首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primordial neon,helium, and hydrogen in oceanic basalts   总被引:3,自引:0,他引:3  
A primordial neon component in neon from Kilauea Volcano and deep-sea tholeiite glass has been identified by the presence of excess20Ne; relative to atmospheric neon the20Ne enrichments are 5.4% in Kilauea neon and about 2.5% in the basalts. The20Ne anomalies are associated with high3He/4He ratios; the ratio in Kilauea helium is 15 times the atmospheric ratio, while mid-ocean ridge basalts from the Atlantic, Pacific, and Red Sea have uniform ratios about 10 times atmospheric. Mantle neon and helium are quite different in isotopic composition from crustal gases, which are highly enriched in radiogenic21Ne and4He. The21Ne/4He ratios in crustal gases are consistent with calculated values based on G. Wetherill's18O (α,n) reaction; the lack of20Ne enrichment in these gases shows that the mantle20Ne anomalies are not radiogenic.21Ne enrichments in Kilauea neon and “high-3He” Pacific tholeiites are much less than in crustal neon, about 2 ± 2% vs. present atmospheric neon, as expected from the much lower4He/Ne ratios.Neon concentrations in two Atlantic tholeiites were found to be only 1–2% of the values obtained by Dymond and Hogan; helium concentrations are slightly greater and our He/Ne ratios are greater by a factor of 150. The large Ne excess relative to solar wind and meteoritic gases is thus not confirmed. Pacific and Atlantic basalts appear to be quite different in He/Ne ratios however, and He and Ne may be inversely correlated. He concentration variations due to diffusive loss can be distinguished from variations due to two-phase partitioning or mantle heterogeneity by the effects on3He/4He ratios. The He isotopic and concentration measurements on “low-3He” basalts are consistent with diffusive loss and dilution of the 3/4 ratio by in-situ radiogenic4He, and may provide a method for dating basalt glasses.Deuterium/hydrogen ratios in Atlantic and Pacific tholeiite glasses are 77% lower than the ratio in seawater. The inverse correlation between deuterium and water content observed by Friedman in erupting Kilauea basalts is consistent with a Rayleigh separation process in which magmatic water is separated from an initial melt with the same D/H ratio as observed in deep-sea tholeiites. The consistency of the D/H ratios in tholeiites containing primordial He and Ne components indicates that these ratios are probably characteristic of primordial or juvenile hydrogen in the mantle.  相似文献   

2.
Stepwise heating experiments on separated graphite-diamond-kamacite aggregates have revealed a pronounced difference in the release patterns of spallogenic3He and trapped gases. About half the3He is released at T ? 920°C, without being accompanied by significant amounts of primordial gases; the latter, together with the remaining3He, is given off only at T ? 1200°C. Acid treatment of an aliquant dissolved about 2/3 of the total Fe in the sample but did not cause a significant change in the gas concentrations. It is concluded that (a) there is no evidence for a loss of spallogenic3He from the graphite-diamond-kamacite aggregates, (b) one major constituent of the aggregates - graphite - is almost void of trapped gases, (c) kamacite is not a main carrier of the gases. This leaves diamond as the most probable site of the primordial gases.The elemental abundance pattern in the noble gases is essentially as reported previously. In particular, the excellent correlation between relative depletion factors, normalized to the cosmic abundance ratios, and the respective ionisation energies is confirmed. Other important features of the trapped gases are a20Ne/22Ne ratio of 12.3 ± 0.6, intermediate between solar wind and solar flare implanted Ne,36Ar/38Ar = 5.20 ± 0.06 and a measured40Ar/36Ar ratio (before blank correction) of 0.0076.Possible modes of trapping of the noble gases are discussed.  相似文献   

