首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chondrules were extracted from a disaggregated sample of the Allegan meteorite. Individual chondrules were examined with apparatus incorporating two orthogonal binocular microscopes, and their three major axes measured. Maximum chondrule diameters ranged from 0.15 to 2.75 mm with a peak in distribution between 0.35 and 0.75 mm. The chondrule size distribution was found not to conform to Rosin's law. The chondrules were found to depart from sphericity by only small amounts. The authors still believe that the melting of nebula dust-ball agglomerates by some high-energy event was the most probable mechanism for the formation of chondrules.  相似文献   

2.
Expanded beam microprobe analyses of 18 drop-formed chondrules and 5 irregular masses of devitrified glass in the Manych chondrite show trends and ranges of chemical variation similar to those reported previously for large microporphyritic chondrules in this meteorite. These variations are inconsistent with differentiation of chondrules by crystal-liquid fractionation or separation of immiscible silicate and Fe-Ni-S liquids at various oxygen fugacities. They appear to reflect non-representative sampling of microporphyritic precursor rocks texturally and mineralogically similar to, but in some cases coarser than, the microporphyritic chondrules in Manych. About half of the droplet chondrules and devitrified glasses also bear evidence of more or less vapor-liquid fractionation.The chemical and petrographic properties of Manych chondrules are best explained by a genetic model which entails: (1) melting of extended masses of chondritic material (≥10 cm across); (2) extraction of immiscible Fe-Ni-S liquids; (3) crystallization of the remaining silicate liquids to form microporphyritic rocks; and (4) fragmentation of these rocks to produce microporphyritic chondrules or, with remelting, droplet chondrules. The initial melting may have been caused by either impact or solar heating, but fragmentation and remelting of the microporphyritic precursor rocks were most likely caused by impact.  相似文献   

3.
Chondrule mass frequency distributions determined from the Bjurböle, Chainpur, Allegan, Saratov, Elenovka and Nikolskoe meteorites have been tested to see if they could be fitted to either the Rosin or Weibull statistical functions. Whereas none of the distributions gave a fit to Rosin's law, they could all (with the exception of Nikolskoe) be fitted to the Weibull function suggesting similar origins and/or histories. Although it is possible to produce a Weibull distribution from a Rosin distribution by the removal of lower mass particles, it is easier to envisage the Weibull mass distribution of meteoritic chondrules as a feature of the chondrule-forming event or of material from which they formed.  相似文献   

4.
High-voltage electron microscope observations are reported for specimens of the meteorites Hedjaz, Parnallee, Chainpur and Weston. Clastic matrix in Weston and Chainpur is distinguished from non-clastic material found in the other two specimens and in dark rims around chondrules in Chainpur. The variety of grain-size distributions and porosities found in this type of matrix is interpreted in terms of grain growth during the aggregation of the meteorite, and incipient solid-state recrystallization of aggregates (metamorphism). The formation of fine-grained non-clastic aggregates with low porosity was not accompanied by sufficient diffusion within the aggregates to equilibrate the mineral assemblages.  相似文献   

