首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Particle-reactive radionuclides were determined in sediments from the inner New York Bight to trace transport and storage of fine-grained sediments and associated reactive materials. Seven sediment ? cores 20–50 cm in length were analyzed for water content, loss on ignition (LOI) and excess210Pb; three of these were also analyzed for239,240Pu. Excepting some depth horizons in a core from a dredge-spoil dumpsite, every sample analyzed contained excess210Pb. Variations in the concentration of excess210Pb with depth in the sediment at all stations correlated strongly with LOI, which apparently traces that fraction of the sediment which is active in removing reactive elements from the water column. In the cores analyzed for239,240Pu, every sample contained finite Pu, and Pu concentrations correlated strongly with excess210Pb.The radionuclide distributions may be simply viewed as products of steady-state sediment accumulation or of mixing. Geochemically reasonable accumulation rates are very high (0.5–2.6 g/cm2 y) and could probably only be sustained by offshore transport of dumped materials. At the other extreme the relationships between excess210Pb and LOI are compatible with rapid mixing of a210Pb carrier phase (traced by LOI) into the pre-existing substrate with little or no actual accumulation. Other non-steady-state processes, such as sediment gravity flow, could also explain the observed distributions.Measured sediment inventories (dpm/cm2) of excess210Pb and Pu at these stations are greatly in excess of those supportable by direct atmospheric deposition: lateral supply is required. Incorporation of sedimentary fines into the sand substrate could make the inner New York Bight an important repository of reactive materials.  相似文献   

2.
Cosmogenic7Be(t1/2 = 53.3days) has been used to estimate particle-mixing rates in the upper layers of lacustrine and near-shore marine sediments. Excess210Pb and/or239,240Pu have provided limits on rates of sediment accumulation in these environments and indices of the efficiency of the sediments as collectors of reactive nuclides over longer time scale.In sediment cores from Long Island Sound (marine) and Lake Whitney (fresh-water)7Be was measurable in the top 2–3 cm. Diffusion-analog particle-mixing coefficients calculated from these data are in the range of 10?7 cm2/s. For Long Island Sound the coefficients are lower by factors of 3–6 than those estimated from the depth distributions of excess234Th at the same stations [14]. For Lake Whitney the calculated mixing coefficient is an upper limit because of the possibility of a sampling artifact.Measurements of total (wet + dry) atmospheric deposition of7Be in New Haven give an average flux of 0.07 dpm/cm2 day during March-November, 1977; this is equivalent to a steady-state inventory of 5.4 dpm/cm2 in a perfect collector. Sediment cores from Long Island Sound contain about half this7Be inventory, consistent with either a mean residence time for7Be in the water column of about one half-life or with post-depositional loss of7Be from Long Island Sound sediments. The Lake Whitney cores contain about 5 dpm/cm2, much nearer the atmospheric delivery. A higher inventory of7Be in fresh-water, as compared to marine, sediments could be due either to a shorter mean residence time for7Be in fresh water or to lateral transport processes in the lake or its catchment. High inventories of excess210Pb and239,240Pu in Lake Whitney sediments demonstrate the importance of lateral transport on longer time scales at least.  相似文献   

3.
Measurement of excess 234Th (t1/2 = 24.1 days) in surface sediment from 12 stations throughout Long Island Sound, U.S.A., demonstrates: (1) a mean (summer) sediment inventory of 3.6 dpm/cm2 consistent with complete, nearly instantaneous removal of 234Th from the overlying water and capture within the estuary, and (2) preferential association of excess 234Th with small particles and inventory build-ups in muddy bottom areas. There may also be a tendency for higher inventories in areas of high physical or biogenic reworking of surface sediments. A range of particle reworking rates (0–5 cm) from <0.01 × 10?6 to 1.6 × 10?6 cm2/s is found in the Sound with most values ~0.2?0.5 × 10?6 cm2/s. The inventory and reworking patterns demonstrate the high mobility, both horizontal and vertical, of particles in the estuary on 234Th decay time scales and are unequivocal evidence for control of reactive element distribution in the water column by the muddy regions of the basin.  相似文献   

