首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palaeomagnetic measurements have been made on specimens from Late Pleistocene sediments of a piston boring at Rubjerg in Vendsyssel, northern Jutland. The stratigraphy of the deposits is based on content of foraminifera. A total of 70 relatively oriented specimens were investigated palaeomagnetically. Normal steep inclinations close to that of the axial dipole field were found in the Upper Saxicava Sand and in the Younger Yoldia Clay (radiocarbon dated at 14,650 ± 190?12,650 ± 180 B.P.), and a secular variation with an amplitude of 10–12° in the inclincation and a “period” roughly estimated at about 350–400 years was found in the Younger Yoldia Clay.Seventeen relatively oriented specimens from undisturbed older marine deposits revealed a stable low inclination of 11° with α95 = 3°. The age of this apparent geomagnetic excursion falls somewhere between 23,000 and 40,000 B.P. (Older Yoldia Clay). Among other known geomagnetic excursions and events within this interval are Laschamp in France, Mono Lake in California and Lake Mungo in Australia. Until more definite ages have been obtained, the excursion is provisionally named the “Rubjerg Excursion”.  相似文献   

2.
Measurement of the remanent magnetization of a 6.88-m oriented core of soft sediments and tephras from Fargher Lake near Mount St. Helens in southwestern Washington State shows that no significant geomagnetic reversals were recorded in the sediments of the lake. Radiocarbon and palynological dating of the tephra layers from the lake bed indicates deposition during the interval 17, 000–34, 000 years B.P. although geochemical correlation of a prominent tephra layer in the core with tephra set C of Mount St. Helens could mean that the maximum age of the sediments may be at least 36, 000 years B.P. The core was divided into specimens 0.02 m long, each representing approximately 55 years of deposition assuming a constant rate of sedimentation. Pilot alternating field demagnetization studies of every tenth specimen indicated a strong, stable remanence with median destructive field of 15 mT, and the remaining specimens were subsequently demagnetized in fields of this strength. The mean inclination for all specimens exclusive of the unstably magnetized muck and peat from near the surface is 56.1° which is 8° shallower than the present axial dipole field at this site, perhaps because of inclination error in the detrital remanent magnetization of the sediments, although because of the variability in the data, this departure from the axial dipole field may not be significant. The ranges of inclination and declination are comparable to those of normal secular variation at northern latitudes. Although three isolated specimens have remanence with negative inclination, these anomalous directions are due to sampling and depositional effects. Measurement of a second core of 6.86 m length also revealed only normal magnetic polarity, but this result is of little stratigraphic value as this core failed to penetrate the distinctive tephra found near the base of the former core.Studies of a concentrate of the magnetic minerals in the sediments by optical microscopy and X-ray diffraction indicate that the primary magnetic constituent is an essentially pure magnetite of detrital origin. The magnetite occurs in a wide range of grain sizes with much of it of sub-multidomain size (< 15 μm).As a whole, this study provides substantial evidence against the existence of large-scale worldwide geomagnetic reversals during the time interval of Fargher Lake sedimentation, a segment of geological time for which many excursions and reversals have been reported elsewhere.  相似文献   

3.
A secular variation record of the geomagnetic declination has been obtained from glaciolacustrine varved clays and postglacial sediments, sampled both from outcrop and from piston cores from Lake Ontario. It appears to be uninterrupted and covers the interval 14,000 years B.P. (14C) to the present. The record for the interval 14,000–12,300 years B.P. consists of true declination and was obtained from samples collected from outcrop. The record for the interval 12,500 + years B.P. to the present consists of relative declination and was obtained from piston cores. The secular variation record is internally consistent and is compatible with the chronology of events known to have occurred during and following the deglaciation of western New York. Use of the record for magnetic correlation within the study area is demonstrated.  相似文献   