3.
The activity of solar cosmic-ray-produced53Mn has been measured as a function of depth in the upper 100 g/cm2 (~55 cm) of lunar cores 60009–60010 and 12025–12028. Additional samples which supplement our earlier work were analyzed from the Apollo 15 and 16 drill stems. These data, taken in conjunction with our previously published results and the22Na and26Al data of the Battelle Northwest group, indicate that in at least three of the four cases studied the regolith has been measureably disturbed within the last 10 m.y. In one case gardening to 19 g/cm2 is required. Activities measured in the uppermost 2 g/cm2 indicate frequent mixing within this depth range. No undisturbed profiles were observed nor were any major discontinuities observed in the profiles. The Monte Carlo gardening model of Arnold has been used to derive profiles for the gardened moon-wide average of53Mn and26Al as a function of depth. The53Mn and26Al experimental results are compared with these theoretical predictions. Agreement is good in several respects, but the calculated depths of disturbance appear to be too low.  相似文献   

4.
Cosmogenic 21Ne was utilised to determine exposure ages of young subaerial basaltic lava flows from the Newer Volcanic Province, western Victoria, Australia. The ages (36–53 ka) determined from co-existing cosmogenic 21Ne and 3He in olivines separated from basalts are consistent within analytical uncertainties with ages previously determined by cosmogenic 36Cl exposure dating. This paper illustrates the potential of cosmogenic neon exposure ages in studying the eruption, surface morphology, and erosion history of young volcanic rocks, which are difficult to date using other conventional methods, such as K-Ar or 40Ar/39Ar dating. The present study demonstrates that combined cosmogenic 3He and 21Ne dating, specifically measured cosmogenic 3He/21Ne ratios, on the same samples, is powerful for evaluating the validity of calculated cosmogenic 3He and 21Ne surface exposure ages.  相似文献   

5.
Mass spectrometric analyses of neutron-irradiated targets of natural magnesium yield cross sections of59 ± 14,160 ± 8, and11.0 ± 3.3mb for20Ne,21Ne, and22Ne, respectively, at 14.1 MeV and of94 ± 8,152 ± 12, and13.0 ± 2.0mb at 14.7 MeV. With the incorporation of these cross sections, calculations modeling cosmic-ray interactions in stony meteoroids of radii 20 and 26 cm predict that between the surface and center the22Ne/21Ne ratio falls more than 10% while the21Ne production rate rises about 30%. The reaction24Mg(n,α)21Ne predominantly controls these trends: the22Ne/21Ne ratio due to magnesium decreases over 15% while that due to silicon remains constant with increasing depth. The calculations are compared with published neon measurements for the Keyes and St. Séverin meteorites.  相似文献   

6.
A systematic calibration of the production rate of one specific cosmic-ray-produced nuclide in chondrites, that of21Ne, was achieved by using four independent methods:P21(1.11) = 0.507 ± 0.039, 0.302 ± 0.013, 0.312 ± 0.017and0.292 ± 0.019 (in units of 10?8 cm3 STP/g My) based on26Al-age,53Mn-age,81Kr-83Kr and22Na-22Ne methods, respectively. These production rates are all normalized to a shielding parameter ratio22Ne/21Ne= 1.11 and to the chemical composition of L chondrites. The results obtained by the latter three methods are in good agreement, but they disagree in a systematic way with the26Al-age calibration. Based on these results, we recommend a valueP21(1.11) = 0.31 and a production rate equation:P21 = 4.845 P21 (1.11) F[21.77(22Ne/21Ne) ? 19.32]?, whereF = 1.00 for L and LL, andF = 0.93 for H chondrites, for the calculation of cosmic ray exposure ages on the basis of Ne concentrations. In an attempt to assess possible causes for this discrepancy, we discuss the26Al half-life measurements, we evaluate effects resulting from pre-irradiation of meteorites, and we discuss the evidence regarding the constancy of the cosmic ray flux in the past, in the light of some recent astronomical observations.  相似文献   