5.
Bulk compositions of igneous and microbreccia lithic fragments, glasses, and chondrules from Luna 16 fines as well as compositions of minerals in basaltic lithic fragments were determined with the electron microprobe. Igneous lithic fragments and glasses are divided into two groups, the anorthositic-noritic-troctolitic (hereafter referred to as ANT) and basaltic groups. Chondrules are always of ANT composition and microbreccia lithic fragments are divided into groups 1 and 2. The conclusions reached may be summarized as follows: (1) Luna 16 fines are more similar in composition to Apollo 11 than to Apollo 12 and 14 materials (e.g. Apollo 11 igneous lithic fragments and glasses fall into similar ANT and basaltic groups; abundant norites in Luna 16 and Apollo 11 are not KREEP as in Apollo 12 and 14; Luna 16 basaltic lithic fragments may represent high-K and low-K suites as is the case for Apollo 11; rare colorless to greenish, FeO-rich and TiO2-poor glasses were found in both Apollo 11 and Luna 16; Luna 16 spinels are similar to Apollo 11 spinels but unlike those from Apollo 12). (2) No difference was noted in the composition of lithic fragments, glasses and chondrules from Luna 16 core tube layers A and D. (3) Microbreccia lithic fragments of group 1 originated locally by mixing of high proportions of basaltic with small proportions of ANT materials. (4) Glasses are the compositional analogs to the lithic fragments and not to the microbreccias; most glasses were produced directly from igneous rocks. (5) Glasses show partial loss of Na and K due to vaporization in the vitrification process. (6) Luna 16 chondrules have ANT but not basaltic composition. It is suggested that either liquid droplets of ANT composition are more apt to nucleate from the supercooled state; or basaltic droplets have largely been formed in small and ANT droplets in large impact events (in the latter case, probability for homogeneous and inhomogeneous nucleation is larger. (7) No evidence for ferric iron and water-bearing minerals was found. (8) Occurrence of a great variety of igneous rocks in Luna 16 samples (anorthosite, noritic anorthosite, anorthositic norite, olivine norite, troctolite, and basalt) confirm our earlier conclusion that large-scale melting or partial melting to considerable depth and extensive igneous differentiation must have occurred on the moon.  相似文献   

6.
Individual chondrules have been separated from the H5 chondrite Richardton and subjected to a detailed chemical-petrological study. A portion of each chondrule has been examined petrographically and phase chemistry determined by electron microprobe analysis. Of the remaining portion an aliquot was taken for measurement of major element abundances by microprobe using a microfusion technique. Rb, Sr,87Sr/86Sr and REE were determined by mass spectrometric isotope dilution.The chondrules define a Rb-Sr isochron age of 4.39 ± 0.03Ga(λ = 1.42 × 10?11 a?1) and an initial ratio of 0.7003 ± 7. The age is interpreted as a metamorphic age and indicates that Sr isotope equilibration occurred in the Richardton parent body for some 100 Ma or more after condensation of the solar system. Metamorphism had little effect on chondrule textures but effected Fe/Mg exchange to produce highly uniform olivine and pyroxene compositions, and may have caused some redistribution of REE.The major element compositions of Richardton chondrules are mostly constant and close to reported averages for Tieschitz, Bishunpur and Chainpur. They contain high-temperature condensate elements in close to cosmic proportions, but are deficient in Fe. Theories of chondrule origin are briefly reviewed, and while it is difficult to distinguish between direct condensation and dust fusion by impacting, it is postulated that iron was fractionated from silicate prior to or during chondrule formation.  相似文献   

7.
8.
The natural remanent magnetization (NRM) in individual chondrules from the Allende meteorite was measured. These had previously been oriented relative to each other. The NRM directions of the chondrules are not initially random, but they become scattered after either alternating field (AF) or thermal demagnetization. The NRM is less stable than anhysteretic remanent magnetization (ARM) against AF-demagnetization.

The bulk of the NRM in the matrix is erased by 300°C. For the larger chondrules it is erased by 550°C, but for the smaller chondrules and the white inclusion a substantial decrease in NRM occurs by 350°C leaving about 20% up to 600°C. The behavior of the laboratory-induced ARM and the NRM under alternating field demagnetization suggest that the NRM of the chondrules consists of at least two components of TRM. One is a high-temperature component which was acquired when the individual chondrules were cooled through the Curie temperature and before they were assembled into the Allende meteorite. The other is a low-temperature component which was probably acquired in a field of about 1 Oe when the meteorite experienced thermal metamorphism or during the assembly of the meteorite.  相似文献   