4.
Paleomagnetic measurements have been made on a continuously sampled, 5-m section of a core from Clear Lake, California. The sediments studied span an 8000-year interval centered at 25,000 years B.P., the approximate date of the large-scale, counterclockwise loop of the magnetic vector recorded in sediments from Mono Lake, California. The data from Mono Lake have been interpreted as a geomagnetic excursion with a duration of 600–1000 years. Because Clear Lake is only 320 km from Mono Lake and since each sample from Clear Lake represents 26 years of sedimentation, the magnetic signature of the Mono Lake geomagnetic excursion should be recorded in detail in the Clear Lake samples. Aside from a generally uniform shallowing of inclinations due to compaction, the paleomagnetic record from Clear Lake contains no anomalous features which would correspond to the Mono Lake excursion. Thus it has yet to be shown that the Mono Lake excursion was recorded anywhere besides Mono Lake. Even if the existence of the excursion is ultimately confirmed, its usefulness as a magnetostratigraphic horizon is limited.  相似文献   

5.
Palaeomagnetic measurements on three cores from the Tyrrhenian Sea abyssal plain appear to provide evidence of short-period geomagnetic secular variation during historical times. Using these patterns of variation a method is proposed to determine the relative sedimentation rates between cores.Tentative correlation with dated secular variation curves from Lake Windermere, England (R. Thompson, 1973) gives absolute sedimentation rates for the Tyrrhenian cores in the range 65–130 cm/1000 years.  相似文献   

6.
The conducted archeomagnetic studies resulted in data on variations in the geomagnetic field intensity in the central East European Plain (Sakhtysh I site area, ? = 56°48′ N, λ = 40°33′ E) during the time interval of 5–3 ka BC. The geomagnetic field intensity varied mainly within the range of 30–60 μT. In the first half of the 5th millennium BC, the mean level of geomagnetic field intensity was about 35 μT. In the second half of the 5th–early 4th millennium BC, it rose to about 50 μT and then decreased again to reach a mean value of about 40 μT in the period of 4–3 ka BC. Comparison of the geomagnetic field intensity variation based on the obtained data and the data on the Caucasus region for the same time interval demonstrates a certain similarity.  相似文献   

7.
A palaeomagnetic record of geomagnetic secular variation during the last 7000 years has been obtained from the sediments of Loch Lomond, Scotland. The magnetic direction fluctuations repeat well between cores and show greater detail, especially over the last 5000 years, than other European records. A time scale has been derived from14C analyses on the Lomond sediment and comparison with other14C-dated sediments. Investigation of relative palaeointensity determination methods has shown that the widely used normalization parameter of partial ARM is insensitive to even small sediment grain size fluctuations.The new high-fidelity direction record and improved time scale show that geomagnetic field changes have not followed a simple oscillatory pattern during the last 7000 years. The record enhances the application of palaeomagnetism to dating recent sediments, as the main declination swings are now characterized by fine detail, and paired inclination data are also available. The problem of mismatching swings when correlating with other paired directional records is thus reduced.The palaeomagnetic record agrees well with some archaeomagnetic results. It confirms the period of anticlockwise motion of the geomagnetic field vector, between 1000 and 600 years B.P., which was first documented by English archaeomagnetic investigations. Clockwise motion is shown to predominate during the remainder of the last 5500 years. The VGP path does not correlate with that of Japanese archaeomagnetic results nor North American sediment data from 2000 to 0 years B.P. This suggests that the secular changes are dominated by local non-dipole sources rather than wobbling of the main geomagnetic dipole.  相似文献   

8.
The geomagnetic field components are periodically measured at repeat stations. The main objective of the repeat stations is to provide data for tracing the secular variation of the geomagnetic field components. Secular variation at the repeat station is generally different from that at geomagnetic observatory used in the data reduction. The effect of the secular variation differences on geomagnetic data reduction was estimated for the regions of Europe, North America (below 60°N) and Australia, respectively, during the period of 2000-2010. These estimations were obtained by using the monthly mean values of north, east and vertical components of geomagnetic field, recorded at geomagnetic observatories. The effects were calculated by using observatories pairs, with distances from 350 km (in Europe) to 3100 km (in North America and Australia). The maximal effects were found to be the smallest in east component in Europe and North America, and vertical component in Australia; the effects increase with time from a central reduction epoch and they are not constant during mentioned eleven years; they were less than 1 nT only in Europe, for distances between the observatories up to 1000 km in all three components and for periods spanning ±1 month from a central epoch. It was found that their year to year variability is mostly due to the non-eliminated external field residuals in the observatories monthly means; their effect is up to 3 nT for ±3 months from a central epoch. Further, the real effects were compared to those modeled by IGRF-12 model. The maximal differences between the real and the modeled values are below 4.5 nT in all three components, for ±3 months from a central epoch.  相似文献   