7.
The isotopic composition of neon was measured for seventeen samples of submarine basalt glass from the Mid-Atlantic Ridge between 54° and 73°N. They include the Reykjanes, Kolbeinsey, and Mohns Ridge segments. Neon isotopic anomalies, relative to the atmospheric ratios, exist in both20Ne/22Ne and21Ne/22Ne. A maximum excess20Ne of 7% was measured in two samples from the Reykjanes Ridge. Samples with lower20Ne excesses (six samples with δ20Ne between 2 and 4%) from all three ridge segments, appear to result from mixing of a mantle component with a δ20Ne of 7% and atmospheric neon.21Ne/22Ne ratios are up to 8% above the atmospheric value, with no apparent correlation with the20Ne excesses. The anomalies in20Ne/22Ne are difficult to explain by mass fractionation of an atmospheric reservoir since several of the samples have δ20Ne values greater than could be produced by single-stage fractionation. Most likely, the excess21Ne results from nuclear reactions in the mantle source, although there is no definite correlation between the δ21Ne or the excess21Ne (cm3 STP/g) and the uranium concentration. Large variations in the observed4He/20Ne ratio (40–12,000) remain unexplained at this time.  相似文献   

8.
The isotopic composition and abundances of He, Ne and Ar have been measured in a sequence of vertically stacked gas reservoirs at Hajduszoboszlo and Ebes, in the Pannonian Basin of Hungary. The gas reservoirs occur at depths ranging from 727 to 1331 m, are CH4 dominated and occupy a total rock volume of approximately 1.5 km3. There are systematic variations in both major species abundances and rare gas isotopic composition with depth: CO2 and N2 both increase from 0.47 and 1.76% to 14.1 and 30.5%, respectively, and 40Ar/36Ar and 21Ne/22Ne increase systematically from 340 and 0.02990 at 727 m to 1680 and 0.04290 at 1331 m. A mantle-derived He component between 2 and 5% is present in all samples, the remainder is crustal-radiogenic He. The Ar and Ne isotope variations arise from mixing between atmosphere-derived components in groundwater, and crustally produced radiogenic Ar and Ne. The atmosphere-derived 40Ar and 21Ne decreases from 85 and 97% of the total 40Ar and 21Ne at 727 m to 18 and 68% at 1331 m. The deepest samples are shown to have both atmosphere-derived and radiogenic components close to the air-saturated water and radiogenic production ratios. The shallowest samples show significant fractionation of He/Ar and Ne/Ar ratios in atmosphere-derived and radiogenic rare gas components, but little or no fractionation of He/Ne ratios. This suggests that diffusive fractionation of rare gases is relatively unimportant and that rare gas solubility partitioning between CH4 and H2O phases controls the observed rare gas elemental abundances.The total abundance of atmosphere-derived and radiogenic rare gas components in the Hajduszoboszlo gas field place limits on the minimum volume of groundwater that has interacted with the natural gas, and the amount of crust that has degassed and supplied radiogenic rare gases. The radiogenic mass balance cannot be accounted for by steady state production either within the basin sediments or the basement complex since basin formation. The results require that radiogenic rare gases are stored at their production ratios on a regional scale and transported to the near surface with minimal fractionation. The minimum volume of groundwater required to supply the atmosphere-derived rare gases would occupy a rock volume of some 1000 km3 (assuming an average basin porosity of 5%), a factor of 670 greater than the reservoir volume. Interactions between groundwater and the Hajduszoboszlo hydrocarbons has been on a greater scale than often envisaged in models of hydrocarbon formation and migration.  相似文献   

9.
10.
Measurements of cosmic-ray produced53Mn are reported for a series of lunar surface samples down to a depth of 416 g/cm2. These results clearly illustrate the decrease in activity with depth as the incident galactic cosmic rays are absorbed. Below 60 g/cm2 the production rate decreases exponentially with a mean length, λ, of about 220 g/cm2. These results indicate that, at the Apollo 15 site, the lunar regolith has been unmixed, on a meter scale, for the last 5 my. The neutron activation technique for53Mn, which allowed samples smaller than 200 mg to be used for these measurements, is described.  相似文献   

