos Complex which was isotopically relatively enriched in87Sr, the data confirm that seawater was the source of the hydrothermal oreforming fluid.  相似文献   

12.
A87Rb-87Sr analysis of some enstatite meteorites has been made. Whole rocks plot on an isochron of age 4.508 ± 0.037b.y. and strontium initial ratio 0.69880 ± 0.00044 (2σ errors; λ87Rb= 1.42 × 10?11yr?1) . If the Norton County results are joined, we get an age of 4.516 ± 0.029b.y. and initial ratio of 0.69874 ± 0.00022. This result is indistinguishable from the whole rock isochron for H chondrites. It is interpreted as the age of condensation from the solar nebula. The identity of the87Sr/86Sr initial ratio with the ones for Allende white inclusions shows that this ratio was homogeneous in the solar nebula, and that the Rb-Sr fractionations observed between the different chondrite groups appeared only shortly before or during condensation accretion.Internal studies of the type-I enstatite chondrites Abee and Indarch and the intermediate-type Saint Mark's and Saint Sauveur have been done.Abee data scatter in the87Rb-87Sr diagram. For Indarch, Saint Mark's and Saint Sauveur, we obtained well-defined straight lines of “age” (T) and “initial ratio” (I): Indarch,T = 4.393 ± 0.043b.y.I = 0.7005 ± 0.0009; Saint Mark's,T = 4.335 ± 0.050b.y.I = 0.69979 ± 0.00022; Saint Sauveur,T = 4.457 ± 0.047b.y.I = 0.6993 ± 0.0014. Our result on Indarch agrees with the former result of Gopalan and Wetherill [5].A careful examination of the data shows that these straight lines are neither due to leaching effects by heavy liquids, nor result from terrestrial weathering. The “isochrons” for Indarch and Saint Sauveur can be mixing lines between enstatite and feldspar. The results are interpreted in terms of cosmochemical secondary effects: type-I and intermediate-type enstatite chondrites have been shocked 60–200 m.y. after their formation. This agrees with the idea of an early generalized bombardment of the inner solar system; this also indicates that type-I enstatite chondrites were rather situated in the outershells of their parent body and might be at the origin of the scatter of I-Xe ages of enstatite meteorites.Whole rock and enstatite from Bishopville, Cumberland Falls and Mayo Belwa have also been analysed. In these three aubrites, the87Rb-87Sr system is perturbed. Our Bishopsville sample might not be fresh and this makes the significance of our results uncertain. Cumberland Falls and Mayo Belwa probably suffered relatively recent shocks and open-system redistribution of Rb and Sr.  相似文献   

13.
Clinopyroxenes separated from garnetiferous ultramafic rocks in the core zone of the Norwegian Caledonides have rubidium concentrations of 0.008 to 0.064 ppm, strontium concentrations of 23.5 to 421 ppm, and 87Sr/86Sr ratios of 0.7011 to 0.7029. The very low Rb/Sr ratios of the clinopyroxenes (less than 0.0004) suggest that their 87Sr/86Sr values have not varied significantly over geologic time and may approximate the initial 87Sr/86Sr of the eclogite-facies ultramafic mineral assemblages at their time of formation. The ultramafic rocks occur in a basement complex that yields Rb-Sr whole-rock and U-Pb zircon ages of about 1800 m.y. Garnetiferous ultramafic rocks are apparently lacking in younger (Sveconorwegian or Caledonian) sialic sequences, raising the possibility that the eclogite-facies metamorphism may have occurred at least 1800 m.y. ago. The Rb/Sr and 87Sr/86Sr ratios of the clinopyroxenes are as predicted for the ancient upper mantle under most evolutionary models. However, the data do not preclude the possibility that the eclogite-facies metamorphism occurred in the crust. The garnetiferous ultramafic rocks are generally enclosed by large volumes of dunite which could have shielded the eclogite-facies assemblages from contamination by fluids from the country rock during metamorphism.  相似文献   

14.
A precise87Rb-87Sr whole-rock isochron for H chondrites and an internal isochron for Tieschitz (H3) have been determined. The age and87Sr/86Sr initial ratio of the whole rocks are4.52 ± 0.05 b.y. and0.69876 ± 0.00040(λ(87Rb) = 1.42 × 10?11yr?1). For Tieschitz, whereas handpicked separates plot on a well-defined line, heavy liquid separates scatter in the87Rb/86Sr vs.87Sr/86Sr diagram. Leaching experiments by heavy liquids indicate that they might have a sizeable effect on Tieschitz minerals. The age and87Sr/86Sr initial ratio as determined by handpicked separates are4.53 ± 0.06 b.y. and0.69880 ± 0.00020, indistinguishable from the whole-rock isochron.These results are interpreted as “primitive isochrons” dating the condensation of chondrites from the solar nebula. The best value of this event is given by joining both isochrons together at4.518 ± 0.026 b.y. and87Sr/86Sr= 0.69881 ± 0.00016. The near identity of this initial ratio with the one of Allende white inclusions argues in favor of a sharp isochronism of condensation from a87Sr/86Sr homogeneous nebula. Data from Guaren?a [11] and Richardton [48] are interpreted as secondary internal isochrons, 100 m.y. after the condensation of the whole rocks.The data are then used to constrain a thermal evolution model of the H chondrite parent body. This body might have a 150–175 km radius, and might have been heated by26Al. An26Al/27Al ratio of 4–6 × 10?6 is enough for heating such a body. Further tests for this model are proposed.  相似文献   

