首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
226Ra profiles have been measured in the western Indian Ocean as part of the 1977–1978 Indian Ocean GEOSECS program. These profiles show a general increase in deep and bottom water Ra concentration from the Circumpolar region to the Arabian Sea. A deep Ra maximum which originates in the Arabian Sea and in the Somali basin at about 3000 m depth spreads southward into the Mascarene basin and remains discernible in the Madagascar and Crozet basins. In the western Indian Ocean, the cold Antarctic Bottom Water spreads northward under the possibly southward-flowing deep water, forming a clear benthic front along the Crozet basin across the Southwest Indian Ridge into the Madagascar and Mascarene basins. The Antarctic Bottom Water continues to spread farther north to the Somali basin through the Amirante Passage at 10°S as a western boundary current. The benthic front and other characteristic features in the western Indian Ocean are quite similar to those observed in the western Pacific where the benthic front as a distinctive feature was first described by Craig et al. [15]. Across the Mid-Indian Ridge toward the Ceylon abyssal plain near the triple junction, Ra profiles display a layered structure, reflecting the topographic effect of the mid-ocean ridge system on the mixing and circulation of the deep and bottom waters. Both Ra and Si show a deep maximum north of the Madagascar basin. Linear relationships between these two elements are observed in the deep and bottom water with slopes increasing northward. This suggests a preferential input of Ra over Si from the bottom sediments of the Arabian Sea and also from the flank sediments of the Somali basin.  相似文献   

2.
We report here on particulate and dissolved210Pb profiles at 16 stations, and on total210Pb profiles at 3 stations, all occupied during the Pacific GEOSECS expedition. Comparison with measurements at Yale on GEOSECS library samples indicates that during separation of particulate lead from dissolved lead, our filtered water samples suffered some loss of210Pb in the filtration system; this effect appears to have reduced the dissolved210Pb activities by ~ 20% in stations where the water was filtered. However, for these first Pacific data on the210Pb distribution between the two phases, this effect does not significantly interfere with our recognition of the major features of both particulate and dissolved210Pb distributions.The dissolved210Pb profiles in general vary geographically, following the226Ra profiles. In deep water,226Ra increases northward and eastward from the southwest Pacific, from ~ 22dpm/100kg, to over 40 dpm/100 kg in the northeast Pacific. Our dissolved210Pb profiles show a similar increase in deep water, varying from about 10 to 20 dpm/100 kg along this line, and are commonly characterized by a mid-depth maximum. This210Pb maximum reflects the mid-depth226Ra maximum of the Pacific Deep Water observed along the western boundary current.In surface water at low latitudes there is a significant210Pb flux from the atmosphere, which produces a210Pb/226Ra activity ratio generally greater than unity. This flux penetrates as deep as 600 m, as indicated by an “induced”210Pb minimum caused by the surface maximum. The surface water210Pb excess decreases toward high southern latitudes and vanishes in the Circumpolar region.The particulate210Pb profiles show a general increase with depth, from ~ 0.3dpm/100kg in subsurface water to ~ 1.5dpm/100kg in bottom water, with or without a mid-depth maximum that reflects the226Ra or dissolved210Pb maximum. The particulate210Pb normally comprises about 2% of the total210Pb in subsurface water, and this fraction increases to about 10% near the bottom. As the filtration loss is not taken into account, the fraction of particulate210Pb quoted here is an upper limit. Since the particulate matter concentrations are quite uniform in the water column below a few hundred meters, the210Pb activity of the particulate matter also increases with depth. The particulate matter has a210Pb concentration of ~ 100dpm/g in subsurface water, but the concentration increases to ~ 500dpm/g or more toward the bottom. This indicates that there is a cumulative adsorption of Pb onto the suspended particles as they are sinking through the water column.  相似文献   