9.
A 400,000 year record of the paleomagnetic field has been acquired from 22 meters of middle to late Pleistocene fine-grained sediments from Summer Lake in south-central Oregon and Double Hot Springs in northwestern Nevada. The stratigraphy is based on 55 tephra layers, nine of which have been correlated with tephra layers from other localities on the basis of their distinct major- and trace-element geochemistry and their distinct petrography. The paleomagnetic samples carry a strong and stable magnetization that does not appear to have been affected by the inclination error commonly associated with the magnetization of sediments. The samples have accurately recorded the declination and inclination of the geomagnetic field at or near the time of deposition except for errors arising from rotations of discrete blocks of sediment predominantly about vertical axes. Errors introduced by this type of rotation were corrected by using paleomagnetic directions associated with correlated tephra layers. The Summer Lake paleomagnetic record suggests that secular variations occurred throughout the middle and late Pleistocene often maintaining the same waveform through several oscillations. The amplitudes of these variations were similar to those of Holocene variations, and the periods ranged from 15,000 years to greater than 100,000 years.  相似文献   

10.
A paleomagnetic record of the geomagnetic field during its change of polarity from the reversed Matuyama epoch to the normal Brunhes epoch has been obtained from sediments of ancient Lake Tecopa in southeastern California. The polarity switch occurs in siltstone of uniform composition, and anhysteretic magnetization experiments indicate that the magnetic mineralogy does not change markedly across the transition. Within the transition interval, intensity of the magnetization drops to a minimum of 10% of the intensity after the transition. The interval of low field intensity preceded and lasted longer than the interval during which the field direction reversed, the latter being shorter than the interval of low intensity by a factor of at least 2.5. The VGP's make a smooth transit from reversed to normal polarity, with the path lying in the sector of longitude between 30°E and 60°W. Pole paths for the Brunhes-Matuyama transition recorded in California and Japan are completely different, indicating that the dipole field decayed. The transition field appears to be nondipolar, and there is no evidence for an equatorial component. Since there is little dispersion of the VGP's about a great circle path, it is possible that large-scale drift of the nondipole field ceased during this polarity transition.  相似文献   

11.
Compilations of historical observations, archaeomagnetic data from ancient fireplaces and palaemagetic results from short cores of sediment from lakes in southeastern Australia, particularly Lake Keilambete, provide a detailed record of the geomagnetic secular variation during the last 3000 years. The independent sets of data are in good agreement if the radiocarbon time scale for the lacustrine record is about 450 years too old. The error is attributed to systematic incorporation of ancient carbon into the lake floor sediments, mainly through erosion of sediment on the crater walls at times of low water level. A significant lag between deposition and the acquisition of stable magnetic remanence is ruled out. Inclination has been abnormally steep during the last 500 years but remained fairly close to the axial dipole field value prior to that. During the last 1000 years the predominant sense of looping of the magnetic vector corresponds to westward drift of the nondipole field. Secular variations on a time scale of ~ 100 years can be resolved by the lacustrine record.  相似文献   

12.
第11代国际地磁参考场(IGRF-11)是国际地磁学与高空物理学联合会(IAGA)于2009年12月提出的最新与比较准确的IGRF.根据IGRF-11模型,计算了2005-2010年中国地区地磁长期变化(SVC).IGRF-11所描述的2005-2010年中国地区地磁长期变化与实际观测的地磁长期变化(SVO)是基本一致的,但亦有明显差异.分析比较了在中国地区34个台站上的SVO与SVC之间的差异,并得到了它们之间的差值及其均方误差σ,对于地磁偏角和倾角,σ分别为0.35′/a与0.53′/a;对于地磁总强度、水平分量、北向分量、东向分量与垂直分量,σ分别为5.12nT/a,8.91nT/a,8.89nT/a,3.27nT/a与3.59nT/a.引起IGRF-11所描述的2005-2010年中国地区地磁长期变化的误差原因是:中国地区的区域性与局部性的磁异常、IGRF忽略了外源场与IGRF模型的截断阶数、全球台站与测点的分布不均匀、地磁观测误差等因素.由于中国地磁模型(CGM)优于IGRF模型,并能比较准确地描述中国地区地磁场及其长期变化,故在实际应用中应选用CGM.  相似文献   