11.
Cosmogenic neon in sodium-rich oligoclase feldspar from the ordinary chondrites St. Severin and Guaren?a is characterized by an unusually high22Ne/21Ne = 1.50 ± 0.02. This high ratio is due to the cosmogenic22Ne/21Ne production ratio in sodium which is 2.9 ± 0.3, two to three times the production ratio in any other target element. The relative production rate of21Ne per gram sodium is one quarter the production rate per gram magnesium. The striking enrichment of22Ne relative to21Ne in sodium arises from enhanced indirect production from23Na via22Na.The unusual composition of cosmogenic neon in sodium and sodium-rich minerals explains the high22Ne/21Ne ratios observed in inclusions of the Allende carbonaceous chondrite, and observed during low-temperature extraction of neon from ordinary chondrites. The isotopic composition of cosmogenic neon released during the stepwise heating of a trapped gas-rich meteorite containing sodium-rich phases can be expected to vary, and use of a constant cosmogenic neon composition to derive the composition of the trapped gas may not be justified. Preferential loss of this22Ne-enriched cosmogenic neon from meteoritic feldspar can result in a 2–3% drop in the measured cosmogenic22Ne/21Ne ratio in a bulk meteorite sample. This apparent change in composition can lead to overestimation of the minimum pre-atmospheric mass of the meteorite by a factor of two.  相似文献   

12.
In an attempt to determine the helium and neon isotopic composition of the lower oceanic crust, we report new noble gas measurements on 11 million year old gabbros from Ocean Drilling Program site 735B in the Indian Ocean. The nine whole rock samples analyzed came from 20 to 500 m depth below the seafloor. Helium contents vary from 3.3×10−10 to 2.5×10−7 ccSTP/g by crushing and from 5.4×10−8 to 2.4×10−7 ccSTP/g by melting. 3He/4He ratios vary between 2.2 and 8.6 Ra by crushing and between 2.9 and 8.2 by melting. The highest R/Ra ratios are similar to the mean mid-ocean ridge basalt (MORB) ratio of 8±1. The lower values are attributed to radiogenic helium from in situ α-particle production during uranium and thorium decay. Neon isotopic ratios are similar to atmospheric ratios, reflecting a significant seawater circulation in the upper 500 m of exposed crust at this site. MORB-like neon, with elevated 20Ne/22Ne and 21Ne/22Ne ratios, was found in some high temperature steps of heating experiments, but with very small anomalies compared to air. These first results from the lower oceanic crust indicate that subducted lower oceanic crust has an atmospheric 20Ne/22Ne ratio. Most of this neon must be removed during the subduction process, if the ocean crust is to be recirculated in the upper mantle, otherwise this atmospheric neon will overwhelm the upper mantle neon budget. Similarly, the high (U+Th)/3He ratio of these crustal gabbros will generate very radiogenic 4He/3He ratios on a 100 Ma time scale, so lower oceanic crust cannot be recycled into either MORB or oceanic island basalt without some form of processing.  相似文献   

13.
We have measured by accelerator mass spectrometry the26Al contents of 20 and the10Be contents of 14 iron meteorites. The26Al contents are typically 30% or more lower than values obtained by counting techniques; the10Be contents are 10–15% lower. The production rates (P) of these nuclides decrease by more than a factor of two as the4He/21Ne ratio increases with increasing shielding from 200 to 400. For the lighter shielding conditions expected in stony meteorites we estimateP26(Fe) as 3–4 dpm/kg andP10(Fe) as 4–5 dpm/kg. The average P/10P26 activity ratio is close to 1.5. Exposure ages calculated from21Ne/26Al ratios cannot be calibrated so as to agree with both40KK/ ages and ages based on the shorter-lived nuclides39Ar and36Cl. If agreement with the latter is forced, then the disagreement with40KK/ ages may signal a 35% increase in the cosmic-ray intensity during the last 107 a.  相似文献   