4.
The nature of sedimentation and mixing are examined in abyssal red clay sediments from the North Central Pacific using three types of indicators: 230Th/232Th, organic14C, and137Cs and 239.240Pu.230Th/232Th analysed revealed that the clay sedimentation rate in three box cores collected within a 50 km radius was less than 1.0 mm/103 yr. However, analyses of the organic carbon in thin layers of sediment revealed that radiocarbon was present much deeper in the cores (down to 20 cm) than was expected from the 230Th/232Th distribution. In addition, both the stratigraphy and inventory of radiocarbon was significantly different between box cores. The distributions and inventories of137Cs and239.240Pu were similar to that found for radiocarbon, further illustrating the spatial variability of radionuclides in oligotrophic North Pacific red clays. These data suggest that bioturbational processes are important for transporting organic carbon down into the sediment column.  相似文献   

5.
Because of high specific activities of excess234Th (t1/2 = 24.1 days) on suspended particles in the deep sea, this nuclide is potentially an extremely sensitive indicator of particle inputs and dynamics at the seafloor. Measurements were made at two deep-sea sites in order to examine this potential. Inventories of excess234Th at a low-current hemipelagic mud site (3990 m) in the Panama Basin were~ 1.5 (September, ′81) and~ 2.5 (June, ′82) dpm/cm2. The steady state fluxes to the seafloor calculated from these inventories are in rough agreement with radionuclide fluxes measured in sediment traps. Small-scale (~ 100m) spatial variability in inventories implies biologically significant heterogeneity in particle inputs. Sediment from the continental rise site in the northwest Atlantic (2800 m), a site with higher current velocities than the Panama Basin, had an inventory of~ 1.9dpm/cm2. This inventory is also in rough agreement with predictions made on the basis of nearby sediment trap data. Particle mixing coefficients of~ 30cm2/yr calculated at the Pacific and Atlantic sites are similar to those in shallow water deposits but could reflect disturbance during handling. Based on210Pb data from the Panama Basin, sediment from below~ 6cm is mixed at a rate~ 10 × slower than the near-surface sediment to a depth of at least 20 cm. Agreement between234Th predicted mixing rates at the Panama Basin site with210Pb profiles and in-situ experiments with glass bead tracers implies that these rates are real. Although the diffusion of dissolved234Th into deep-sea sediments complicates interpretations,234Thxs distributions in bottom sediments offer a useful adjunct to sediment traps for investigation of particle dynamics near the deep-sea floor.  相似文献   

6.
The flux of226Ra from bottom sediments has been determined from patterns of226Ra/230Th disequilibrium in ten deep-sea cores from the world oceans. Values range from ? 0.0015 dpm/cm2 yr (in the Atlantic) to 0.21 dpm/cm2 yr (in the north equatorial Pacific). The flux is poorly related to sediment type, but is inversely correlated in a non-linear fashion with sediment accumulation rate. There is a direct relationship between the production rate of226Ra near the sediment-water interface (i.e. the integrated230Th activity in the biologically mixed zone) and the226Ra flux. The226Ra concentration in near-bottom water follows the geographic variation in the226Ra flux. The high flux from north equatorial Pacific sediments especially is reflected in the high bottom water226Ra concentrations in that area. The data suggest that both rate of circulation and the magnitude of the radium flux influence the near-bottom226Ra concentration.  相似文献   

7.
Analyses are presented of137Cs,238Pu, and239,240Pu, in relation to depth in sediment, in 21 gravity cores. These cores span the ranges of times 1964–1975, and of water depths 12–2000 m; they come from three distinct sedimentation areas off the northeast coast of the United States. Although the ranges of total sediment inventories of239,240Pu and of137Cs from the various areas hardly overlap, the range of ratios of the inventories of these two nuclides is probably the same in all the areas. In the shallow-water cores the239,240Pu/137Cs ratio regularly diminishes with depth in the core, and a tendency is seen for curves of this function to have similar slopes in each area; ratios of238Pu/239,240Pu show no change with depth in these shallow-water cores. In the deeper-water cores, the239,240Pu/137Cs ratio shows no systematic change with depth, but sometimes the238Pu/239,240Pu ratio shows a minimum at the sediment surface, and is much higher deeper in the cores. We believe that these phenomena can be explained in terms of a complicated bioturbational process moving the nuclides, together, down into the sediments, of chemical resolubilization, at depth, of plutonium only, and of its subsequent upward translocation in the interstitial solution. Some re-immobilization of plutonium near the sediment surface is implied, and a mechanism is suggested for this, based on displacement of plutonium from organic complexes by the increasing concentrations, in upper layers of the sediment, of re-oxidized dissolved iron.  相似文献   