9.
Peperites formed by mixing of magma and wet sediment are well exposed along Punta China, Baja California, Mexico, where two sills intrude a section of lava flows, limestones, and volcaniclastic rocks. Irregular lobes and dikes extend from the sills several meters into host sediments, including highly comminuted flow top breccias (lithic lapilli tuff breccias) and shelly micrites, whereas intrusive contacts with lava flows are sharp and planar. Where one sill intruded both coarse-grained volcaniclastic rock and fine-grained limestone, textural differences between the hosts produced strikingly different styles of peperite. Blocky masses of the basaltic intrusions up to 1 m in size were dispersed for distances up to 3 m into host lithic lapilli tuff breccias; the blocks consequently underwent in situ fragmentation as they were rapidly quenched. The high degree of dispersion resulted from steam explosions as the magma enveloped pockets of water in the coarse-grained permeable host. Elutriation of fine-grained material from vertical pipes in tuff breccia above the lower sill provides evidence for meter-scale fluidization of the host. The contact zone between the basaltic magma and the shelly micrite host resembles a mixture of two viscous, immiscible fluids (fluidal peperite). Intrusion occurred behind a stable vapor film which entrained lime mud particles and carried them off grain by grain as magma advanced into the host. Thin-section-scale elutriation pipes formed. Microglobular peperite represents a frozen example of a fuel-coolant interaction (FCI) between basaltic magma and fluidized micrite host. The intimate intermixing of magma and host at the submillimeter level is attributed to fluid instabilities developed along the magma-vapor-host interface. Such intimate intermixing of magma and water-bearing fragmental debris is commonly a precursory step toward explosive hydrovolcanism.  相似文献   

10.
True relative Sr isotopic compositions, determined by the double-spike technique, are reported for 8 olivine chondrules from Allende and a single chondrule from Richardton. The Richardton chondrule has an Sr composition identical with the whole meteorite, but the Allende chondrules are up to 1.4‰ per mass unit light-isotope enriched, closely similar to Ca-Al inclusions (CAI) from the same individual stone. The correspondence of the patterns for chondrules and CAI suggests that both groups of objects derived their fractionated Sr in similar ways. The lack of any detectable non-linear Sr isotopic anomaly in the objects suggests that their Sr compositions did not have some exotic or extrasolar origin, but were derived from normal solar system Sr by mass fractionation. The consistent light-Sr enrichment of Allende objects may be explained by several schemes, and all are heavily model-dependent. Most plausible to the author is that the CAI and chondrules derived their fractionated Sr from a region of the nebula made isotopically light by partial kinetic mass separation of elements in the vapour phase. Later, the solid objects may have moved to an isotopically more normal region, where the Allende matrix accreted.  相似文献   

11.
12.
During the formation of the solar nebula interstellar grains were fallling into the nebula with velocities of the order of 10 km/s at the radial distance where the meteorites were to form. This kinetic energy is 20 times the amount of thermal energy needed to melt the grains. The grains were decelerated by aerodynamic drag in the nebula. Where grain-rich parcels of interstellar material fell into the nebula, heat generated by drag could not be radiated away because of the opacity imparted to the system by the grains, and high temperatures were reached. In this situation presolar aggregations of grains would melt to form chondrules. Many of the properties of chondrules (and also CAI's) are consistent with their formation by this means. The infall heating concept provides a new framework in which the formation and significance of chondritic meteorites can be understood.  相似文献   

13.
Geometricaltexturesoffaults,evolutionofphysicalfieldandinstabilitycharacteristicsJINMA(马瑾),SHENG-LIMA(马胜利),LI-QIANGLIU(刘力强),Z...  相似文献   

14.
15.
Petrographic and chemical studies of the Qingzhen chondrite strongly suggest that it is the most highly unequilibrated (type 3) enstatite chondrite recognized so far. Qingzhen contains abundant, well-defined chondrules, some of which were incompletely molten during the chondrule formation process. The relict olivine grains within these chondrules contain dusty inclusions of almost pure metallic Fe, which appear to be the in-situ reduction product of the fayalitic component of the olivine. The reduction process presumably took place at the time of chondrule formation and the chondrule precursor material must have been more oxidized than average enstatite chondrite material. We believe that this oxidized material may have formed at the enstatite chondrite formation location in the solar nebula, provided fluctuations in the degree of oxidation of the nebular gas existed at such locations. Reheating of this material under more reducing conditions would lead to the observed reduction of the olivine. Igneous olivines within chondrules always contain detectable amounts of CaO, while relict olivines are essentially CaO-free. This seems to suggest that the relict olivines did not originate during a previous igneous process of chondrule formation and might represent condensation products from the early solar nebula.  相似文献   