3.
Radium-barium-silica relationships are examined in various regions of the Pacific. Ra, Ba and Si are not linearly correlated except in the Circumpolar region. From surface water to the intermediate water, Ra usually increases linearly with Ba and Si. In the North Pacific where there is a Ra excess in the deep water, both the Ra-Ba and Ra-Si diagrams show curves concave upward with an increasing slope. The relationships are further complicated by a deep gentle Ba maximum and a broad mid-depth Si maximum.In the western boundary where the Antarctic Bottom Water and Pacific Deep Water are separated by the benthic front, the Ra-Ba and Ra-Si plots show “hooks” of various size and shape caused by a discordance in the depths of the Ra, Ba and Si maxima. The hook becomes smaller toward the south and flips from counterclockwise to clockwise in the southern basin.A two-dimensional horizontal model with a geostrophic circulation pattern is employed to calculate Ra distribution in the deep water with a constant upwelling rate but a variable mean input rate for Ra. The mean input rate or fluxF is the sum of the in-situ production rateJ by particulate dissolution in the water column and the bottom fluxQb. The global mean fluxF needed to balance the radiodecay in a steady-state distribution is used as a reference for discussion. It is found that anF value set at1.5 ×F fits the observed data in the deep Atlantic. TheF value needs to be about2.7 ×F in order to produce a comparable distribution in the deep Pacific. These model calculations indicate that a Ra source is required in the northeast Pacific. It appears that no uniqueF can produce a global Ra distribution in deep water comparable to both the Atlantic and Pacific observations. This is also true within the Pacific Ocean itself because of the large Ra excess observed in the northeast Pacific. Thus the Ra input rate is quite variable and increases by a factor of two from the Atlantic to the Pacific. This probably reflects the non-uniformity of the bottom fluxQb rather than that of the in-situ productionJ in the world oceans.  相似文献   

4.
210Pb and226Ra profiles have been measured at five GEOSECS stations in the Circumpolar region. These profiles show that226Ra is quite uniformly distributed throughout the Circumpolar region, with slightly lower activities in surface waters, while210Pb varies with depth as well as location or area. There is a subsurface210Pb maximum which matches the oxygen minimum in depth and roughly correlates with the temperature and salinity maxima. This210Pb maximum has its highest concentrations in the Atlantic sector and appears to originate near the South Sandwich Islands northeast of the Weddell Sea. Concentrations in this maximum decrease toward the Indian Ocean sector and then become fairly constant along the easterly Circumpolar Current.Relative to226Ra, the activity of210Pb is deficient in the entire water column of the Circumpolar waters. The deficiency increases from the depth of the210Pb maximum toward the bottom, and the210Pb/226Ra activity ratio is lowest in the Antarctic Bottom Water, indicating a rapid removal of Pb by particulate scavenging in the bottom layer and/or a short mean residence time of the Antarctic Bottom Water in the Circumpolar region.226Ra is essentially linearly correlated with silica and barium in the Circumpolar waters. However, close examination of the vertical profiles reveals that Ba and Si are more variable than226Ra in this region.  相似文献   

5.
Four vertical Ra profiles have been measured across the East Pacific Rise (EPR) from Callao to Tahiti. These profiles show that Ra in the deep water (below 2 km depth) increases toward the EPR. However, this increase does not necessarily indicate a Ra source on the EPR. The increase from Tahiti toward the EPR reflects the general trend of the Pacific Ra distribution. The decrease from the EPR eastward to the Peru Basin is probably due to the continental effect with higher sedimentation rates.The hydrography, especially potential temperature and oxygen, indicates significant differences below about 3 km depth between the east and west flanks of the EPR indicating the effect of the cold bottom water to the west of the EPR. The benthic front is identified at 3.9 km depth at the westernmost station near Tahiti. Silicate and salinity data are by no means unique and reflect a complicated local circulation and mixing pattern with a minor intrusion of the Antarctic Bottom Water from the south into the Peru Basin.The θ-Ra and Ra-Si relationships both indicate an enrichment of Ra in the deep water below 2 km depth probably due to input from the underlying sediments. Above 2 km depth, Ra covaries almost linearly with θ as well as Si, mimicking a stable conservative property. This suggests that the radiodecay rate is nearly balanced by the input rate within the water column between 1 and 2 km depth in which θ is linearly correlated withS.Simple vertical model calculations show that the in-situ production of Ra by particulate dissolution in the deep water is negligible within a reasonable range of upwelling rates from 2 to 12 m/yr. Thus the Ra profiles show a net decay effect and so the θ-Ra relations are not linear in the deep water. In fact, the composite θ-Ra plots show a break at 25 dpm/100 kg (at 2 km depth) rather than a smooth curve, while theθ-S plots are essentially linear. A maximum Ra production rate of about 8 × 10?3 (dpm/100 kg) yr?1 is obtained from all the profiles with minimum upwelling rates between 0.7 and 3.5 m/yr.  相似文献   