13.
The knowledge about past secular variations of the geomagnetic field is achieved on the basis of archaeomagnetic researches of which the Bulgarian studies form an extended data set. In Part I (Kovacheva and Toshkov, 1994), the methodology used in the Sofia palaeomagnetic laboratory was described and the secular variation curves for the last 2000 years were shown. In Part II (this paper), the basic characteristics of the prehistoric materials used in the archaeomagnetic studies are emphasised, particularly in the context of the rock magnetic studies used in connection with palaeointensity determinations. The results of magnetic anisotropy studies of the prehistoric ovens and other fired structures are summarised, including the anisotropy correction of the palaeointensity results for prehistoric materials, different from bricks and pottery. Curves of the direction and intensity of the geomagnetic field during the last 8000 years in Bulgaria are given. The available directional and intensity values have been used to calculate the variation curve of the virtual dipole moment (VDM) for the last 8000 years based on different time interval averages. The path of virtual geomagnetic pole (VGP) positions is discussed.  相似文献   

14.
为探索地磁长期变化中地磁急变事件的识别方法,分析地磁急变的特征,本文基于多个地磁台站子夜均值数据,利用线性拟合方法计算了地磁场X,YZ三个分量的年变率,对近年来发生的地磁急变事件进行了识别和分析。结果显示:Y分量能对分析时段内已报道的地磁急变事件进行很好的识别,其中1999年的地磁急变事件,在我国区域内发生的时间可能为1998年,此外2017年可能存在一个新的地磁急变事件;Z分量年变率整体变化平缓,2001年和2013年前后发生两次显著的地磁年变率变化,并且分别早于2003年和2014年两次显著的地磁急变事件时间,这与下地幔的高电导率层对不同分量地磁信号从核幔边界传播至地表过程中的延迟作用有关;X分量年变率出现多次地磁急变事件特征,其变化与Dst指数年变率变化具有相关性,可利用其去除X分量年变率中存在的外部空间电流体系影响成分,更可靠地辅助Y分量对地磁急变事件进行识别。总体上,地磁子夜均值数据年变率的空间分布与基于第12代国际地磁参考场(IGRF12)模型计算的地磁数据年变率的空间分布所呈现的变化特征在总趋势上具有一致性,表明地磁台站子夜均值数据能够反映我国区域地球主磁场的变化特征,而分别由子夜均值数据和IGRF12模型计算的2003年Y分量年变率空间分布均存在的显著局部特征,可能与地磁急变事件的区域特征有关。   相似文献   

15.
Results from joint work between the Geophysical Institute (Sofia, Bulgaria), and the Geomagnetic Institute (Grocka, Yugoslavia) on the geomagnetic field variation in the prehistoric past are presented. Preliminary curves of variation of the three geomagnetic elements: declination, inclination and intensity are presented. The movement of the virtual pole position for the 6500 years time period B.C. is derived. The curves and the virtual pole positions provide a dating tool for archaeological purposes and determination of the periodicities in the geomagnetic secular variations in southeastern Europe.  相似文献   

16.
The magnetization of ceramics from the eastern Mediterranean dated within a short period (mostly shorter than ±20 years) has been studied, which made it possible to specify the geomagnetic field variations on the time interval 5th–3rd centuries BC. The 11-year time series of the geomagnetic field strength values has been constructed. The field strength changes have been considered, which indicated that the centennial variation with a characteristic time of ~130 years (according to the obtained data) is observed on this time interval as well as during the last two millennia. The ceramic material from the Mayskaya Gora archeological site (Taman), the preparation succession of which was established based on the shape of pottery but the problem of absolute dating was not solved, has been dated.  相似文献   