16.
We present the first nanoscale investigation of silica glaze. High resolution transmission electron microscopy of a rock coating from the Ashikule Basin, Tibetan Plateau, reveals the presence of spheroids composed predominantly of silicon and oxygen with diameters ranging from 20 nm to 70 nm. While silica glaze spheroids co‐exist with manganese‐rich rock varnish in the same sample, the different rock coatings are texturally and physically distinct at the nanoscale. These observations are consistent with a model of silica glaze formation starting with soluble aluminum‐silicon (Al‐Si) complexes [Al(OSi(OH)3)2+], mobilized with gentle wetting events such as dew or frost. The transition between complete and partial wetting on silica surfaces rests at about 20–70 nm for liquid droplets. Upon crossing this transition, a metastable wetting film would be ruptured, initiating formation of silica glaze through spheroid deposition. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The majority (26/37) of the largest chondrules (d ≥ 1400 μm) exposed in a thin section of the Manych chondrite are more or less rounded fragments of microporphyry, most of which contain from 50 to 80 vol.% olivine. Modal and phase analyses were used to calculate the approximate bulk compositions of nine such chondrules. Six vary modestly around the mean composition of L-group chondrites less most of their metal and troilite and are thought to have formed by bulk melting of L-group material with loss of an immiscible Fe-Ni-S liquid. Two other chondrules, which are olivine-rich and Na- and Si-poor, formed in the same way but with some loss of volatile constituents to a vapor phase. The ninth chondrule, an olivine-poor microporphyry, may be a non-representative sample of a coarser microporphyritic rock.Comparison of these microporphyritic chondrules with the products of controlled cooling experiments and with chemically similar olivine microporphyry in the St. Mesmin chondrite (LL-breccia) suggests that the microporphyritic chondrules are fragments of magmatic rocks which crystallized from masses of liquid no less than 10 cm across.  相似文献   

18.
Two groups of fresh crushed Brazilian quartz grains (0.4–0.6 mm) were placed in 10 ml of various saturated salt solutions (sodium sulphate, sodium chloride, magnesium sulphate, sodium carbonate, and sodium carbonate and soil). One group was placed in an environmental cabinet programmed to simulate summer diurnal temperature and relative humidity values recorded in Wheeler Valley, a dry valley in southern Victoria Land, Antarctica. The other group was allowed to remain at normal laboratory conditions. Quartz grains from both groups were removed at pre-selected intervals for examination using the scanning electron microscope. After 50 hours chemical surface textures were formed on the quartz grains in all but the sodium sulphate solution. At the 140 hour interval all the salt solutions used were producing chemical surface textures on the quartz grains. This paper demonstrates that chemical surface textures can be produced on quartz grain surfaces by saturated salt solutions in a short period of time and may prove to be representative of chemical surface textures produced in a saturated saline environment.  相似文献   

19.
Bulk abundances of Na, Mg, Al, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, La, Sm, Eu, Yb, Lu, Ir, and Au were determined by neutron activation analysis of chondrules separated from unequilibrated H-, L-, and LL-chondrites (Tieschitz, Hallingeberg, Chainpur, Semarkona) and correlated with chondrule petrographic properties. Despite wellknown compositional differences among the whole-rock chondrites, the geometric mean compositions of their respective chondrule suites are nearly indistinguishable from each other for many elements. Relative to the condensible bulk solar system (approximated by the Cl chondrite Orgueil), chondrules are enriched in lithophile and depleted in siderophile elements in a pattern consistent with chondrule formation by melting of pre-existing materials, preceded or attended by silicate/metal fractionation. Relative to nonporphyritic chondrules, porphyritic chondrules are enriched in refractory and siderophile elements, suggesting that these two chondrule groups may have formed from different precursor materials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号