14.
Water samples collected at the 21°N hydrothermal site on the East Pacific Rise crest, including Deep-Tow and hydrocast samples collected in 1977 and three hot vent water samples collected recently with the submersible “Alvin”, contain significant additions of3He,4He, and Mn. Although the vent water collections were at least 50-fold diluted with ambient seawater, they are up to 53 times enriched in3He and 7.4 times enriched in4He relative to saturated seawater, with concentrations of total dissolvable manganese (TDM) up to 310 μg/kg.3He and4He covary in the vent samples, with3He/4He about 8 times the atmospheric ratio, reflecting a mantle helium source. In contrast to the helium isotopes the Mn/3He ratio in the vent samples is variable, ranging from 4.3 × 104 up to 1.0 × 105 g/cm3. Profiles of3He/4He and TDM in the water column at 21°N show a sharp maximum ofδ(3He) = 47%and TDM= 0.69 μg/kg, much higher than the average values of 34% and 0.2 μg/kg for the deep water in this region. This spike in3He and Mn occurs at 2400 m depth, 200 m above the level of the 21°N vents, and 100 m higher than any local bathymetry, evidence for upward transport of the hydrothermal discharge via rising plumes of hot vent water. Two of the 21°N Deep-Tow samples associated with small (?0.010°C) temperature anomalies hadδ(3He) = 38%and TDM= 0.28 and 0.58 μg/kg, also slightly elevated relative to background. The Deep-Tow and hydrocast samples have lower Mn/3He ratios than average vent samples due to Mn removal by scavenging. Comparison of vent samples and water column measurements at 21°N indicate that the pure vent water could be detected using3He and Mn even when diluted ~105 times with seawater, confirming that these two tracers are extremely sensitive indicators of submarine hydrothermal activity.  相似文献   

15.
The production rate profiles of21Ne and22Ne as a function of depth in meteoroids due to spallation by solar flare cosmic rays (SCR) and galactic cosmic rays (GCR) are calculated and their dependence on size and composition of meteoroids has been evaluated. The GCR production rate at a given depth increases with size for radii<25cm and then decreases whereas the22Ne21Ne ratio (NeR) generally decreases with size and depth. The calculated GCR production rates and NeR are consistent with the measurements in several Chondrites. A plot of track production rate vs. NeR shows that some chondrites have NeR values smaller than those expected for their sizes. Thes obeervation suggestsat least a two-stage irradiation for such meteorites; the meteoroid exposure as a small body in the interplanetary space must have been preceded by exposure under deep shielding, possibly in its parent body.  相似文献   

16.
Cores and coats of five coated diamonds, one from Botswana and four from Zaire, were separately analyzed for their noble gases. Noble gases in the diamonds are essentially of a trapped origin, including radio- and nucleogenic components such as4He, 40Ar, 21Neexcess and excesses in Xe isotopes (129, 131–136). The fairly precise elemental and isotopic abundances allow us to infer the noble gas state in the ancient mantle. 20Ne/22Ne ratios are fairly constant (11.8 ± 0.4), and very close to that of SEP (solar energetic particle)-Ne, but distinctly different from the atmospheric ratio. 21Ne/22Ne ratios range from 0.028 to 0.06, which is attributed to nucleogenic 21Ne from 18O(α, n)21Ne and 24Mg(n, α)21Ne reactions. The difference in 20Ne/22Ne between atmosphere and mantle can be attributed to the hydrodynamic escape of hydrogen from the primitive atmosphere during the very early stage in the Earth's history. 38Ar/36Ar and Kr isotopic ratios are identical to the atmospheric values within 1%. After correction for 238U- or 244Pu-fission Xe, the 131–136Xe abundance ratios are indistinguishable from atmospheric ratios. Lighter Xe isotopes (124–128Xe) are also likely to be atmospheric, but a final conclusion must wait until better data are obtained.In a 136Xe/130Xe−129Xe/130Xe diagram, diamond data lie on the same line as defined for MORB. The observed identical correlation for both diamonds and MORB's appears to suggest that the progenitor of the excess131–136Xe is 244Pu, but not238U, though the direct Xe isotopic measurements was not precies enough to decide unanimously the progenitor.  相似文献   

17.
The inert gases were measured mass-spectrometrically in 12 fragments and 1 “dust” sample from Luna 16. The fragments were classified petrologically by microscopic inspection. The major petrologic types were breccias and basalts. The former were much richer in trapped gases than the latter, and were apparently formed by the welding of local fines. However, there was no clear-cut difference in gas content of either breccias or basalts between zone A (top) and zone G (bottom). The4He/20Ne ratio of the breccias (average 49) was systematically smaller than that of the basalts (average 78), probably because of He-Ne fractionation during or after the formation of the breccias. We suggest that the4He/20Ne ratios of bulk fines in general may reflect the proportions of basaltic and breccia (plus cindery glasses) fragments in the fines. Substantial variations of4He/3He were found, which could not be explained with the presence of variable proportions of cosmogenic3Hec. Either the solar-wind value has changed in time, or the fragments with the small ratios were exposed to solar flares rich in3He and/or4He. Exposure ages of four fragments are several hundred million years. The40Ar/36Ar slopes of breccias and basalts are identical: 0.65.  相似文献   