6.
Seven vertical profiles of226Ra have been measured along an east-west traverse at about 30°N from San Diego to northwest of Hawaii. These profiles show that there is a distinct core of Ra maximum spreading westward as a tongue in the northeast Pacific deep water. This core starts in the east with 21.1 Ra units (1Ra unit= 10?14g/kg) at 3.9 km depth at about 130°W, and deepens westward to 4.1 km with its Ra reduced to 18.3 units at 150°W. A similar core with some uncertainty due to possible sampling errors extends westward near the bottom at 5.2 km depth from 19.4 Ra units at 150°W to 15.9 units at about 180° longitude. In addition, these profiles appear to be correlated with each other in structure above the cores of Ra maximum. These cores indicate that the Ra input depends locally on the type and composition of sediments and so the flux varies over the ocean bottom. On the basis of a one-dimensional diffusion-decay model, a horizontal diffusion coefficient of 106 cm2/sec has been computed along these cores. Although this value appears to be slightly lower, it is not inconsistent with those derived from other physical methods.  相似文献   

7.
226Ra data on eleven vertical profiles taken during the GEOSECS program from the Antarctic Ocean and its vicinity in both the Atlantic and the Pacific are presented. Replicate measurements were made on each sample using the Rn-emanation method. The precision (1 σ) based on triplicate analyses averages about ±2.5%. Waters all around the Antarctic continent below 2 km depth appear to exhibit a uniform226Ra concentration of 21.5 ± 1dpm/100kg, except perhaps locally such as the Ross Sea and the Drake Passage where small variations may be present. Higher in the water column, the226Ra contents decrease toward the surface with gradients which vary as a function of the influence exerted by the Antarctic Convergence. Across this oceanic front, a north-to-south increase of226Ra occurs (the increase being the largest near the surface: from 8 to 18 dpm/100 kg), reflecting the combining effect of deep-water upwelling and meridional water mixing. The core layer of the Antarctic Intermediate Water contains about 14 dpm/100 kg of226Ra and that of the Circumpolar Intermediate Water (O2 minimum and local T maximum) about 18 dpm/100 kg. To a first approximation,226Ra covaries with Si in the circumpolar waters.  相似文献   

8.
Oxygen isotope fractionation in dissolved oxygen in the deep sea   总被引:1,自引:0,他引:1  
18O variations in dissolved oxygen have been measured at five stations from the eastern equatorial Pacific, at the GEOSECS-I and -II intercalibration stations in the North Pacific and North Atlantic, and along an Antarctic-South Pacific section from MONSOON expedition. Relative to atmospheric oxygen, dissolved oxygen in the ocean is enriched in18O up to a maximum of 14‰, the extreme enrichments occurring in the oxygen-minimum region of the eastern Pacific. The vertical diffusion-advection model has been used to determine the isotopic fractionation of deep-water in-situ oxygen consumption ascribed to bacterial metabolism. The single-stage enrichment, ε, in Pacific Deep Water below 1 km is 10‰ (α = 0.99,16O consumed preferentially). The model calculations show that the isotopic data cannot be fit without the introduction of a fractionation factor, just as the dissolved oxygen data cannot be fit without an in-situ consumption parameter. The consistency of the positive sign for ε and the negative source term for O2, observed in all deep Pacific profiles analyzed to date, provide strong evidence that vertical transport and in-situ consumption terms dominate the horizontal tracer flux terms, and indicate the presence of a significant “deep metabolism” in abyssal ocean waters.  相似文献   

9.
This paper presents the results of226Ra intercalibration measurements made by three groups of investigators (LDGO, USC and SIO) on the seawater samples collected in profile at three Geosecs intercalibration stations. A common radium standard prepared from an NBS bulk standard for the Geosecs program has been adopted by all groups. At Geosecs-I station in the Northeast Pacific, the new226Ra results obtained from reoccupation of the station show that the agreement of the three groups has been significantly improved over the initial comparison made in 1970.At Geosecs-II in the Northwest Atlantic, the initial comparison of the226Ra profiles showed that the USC data were systematically higher than the SIO data by 1 radium unit of 10?14 g/kg. This corresponds to a relative difference of 20% due to the very low radium content of Atlantic waters. The new results obtained from reoccupation of the station show that both the USC and SIO data are consistent with their previous data. Thus, a systematic difference of 1 radium unit still exists. However, the new LDGO profile falls in between those of USC and SIO, lying closer to the SIO profile.At Geosecs-III station in the Southwest Pacific, the226Ra measurements show that the LDGO data are systematically higher than the SIO data by about 10% above 3.4 km depth. Below this depth, both sets of data agree and show a sharp decrease in radium concentration. This radium discontinuity corresponds to the benthic front which is a density discontinuity separating the Deep and Bottom Water in the South Pacific.  相似文献   