8.
A study of sediments in the Gulf of Mexico shows dramatic gradients in Pu content and isotope ratios from the continental shelf to the Sigsbee Abyssal Plain. In terms of predicted direct fallout inventory of Pu, one shelf core contains 745% of the predicted inventory, while abyssal plain sediments contain only 15–20% of the predicted value. Absolute Pu concentrations of shelf sediments are also conspicuously high, up to 110 dpm/kg, compared to 13.5 dpm/kg in Mississippi River suspended sediment. There is no evidence of Pu remobilization in Gulf of Mexico shelf sediments, based on comparison of Pu profiles with Mn/Al and Fe/Al profiles. Horizontal transport of fallout nuclides from the open ocean to removal sites in ocean margin sediments is concluded to be the source of both the high concentrations and high inventories of Pu reported here.The shelf sediments show240Pu/239Pu ratios close to 0.179, the average stratospheric fallout value, but the ratios decrease progressively across the Gulf to low values of 0.06 in abyssal plain sediments. The source of low-ratio Pu in deep-water sediments may be debris from low yield tests transported in the troposphere. Alternatively, it may represent a fraction of the Pu from global stratospheric fallout which has been separated in the water column from the remainder of the Pu in the ocean. In either case, the low-ratio material must have been removed rapidly to the sea floor where it composes a major fraction of the Pu in abyssal plain sediments. Pu delivered by global atmospheric fallout from the stratosphere has apparently remained for the most part in the water or has been transported horizontally and removed into shallow-water sediments.  相似文献   

9.
An experiment was designed to assess the relative importance of sediment accumulation and bioturbation in determining the vertical distribution of nuclides in estuarine sediments. A diver-collected core, 120 cm long, was raised from central Long Island Sound and analyzed down its length for:210Pb and226Ra;239, 240Pu; and Mn, Zn, Cu, and Pb. Sampling for chemical analysis was guided by X-radiography of the core. Excess210Pb (relative to226Ra) is roughly homogeneous in the top 2–4 cm of the core, then decreases quasi-exponentially to zero at (or above) 15 cm.239, 240Pu and excess Zn, Cu, and Pb, relative to background values at greater depths in the core, are distributed like excess210Pb in the top 10–15 cm. The absence of Mn enrichment at the top of the core, in contrast to other cores raised from this station, suggests that 1–3 cm of sediment was lost by erosion at the site of this core sometime prior to sampling. Below 15 cm excess210Pb and excess Zn, Cu, and Pb are found only in the bulk sample from 25 to 30 cm and in clearly identifiable burrow fillings dissected from 70 cm and 115 cm depth. Infilling of large burrows, excavated and then abandoned by crustaceans, is therefore a mechanism for transfer of surficial material to depth in these sediments.The bioturbation rate in the top several centimeters at this station has been determined previously using234Th (24-day half-life). The distribution of239, 240Pu can be used to estimate a bioturbation rate for the underlying layer (to ~10 cm depth); this rate is found to be 1–3% of the maximum mixing rate for the top 2–3 cm. Using these two mixing rates in a composite-layer, mixing + sedimentation model, the distribution of excess210Pb in the top 15 cm was used to constrain the sediment accumulation rate, ω. While the apparent rate of sediment accumulation (assuming no mixing below 2–4 cm) is 0.11 cm/yr, the model requires ω < 0.05 cm/yr. Thus in an area of slow sediment accumulation, a low rate of bioturbation below the surficial zone of rapid mixing causes an increase of at least a factor of two in apparent accumulation rate.  相似文献   