15.
From the first finding in 1970s, the findings of foraminiferal fossil assemblages in inland basins have been reported from time to time, especially in recent years. The debates on the depositional environment of foraminiferal fossils have become the hot spot of researches again in China. Based on the researches of trace element geochemistry and electron scanning microscope of shells of Quaternary foraminiferal fossils from the Xiaodukou section in the inland Nihewan basin, the original 87Sr/86Sr and other geochemical information of shells were believed to be preserved well and could be used to rebuild the geochemistry of contemporary waters where foraminifera deposited, although there existed some effects of burial diagenesis on the geochemistry of shells to a certain extent. The 87Sr/86Sr ratios of well-preserved Xiaodukou foraminiferal shells were measured, giving a range of 0.711190±25–0.712018±14, apparently higher than the value of contemporary seawater (0.709087–0.709147) and similar to that of the Sanggan River, proving that it represented the value of the ancient lacustrine water. The hyperbolic mixing models of 87Sr/86Sr-palaeosalinity and 87Sr/86Sr-Sr/Ca indicated that the contemporary waters where Xiaodukou foraminifera inhabited was an inland lake and there was no seawater input to the depositional environment.  相似文献   

16.
Rb-Sr whole-rock isochron ages of gneisses from the Fiskenaesset area are considerably lower (2600–2800 m.y.) than U-Pb zircon ages for the same rocks (2880–2950 m.y.). There is a significant correlation between the isochron ages and the range in Rb/Sr ratios of the samples involved. Higher ages (and lower initial87Sr/86Sr ratios) are obtained for sample collections with a wide range in Rb/Sr ratios. Lower ages (and higher initial ratios) are obtained for sample collections with a narrow range in Rb/Sr ratios. This relationship is explained by a model of local metamorphic Sr isotope homogenisation in restricted rock volumes. This model implies that the individual isochron ages do not date specific geological events. There is a significant inverse correlation between the isochron ages and the corresponding initial ratios. It is probable that the igneous precursors of the gneisses intruded with initial87Sr/86Sr ratios well below 0.701.  相似文献   

17.
87Sr/86Sr ratios in the island-arc tholeiite series from the South Sandwich Islands cluster about a value of 0.7040. There is no apparent correlation of strontium isotope values with any major chemical component or with Rb/Sr ratios. The uniformity of the87Sr/86Sr values is consistent with the fractional crystallization relationship previously proposed for this suite. Though higher than values reported for ocean-floor tholeiites they are not significantly different from ratios reported for calc-alkaline island-arcs.  相似文献   

18.
K/Rb and (87Sr/86Sr)0 ratios were measured for 14 submarine basalts dredged from seamounts in the Pacific Ocean. The K/Rb ranges from 200 to 700, which is significantly lower than that of oceanic ridge tholeiites. Petrographic examination and the low value of K/Rb indicate that seamount basalts are alkaline.  相似文献   

19.
87Rb87Sr analysis of the Norton County achondrite has been achieved with special attention to the rubidium analysis. Enstatite crystals and polycrystalline material give an “age” of 4.48 ± 0.04 × 109 years and an initial ratio 87Sr/86SrI= 0.7005 ± 0.0004 (λ = 1.39 × 10?11yr?1, maximum errors). The feldspar component of the meteorite contains about 70% of the strontium and 30% of the rubidium of the whole sample, and does not lie on the isochron. Its model age relative to the strontium initial ratio of Allende is 4.6 × 109 years. The data are consistent with a complex history dealing with an incomplete isotopic reequilibration of the meteorite, 120 m.y. after its formation at 4.6 × 109 years, with an initial ratio similar to that of Allende.  相似文献   

20.
The Pampean Ranges of northwest Argentina are a basin-and-range tectonic province with a late Precambrian to Paleozoic basement and extensive Miocene-Recent calc-alkaline volcanism. The volcanoes include the large resurgent Cerro Galan caldera, and Recent scoria cones and lava flows. Miocene-Recent volcanic rocks of basalt to dacite composition from the Cerro Galan area exhibit a range of Rb/Sr ratios of 0.043–1.092 and initial87Sr/86Sr ratios of 0.7057–0.7115 with a clear positive correlation between87Sr/86Sr and87Rb/86Sr, indicating an apparent age of ca. 130 Ma. This relationship is interpreted to indicate that the Sr isotope variation in the Cerro Galan volcanic rocks results from mixing of a mantle-derived component with low87Sr/86Sr (<0.7057) and high Sr (>700 ppm) with a crustal component characterized by higher87Sr/86Sr (>0.7115) and lower Sr (<240 ppm). It is concluded that the mixing is best explained as a result of a small degree of selective crustal Sr contamination (ca. 10%) of a range of subsequently erupted magmas produced largely by fractional crystallization within the continental crust. We propose that the mantle-derived end-member is derived by partial melting of sub-Andean mantle with an87Sr/86Sr ratio of ca. 0.704, and that such an Sr isotope ratio characterizes the source region for calc-alkaline volcanic rocks throughout the Andes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号