10.
We examine available marine geophysical and seismological data from the Caroline Sea region and conclude that a separate Caroline plate currently exists. The Caroline plate is moving relative to the Pacific plate on its northern and eastern boundaries, the Philippine plate on its western margin, and the Indian and smaller plates along its southern side in New Guinea and the Bismarck Sea area. The southern Yap Trench, the Palau Trench, and an accreting plate boundary within the Ayu Trough manifested as an axial rift valley comprise the Caroline-Philippine plate boundary. On the basis of sediment thickness and subsidence of basement away from the rift, we estimate that the Ayu Trough started to open during the Miocene. The northern section of Pacific-Caroline plate boundary coincides with the Sorol Trough which exhibits both strike-slip and extensional characteristics. The southeastern section of this boundary occurs along the Mussau Trench where Caroline plate underthrusts the Pacific plate. The section of plate boundary between the Sorol Trough and Mussau Trench is characterized by highly unusual deformational tectonics. Convergence between the Pacific and Caroline plates is apparently accommodated here by overthrusting of small slivers of sea floor towards the northeast. The intensity of deformation appears to increase southward towards the Mussau Trench. Our calculated instantaneous angular rotation vector for the Pacific-Caroline plates predicts that convergence rates increase uniformly south along the overthrust and underthrust sections of plate boundary. The transition in tectonic style from overthrusting to underthrusting occurs between 3° and 4°N.  相似文献   

11.
Sea-floor spreading rates from four locations along the Nazca-Pacific plate boundary and one along the Juan de Fuca-Pacific plate boundary show variations over the past 2.4 m.y., with decreasing rates prior to the Jaramillo to Olduvai time interval (0.92–1.73 m.y. ago) and increasing rates since then. Other Pacific area volcanic phenomena in mid-plate and convergent-boundary settings also show minima about 1.3–1.5 m.y. ago and a maximum at present and another maximum about 5 m.y. ago: extrusion rates along the Hawaiian Ridge; volcanic episodes associated with calc-alkalic provinces of western Oregon and Central America; temporal variations in the SiO2 content of Aleutian ash layers; and the number of deep-sea ash layers. These phenomena may fluctuate in response to changing spreading rates. During times of more rapid spreading increased shear and melting along lithospheric boundaries may occasion increased volcanic activity, whereas during times of less rapid spreading volcanic activity may be less intense.  相似文献   

12.
The Arctic Ocean, the northernmost parts of the earth, covers the total surface area of 14.79 million square kilometers and amounts to only about 4% of global ocean surface area. Although its surface area is the smallest in the four major oceans, the Arct…  相似文献   

13.
226Ra and210Pb were measured in sections and profiles collected in the Weddell Sea during the International Weddell Sea Oceanographic Expedition in 1973. The results can be correlated with the circulation and mixing schemes deduced from hydrographic observations. Along the surface cyclonic gyre the Ra activities are fairly uniform at about 17 dpm/100 kg, quite similar to those of the Circumpolar surface water south of the Antarctic Convergence. The210Pb activities in the northern flank of the gyre, probably influenced by the high210Pb-bearing Circumpolar Deep Water in the north, are as high as 12 dpm/100 kg. At the central gyre and its southern flank, the surface water210Pb activities are about 7 dpm/100 kg. The warmer surface water at the central gyre has a Ra activity of about 19 dpm/100 kg, slightly higher than the colder surface water at the flanks. Thus lower210Pb/226Ra activity ratios are observed in the central gyre, and higher ratios in its flanks. Similar relationships between Ra and Pb are noted in the Weddell Sea Bottom Water (WSBW): lower Pb associated with higher Ra in the center; higher Pb with slightly lower Ra in the flanks.Vertical profiles along the cyclonic gyre show lower Ra and Pb activities in the southwestern Weddell Basin where lower temperature and lower silicate are observed. Similar to Ba, both Ra and Si are non-conservative in the Weddell Sea, with significant input from the bottom sediments and particulate dissolution during subsurface mixing.Each water mass or type in the Weddell Sea is well characterized by its Ra content, but not well by its Pb content. Ra and Si are crudely correlated with a slope of about 7 × 10?4 dpm Ra per μmole of Si. The fact that the WSBW values fall on the slope suggests that the net input rate for Ra (corrected for the decay rate) is proportional to that of Si. The linear extrapolation to zero Si gives a Ra value of 13 dpm/100 kg. These relationships are quite similar to those observed in the Circumpolar waters.  相似文献   