10.
《Continental Shelf Research》2007,27(10-11):1600-1615
Multiple box cores were collected on the continental shelf in the Mississippi Deltaic Region adjacent to Southwest Pass and analyzed for particle reactive radionuclides 234Th and 7Be to examine seasonal sediment dynamics associated with variations of river discharge and hydrodynamics. Three stations located along a line west of Southwest Pass were cored and reoccupied in October, November, and December of 2003 and March, April, and May of 2004. High-frequency sampling (∼monthly) comparable to the short half-life of the radiotracers (234Th t1/2=24.1 d; 7Be t1/2=53.3) enabled us to isolate the relative influence that various forcing agents (river discharge, waves, currents) had on sediment inventories of 7Be and 234Th. In addition, the primary source of 7Be (fluvial) differs from 234Th (marine), providing further insight into processes affecting sediment transport and supply. Monthly 7Be inventories showed a significant positive relationship to river discharge (P=0.03) proximal to Southwest Pass. Sites further from Southwest Pass exhibited little to no relationship between 7Be inventories and river flow. At these sites, monthly 7Be inventories demonstrated a significant positive relationship with average wave orbital velocity (P<0.01). During our sampling period, the transport of 7Be-rich sediments to sites located on the middle to outer shelf were dependent on sea conditions not river discharge. Relatively high wave orbital velocities potentially allow particles to remain in suspension longer and travel further distances before initial deposition. In addition, 234Th inventories showed evidence of sediment focusing during periods of high wave orbital velocities.  相似文献   

11.
Experiments using radioactive tracers in microcosms of 150 l and 13 m3 volumes, which are designed to mimic Narragansett Bay, indicate that Th isotopes are good analogues for studying the removal behavior of “particle-reactive” pollutants such as Am, Pb, Po, Hg and Cr(III) in coastal environments. The removal of Th isotopes and Fe has been found to be closely linked in microcosms and Narragansett Bay. In addition, the settling velocities of tracer microspheres in the experimental tanks were found to be faster in spring and summer than expected from Stokes' law and similar to those of234Th-containing particles in Narragansett Bay [5]. It is concluded that aggregation of particles is important in accelerating the removal of surface-reactive elements during the warm season.  相似文献   

12.
The concentrations of radionuclides of the U-Th series (238U,234Th,234U,230Th,226Ra,210Pb,210Po, and232Th,228Ra,228Th) in the water of Narragansett Bay are reported. Analysis of the total, particulate, dissolved and colloidal forms of Th isotopes reveal a consistent removal behavior which is controlled mainly by the particulate matter concentration and the sediment resuspension rate. Half-removal times of Th from solution onto particles range from 1.5 to 15 days, and settling velocities of Th containing particles range generally between 1 and 11 m/day.210Pb and210Po concentrations are seasonally dependent, with higher concentrations and slower removal during the early summer (half-removal times from solution onto particles of 1–5 days in winter and up to 2 months in early summer).  相似文献   

13.
Anthropogenic radionuclides have reached the Hudson estuary as global fallout from nuclear weapons testing and through local releases from commercial nuclear reactors. Significant activities of238Pu and239,240Pu (fallout-derived),134Cs and60Co (reactor-released), and137Cs (derived from both sources), have accumulated in the sediments throughout the estuary, with the primary zone of accumulation near the downstream end of the system in New York harbor. The estuary appears to have trapped nearly all of the239,240Pu delivered as fallout, and consequently, ocean dumping of dredged harbor sediment is currently the primary means for the net transport of these nuclides to coastal waters. In contrast, only 10–30% of the137Cs,134Cs and60Co delivered to the estuary have been retained on the fine particles which accumulate at a rapid rate in the harbor.The primary factors which have governed the distribution of anthropogenic radionuclides in Hudson sediments are: (1) spread of fine particles labeled with both fallout and reactor nuclides throughout the axis of the estuary, (2) differences in timing of the peak fallout years (1962–1964) and years of maximum reactor releases (1971–1972), (3) large variations in sediment accumulation rates, ranging from a few millimeters per year or less to many tens of centimeters per year, (4) appreciable desorption of137Cs and134Cs from particles at higher salinities, and (5) possible enhanced desorption of60Co at higher salinities (relative to134Cs and137Cs) which may be associated with the release of reduced manganese from the harbor sediments.  相似文献   