18.
Terrestrial cosmogenic nuclide (TCN) concentrations measured in river sediments can be used to estimate catchment‐wide denudation rates. By investigating multiple TCN the steadiness of sediment generation, transport and depositional processes can be tested. Measurements of 10Be, 21Ne and 26Al from the hyper‐ to semi‐arid Rio Lluta catchment, northern Chile, yield average single denudation rates ranging from 12 to 75 m Myr–1 throughout the catchment. Paired nuclide analysis reveals complex exposure histories for most of the samples and thus the single nuclide estimates do not exclusively represent catchment‐wide denudation rates. The lower range of single nuclide denudation rates (12–17 m Myr–1), established with the noble gas 21Ne, is in accordance with palaeodenudation rates derived from 21Ne/10Be and 26Al/10Be ratio analysis. Since this denudation rate range is measured throughout the system, it is suggested that a headwater signal is transported downstream but modulated by a complex admixture of sediment that has been stored and buried at proximal hillslope or terrace deposits, which are released during high discharge events. That is best evidenced by the stable nuclide 21Ne, which preserves the nuclide concentration even during storage intervals. The catchment‐wide single 21Ne denudation rates and the palaeodenuation rates contrast with previous TCN‐derived erosion rates from bedrock exposures at hillslope interfluves by being at least one order of magnitude higher, especially in the lower river course. These results support earlier studies that identified a coupling of erosional processes in the Western Cordillera contrasting with decoupled processes in the Western Escarpment and in the Coastal Cordillera. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
We performed an interlaboratory comparison study with the aim to determine the accuracy of cosmogenic 21Ne measurements in quartz. CREU-1 is a natural quartz standard prepared from amalgamated vein clasts which were crushed, thoroughly mixed, and sieved into 125–250 μm and 250–500 μm size fractions. 50 aliquots of CREU-1 were analyzed by five laboratories employing six different noble gas mass spectrometers. The released gas contained a mixture of 16–30% atmospheric and 70–84% non-atmospheric (predominantly cosmogenic) 21Ne, defining a linear array on the 22Ne/20Ne-21Ne/20Ne three isotope diagram with a slope of 1.108 ± 0.014. The internal reproducibility of the measurements is in good agreement with the formal analytical precision for all participating labs. The external reproducibility of the 21Ne concentrations between labs, however, is significantly overdispersed with respect to the reported analytical precision. We report an average reference concentration for CREU-1 of 348 ± 10 × 106 at [21Ne]/g[SiO2], and suggest that the 7.1% (2σ) overdispersion of our measurements may be representative of the current accuracy of cosmogenic 21Ne in quartz. CREU-1 was tied to CRONUS-A, which is a second reference material prepared from a sample of Antarctic sandstone. We propose a reference value of 320 ± 11 × 106 at/g for CRONUS-A. The CREU-1 and CRONUS-A intercalibration materials may be used to improve the consistency of cosmogenic 21Ne to the level of the analytical precision.  相似文献   

20.
All twenty-three stable rare gas isotopes have been measured in a mantle-derived amphibole, kaersutite. The elemental abundance pattern of the rare gases is similar to the “planetary” rare gas pattern as defined by carbonaceous chondrites. The3He/4He ratio, (4.9 ± 0.6) × 10?5, is suggestive of primordial He degassing from the mantle. Excess21Ne is present. The measured40Ar/36Ar ratio,400 ± 5, may represent a mantle40Ar/36Ar ratio <240 when corrected for radiogenic40Ar. The heavy isotopes of Kr and t0he Xe isotopes are within error of the atmosphere values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号