14.
Based on eddy-permitting ocean circulation model outputs, the mesoscale variability is studied in the Sea of Okhotsk. We confirmed that the simulated circulation reproduces the main features of the general circulation in the Sea of Okhotsk. In particular, it reproduced a complex structure of the East-Sakhalin current and the pronounced seasonal variability of this current. We established that the maximum of mean kinetic energy was associated with the East-Sakhalin Current. In order to uncover causes and mechanisms of the mesoscale variability, we studied the budget of eddy kinetic energy (EKE) in the Sea of Okhotsk. Spatial distribution of the EKE showed that intensive mesoscale variability occurs along the western boundary of the Sea of Okhotsk, where the East-Sakhalin Current extends. We revealed a pronounced seasonal variability of EKE with its maximum intensity in winter and its minimum intensity in summer. Analysis of EKE sources and rates of energy conversion revealed a leading role of time-varying (turbulent) wind stress in the generation of mesoscale variability along the western boundary of the Sea of Okhotsk in winter and spring. We established that a contribution of baroclinic instability predominates over that of barotropic instability in the generation of mesoscale variability along the western boundary of the Sea of Okhotsk. To demonstrate the mechanism of baroclinic instability, the simulated circulation was considered along the western boundary of the Sea of Okhotsk from January to April 2005. In April, the mesoscale anticyclonic eddies are observed along the western boundary of the Sea of Okhotsk. The role of the sea ice cover in the intensification of the mesoscale variability in the Sea of Okhotsk was discussed.  相似文献   

15.
The belt boundary thrust within the Cretaceous–Neogene accretionary complex of the Shimanto Belt, southwestern Japan, extends for more than ~ 1 000 km along the Japanese islands. A common understanding of the origin of the thrust is that it is an out of sequence thrust as a result of continuous accretion since the late Cretaceous and there is a kinematic reason for its maintaining a critically tapered wedge. The timing of the accretion gap and thrusting, however, coincides with the collision of the Paleocene–early Eocene Izanagi–Pacific spreading ridges with the trench along the western Pacific margin, which has been recently re‐hypothesized as younger than the previous assumption with respect to the Kula‐Pacific ridge subduction during the late Cretaceous. The ridge subduction hypothesis provides a consistent explanation for the cessation of magmatic activity along the continental margin and the presence of an unconformity in the forearc basin. This is not only the case in southwestern Japan, but also along the more northern Asian margin in Hokkaido, Sakhalin, and Sikhote‐Alin. This Paleocene–early Eocene ridge subduction hypothesis is also consistent with recently acquired tomographic images beneath the Asian continent. The timing of the Izanagi–Pacific ridge subduction along the western Pacific margin allows for a revision of the classic hypothesis of a great reorganization of the Pacific Plate motion between ~ 47 Ma and 42 Ma, illustrated by the bend in the Hawaii–Emperor chain, because of the change in subduction torque balance and the Oligocene–Miocene back arc spreading after the ridge subduction in the western Pacific margin.  相似文献   

16.
The contributions of bottom cold water and planetary β-effect to the formation of the East Korean Warm Current (EKWC), the western boundary current in the East/Japan Sea (EJS), were evaluated using an idealized three-dimensional numerical model. The model results suggest that the bottom cold water and, to a lesser extent, the planetary β-effect both contribute to the formation of the EKWC. The cold water functions as the bottom of the upper layer, to control the EKWC via conservation of potential vorticity. It is known that cold waters, such as the North Korean Cold Water and Korea Strait Bottom Cold Water often observed during summer along the southwestern coast of the EJS, originate from the winter convection in the northern area. Observational studies consistently show that the EKWC strengthens in summer when the cold water extends further south along the western boundary.  相似文献   