14.
The mean residence time (τ) of thorium with respect to non-radioactive removal from water was determined as a function of location in three traverses of the New York Bight using both234Th/238U and228Th/228Ra. τ correlates well with salinity increasing from about ten days near shore to 70 days at the shelf break. It shows a much weaker correlation with suspended matter concentrations both because suspended matter varies in its scavenging efficiency and because salinity is a longer-term integrator of scavenging potential.τ's computed from228Th/228Ra were often higher than those computed from234Th/238U either because of the detrital matter present as reflected in the232Th concentrations or because the water parcels had recently arrived from environments of lower scavenging efficiency.Anomalous isotopic concentrations found in three adjacent samples can best be explained as the result of an episodic release of228Ra from bottom sediments at a rate 200 times the normal one.  相似文献   

15.
When nutrients impact estuarine water quality, scientists and managers instinctively focus on quantifying and controlling land-based sources. However, in Greenwich Bay, RI, the estuary opens onto a larger and more intensively fertilized coastal water body (Narragansett Bay). Previous inventories of nitrogen (N) inputs to Greenwich Bay found that N inputs from Narragansett Bay exceeded those from the local watershed, suggesting that recent efforts to reduce local watershed N loads may have little effect on estuarine water quality. We used stable isotopes of N to characterize watershed and Narragansett Bay N sources as well as the composition of primary producers and consumers throughout Greenwich Bay. Results were consistent with previous assessments of the importance of N inputs to Greenwich Bay from Narragansett Bay. As multiple N sources contribute to estuarine water quality, effective management requires attention to individual sources commensurate with overall magnitude, regardless of the political complications that may entail.  相似文献   

16.
The deployment of particle interceptor traps (PITs) in the three inner basins of the Southern California Bight (Santa Barbara, Santa Monica, and San Pedro) where preserved, laminated, bottom sediments occur, provides a natural calibration between the parameters determined with the PITs and those derived from the historical sedimentary deposits. The accumulation rates and chemical composition of the PIT materials compare favorably with these recently deposited bottom sediments. The ratio of the measured particle collection rate to the sediment accumulation rate for these three basins averaged0.93±0.20. Radionuclide (210Pb,228Th/232Th) and trace element (Fe, Cu, Zn, Cd, Pb) compositions of the PIT materials and surface sediments agree within, generally, 30% in each basin.An application of PITs as a sampling system in an outer basin (San Nicolas) where the sedimentary record has been obscured by bioturbation is also presented to further demonstrate the utility of PITs for spatial and temporal studies of various aspects of particle transport and sediment deposition. Based on the calibration of the PITs in the three inner basins we conclude from the comparison of the radionuclide and trace element compositions between the PIT materials and surface sediments from the San Nicolas Basin that recently deposited sedimentary material has been mixed by bioturbation with older material from the last several hundred years. Excess210Pb and the228Th/232Th activity ratio in the PIT material are 6 and 15 times higher than in the surface sediment. Total Pb and1N HNO3-leachable Pb are 4- and 8-fold higher in the PIT material.  相似文献   

17.
From GEOSECS stations, largely, the 1974 distributions of Pu and of137Cs are described in the Pacific Ocean north of about 20°S latitude. Changes in some of these distributions are described from 1978 cruises by the authors.The Pacific exhibited, everywhere, a shallow subsurface layer of Pu-rich water with its concentration maximum at about 465 m in 1974; over a large portion of the central North Pacific a second layer of Pu-labelled water, less concentrated than the shallow layer, lay just above the bottom. Similar features were not observed in the case of137Cs.The inventories of both Pu and137Cs in the water column at most 1974 stations are substantially greater than those to be expected from world-wide fallout alone; these inventory excesses appear to be attributable to close-in fallout, but only if the ratio Pu/137Cs in this source was much higher than in world-wide fallout. The North Pacific mean ratio of the inventories is 2.2 times that observed in world-wide fallout.Resolubilization of Pu both from sinking particles and from sediments explains peculiarities of its depth distributions.There is little evidence for tracer movement by sliding downward along density surfaces;137Cs appears to have moved to depth by downmixing at the edge of the Kuroshio, and then moved horizontally and upward alongσt contours. The shallow Pu-rich layer shows no coordination with density, salinity or O2 isopleths. The deep Pu-rich layer is restricted to a narrow range of O2 concentrations that confirm its origin in the Aleutian Trench and rapid spread southward and laterally. Near-bottom circulation processes have been much more active than here-to-fore described.  相似文献   