17.
Archaeomagnetism in Greece has continuously developed during the last decades. Numerous studies have provided high quality data and accurate secular variation curves for the direction and intensity of the geomagnetic field have been constructed. The Greek Secular Variation Curves (SVCs) cover the last 8 millennia for intensity and 6 millennia for direction. The coverage of the archaeological periods remains uneven, with several gaps, mostly in the directional dataset, with only two results for periods older than 2500 B.C. In the present contribution, the first archaeomagnetic results from Neolithic settlements in northern Greece are presented. For the present study, samples were collected from three different archaeological sites: burnt structures in Avgi (Kastoria) and Vasili (Farsala) and one oven from Sosandra (Aridaia). The natural remanent magnetization (NRM) grouping of all specimens indicated that the majority of the samples were burnt in situ, providing thus a reliable direction of the ancient field. Magnetic cleaning (both alternating-field and thermal) revealed the presence of one stable component of magnetisation. Rock magnetic experiments (acquisition of isothermal remanent magnetization (IRM), thermal demagnetisation of the IRM, thermomagnetic curves) have been performed on pilot samples indicating that low coercivity magnetic minerals such as magnetite or Timagnetite are prevailing. The mean directions (declination D, inclination I and parameters of the Fisherian statistics), which arose from the three sites are as follows: Sosandra: D = 343°, I = 55.6°, ??95 = 4.8°; Avgi: D = 10.1°, I = 53.4°, ??95 = 4.2° and Vasili: D = 357.5°, I = 43.1°, ??95 = 4.1°. The obtained data are in a very good agreement with results from Neolithic Bulgaria. This study represents the beginning of an effort to fill the gaps of the Greek secular variation curves and their extension to the Neolithic period.  相似文献   

18.
根据19360年426个地磁测点和28个IGRF计算的地磁数据,计算地磁场和地磁异常场各个分量的曲面Spline模型,并绘制相应的地磁图和地磁异常图.依据我国部分地区的1909~1915,1915~1920,1920~1930,1930~1936年间地磁偏角长期变化图,1908~1917,1917~1922,1922~1936年间水平强度长期变化图和1908~1922,1922~1936年间垂直强度长期变化图,使用曲面Spline方法,分别计算上述9个时间段的磁偏角(D)、水平强度(H)和垂直强度(Z)长期变化的曲面Spline模型,并绘制相应的长期变化图.根据这些长期变化模型,将19360年426个点的三分量绝对值数据归算至1940,1930,1920,1910年和1900年,从而为计算这5个年代的地磁场模型奠定了坚实的基础.  相似文献   

19.
北京地区地磁场Sq强度的季节变化和长期变化   总被引:1,自引:0,他引:1       下载免费PDF全文
吴迎燕 《地球物理学报》2018,61(9):3552-3559
本文利用北京地区的北京台(BJI)和北京十三陵台(BMT)的地磁场XYZ分量时均值数据,研究了1960年至2013年期间该地区地磁场Sq强度的季节变化和长期变化.结果表明:(1)BJI台和BMT台的地磁场Sq不仅变幅相近,而且具有一致的地方时变化、季节变化、太阳活动周变化和长期变化.(2)BJI台和BMT台Sq强度的逐月变化,其中ASqX)主要表现为春秋增强而冬夏减弱的季节变化.ASqY)呈现出夏季增强的半年变化.ASqZ)变化较为复杂.虽然在5月和9月出现减小,但是总体来看,其变化曲线也具有夏季增强的半年变化特征.同时,Sq强度与太阳活动F107指数之间存在明显的正相关关系,具有一致的11年太阳活动周变化和长期变化,反映出了Sq与太阳活动之间的密切关系.(3)BJI台和BMT台Sq强度差值dASq表明,在大多数年份,两个台站的Sq强度之差一般不超过±2 nT,同时没有明显的季节或年周期变化特征.在2000年和2001年太阳活动高年,dASq出现显著增强,最大可达12.3 nT.反映出了北京地区Sq场强度梯度的剧烈扰动与太阳活动之间的密切关系,意味着在太阳活动高年,Sq电离层发电机电流的局部结构可能发生了明显的改变.  相似文献   

20.
The detrital remanent magnetism of a series of deep-sea sediment cores from the Gulf of Mexico has been measured. Together with microfaunal analysis, the data show that excursions of the geomagnetic field occurred at 17,000 ± 1500years B.P. and32,000 ± 1500 years B.P. It is suggested that the former may be the Laschamp excursion and that the latter may be the Lake Mungo excursion. No similar geomagnetic behavior is detected for the past 50,000 years. Sedimentation rates as high as 19 cm per 1000 years are indicated.Susceptibility (χ) maxima in the cores are due to tephra layers. Correlation between the intensity of magnetization (J) and χ shows that variations of intensity are more a function of ferrimagnetic mineral concentrations than geomagnetic field intensity variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号