17.
热带太平洋-印度洋温跃层海温异常联合模及其演变   总被引:4,自引:0,他引:4       下载免费PDF全文
黎鑫  李崇银  谭言科  张韧  李刚 《地球物理学报》2013,56(10):3270-3284
利用SODA次表层海温再分析资料和卫星遥感海面高度异常数据,分析了热带太平洋和印度洋温跃层海温之间的联系,提出了太平洋-印度洋温跃层海温异常联合模(PITM)的概念、并定义了该联合模指数.结果表明,联合模指数具有准两年和3~5年的年际变化周期以及2011-2012年的年际变化周期,并具有季节锁相和振幅不对称等特征.联合模的演变过程与温跃层海温异常(TOTA)的发展和传播过程紧密相联:在太平洋,TOTA一般从西太平洋出发沿赤道(5°S-5°N)向东传播,到达东太平洋之后折向北,再沿10°N-14°N纬度带向西传播到达太平洋西岸并向赤道西太平洋扩展,形成一条回路;南太平洋也有类似回路但信号较弱;在印度洋,则主要沿8°S-12°S纬度带向西传播,到达西岸后折向北,然后迅速沿赤道(1.25°S-1.25°N)向东扩展,也形成一条回路.对NCEP/NCAR再分析风场资料的合成分析则表明,联合模的演变过程与大气环流尤其是纬向垂直环流(Walker环流)的变化密切相关,联合模的正位相对应着赤道印度洋区域顺时针的Walker环流以及赤道太平洋区域逆时针的Walker环流;而联合模的负相位则有相反的情况.此外,联合模演变过程中,TOTA的传播发展与850 hPa异常纬向风的传播发展有很好的相关.  相似文献   

18.
Based on results obtained during the GEOSECS program the primary features of the distribution of226Ra in the Atlantic Ocean can be defined. Outside the Antarctic no significant variation has been found in the226Ra content of surface waters. Eighty samples yield an average of 7.4 dpm/100 kg (normalized to a salinity of 35.00‰). Deep waters in the central Atlantic have226Ra contents several dpm/100 kg higher than expected from the mixing of Antarctic Bottom Water (21.3 dpm/100 kg) and basal North Atlantic Deep Water (10.3 dpm/100 kg). These excesses correlate well with deficiencies in O2 and excesses in SiO2. The intermediate water226Ra maximum in the South Atlantic is associated with the inflow of low-oxygen Circumpolar Intermediate Water beneath the Antarctic Intermediate Water.  相似文献   

19.
Radium-226 (226Ra) activities were measured in the surface water samples collected from the Arctic Ocean and the Bering Sea during the First Chinese National Arctic Research Expedition. The results showed that 226Ra concentrations in the surface water ranged from 0.28 to 1.56 Bq/m3 with an average of 0.76 Bq/m3 in the Arctic Ocean, and from 0.25 to 1.26 Bq/m3 with an average of 0.71 Bq/m3 in the Bering Sea. The values were obviously lower than those from open oceans in middle and low latitudes, indicating that the study area may be partly influenced by sea ice meltwater. In the Bering Sea, 226Ra in the surface water decreased northward, probably as a result of the exchange between the 226Ra-deficient sea ice meltwater and the 226Ra-rich Pacific water. In the Arctic Ocean, 226Ra in the surface water increased northward and eastward. This spatial distribution of 226Ra reflected the variation of the 226Ra-enriched river component in the water mass of the Arctic Ocean. The vertical profiles of 226Ra in the Canadian Basin showed a concentration maximum at 200 m, which could be attributed to the inputs of the Pacific water or/and the bottom shelf water with high 226Ra concentration. This conclusion was consistent with the results from 2H, 18O tracers.  相似文献   

20.
We present the distribution of226Ra in eight vertical profiles from the eastern Pacific. The profiles are located along a meridional trend near 125°W, from 43°S to 29°N. Surface226Ra concentrations are about 7 dpm/100 kg, except for the two stations south of 30°S where the higher values are due to the Antarctic influence. Deep waters show a distinctive south-to-north increase in the226Ra content, from about 26 to 41 dpm/100 kg near the bottom. Unlike in the Atlantic and Antarctic Oceans, the effect of226Ra injection from bottom sediments is clearly discernible in the area. The presence of this primary226Ra can be traced up to at least 1–1.5 km above the ocean floor, making this part of the sea bed among the strongest source regions for the oceanic226Ra. Numerical solutions of a two-dimensional vertical advection-diffusion model applied to the deep (1.2–4 km)226Ra data give the following set of best fits: upwelling velocity(Vz) = 3.5m/yr, vertical eddy diffusivity(Kz) = 0.6cm2/s, horizontal (north-south) eddy diffusivity(Ky) = 1 × 107cm2/s, and water-column regeneration flux of226Ra(J) = 3.3 × 10?5dpmkg?1yr?1 as an upper limit. These parametric values are in general agreement with one-dimensional (vertical) model fits for the Ra-Ba system. However, consideration of226Ra balance leads us to suspect the appropriateness of describing the vertical exchange processes in the eastern Pacific with constantVz and Kz. If future modeling is attempted, it may be preferable to treat the area as a diffusion-dominant mixing regime with depth-dependent diffusivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号