18.
We have used in-situ pumps which filter large volumes of sea water through a 1 μm cartridge prefilter and two MnO2-coated cartridges to obtain information on dissolved and particulate radionuclide distributions in the oceans. Two sites in the northwest Atlantic show subsurface maxima of the fallout radionuclides137Cs,239,240Pu and241Am. Although the processes of scavenging onto sinking particles and release at depth may contribute to the tracer distributions, comparison of predicted and measured water column inventories suggests that at least 35–50% of the Pu and241Am are supplied to the deep water by advection.The depth distributions of the naturally occurring radionuclides232Th,228Th and230Th reflect their sources to the oceans.232Th shows high dissolved concentrations in surface waters, presumably as a result of atmospheric or riverine supply. Activities of232Th decrease with depth to values 0.01 dpm/1000 l.228Th shows high activities in near surface and near bottom water, due to the distribution of its parent,228Ra. Dissolved230Th, produced throughout the water column from234U decay, increases with depth to 3000 m. Values in the deep water (> 3000 m) are nearly constant ( 0.6–0.7 dpm/1000 l), and the distribution of this tracer (and perhaps other long-lived particle-reactive tracers as well) may be affected by the advection inferred from Pu and241Am data.The ratio of particulate to dissolved activity for both230Th and228Th is 0.15–0.20. This similarity precludes the calculation of sorption rate constants using a simple model of reversible sorption equilibrium. Moreover, in mid-depths228Th tends to have a higher particulate/dissolved ratio than230Th, suggesting uptake and release of230Th and228Th by different processes. This could occur if228Th, produced in surface water, were incorporated into biogenic particles formed there and released as those particles dissolved or decomposed during sinking.230Th, produced throughout the water column, may more closely approach a sorption equilibrium at all depths.230Th,241Am and239,240Pu are partitioned onto particles in the sequence Th > Am > Pu with 15% of the230Th on particles compared with 7% for Am and 1% for Pu. Distribution coefficients (Kd) are 1.3–1.6 × 107 for Th, 5–6 × 106 for Am and 7–10 × 105 for Pu. The lower reactivity for Pu is consistent with analyses of Pu oxidation states which show 85% oxidized (V + VI) Pu. However, theKd value for Pu may be an upper limit because Pu, like228Th, may be incorporated into particles in surface waters and released at depth only by destruction of the carrier phase.  相似文献   

19.
Samples from the MANOP Santa Barbara Basin sediment trap intercomparison were analyzed for the isotopes of uranium, thorium, radium, lead, and polonium. All of the traps showed approximately the same compositions and isotopic ratios, indicating that they trapped similar materials. The234Th flux via falling particles was very close to the flux predicted from the production and scavenging rates of234Th from the water column. The210Pb content of the trapped particles and the surface sediments were the same, however, the measured flux of210Pb was seven times greater than the predicted flux. Predicted and measured fluxes of228Th and210Po were similarly out of balance. To explain this apparent inconsistency, we suggest (as others have done) that the Santa Barbara Basin is an area where scavenging from the water column is intensified and where sediments deposited initially on the margins may be physically remobilized on a short time scale. These two effects increase the apparent area from which the basin derives the longer-lived isotopes but does not increase significantly the supply of the short-lived234Th.  相似文献   

20.
The distribution of faecal coliform densities found in New York Bight sediments indicated that sewage sludge material has contaminated areas extending 11 km north and 37 km south from the disposal site. A high degree of confidence for enumerating faecal coliforms in marine sediments was demonstrated by standard water methodology since 82.3% of the faecal coliform group isolated were Escherichia coli. This study also indicated that marine sediments could be stored 4 days at 4°C without appreciable changes in the faecal coliform count, and that, in situ, faecal coliforms would persist longer when sediment temperatures were low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号